1
|
Liang J, Liu Y, Guan Q, Li Y, Zheng MZ, Zhang XL, Chen LX, Li H. Discovery of novel pyrimidinetrione derivatives as DprE1 inhibitors with potent antimycobacterial activities. Eur J Med Chem 2025; 289:117416. [PMID: 39999693 DOI: 10.1016/j.ejmech.2025.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Tuberculosis (TB) is one of the ten major factors threatening human life and health. At present, many factors limit the application of existing anti-tuberculosis drugs, such as a small range of available drug options, poor treatment compliance, and severe toxic and side effects. It is extremely urgent to develop novel anti-tuberculosis drugs. DprE1 is a potential anti-mycobacterial cell wall target, and some DprE1 inhibitors have entered the clinical research stage. Our research group found DprE1 inhibitor G50 with similar activity as isoniazid through virtual screening in the early stage. To obtain better DprE1 inhibitors, 45 new compounds were designed and synthesized based on the structure of G50. Among them, 12 selected DprE1 enzyme inhibitors could significantly inhibit the growth of Mycobacterium tuberculosis (M.tb) H37Ra and H37Rv growth in vitro. The MIC50 value of compound 42 against M.tb H37Ra is 1.071 ± 0.041 μM, with the selective index (SI) value of 186.74 (the SI value of linezolid is 119.9). Compared to G50, compound 42 exhibits a 5-fold increase in DprE1 enzyme inhibitory activity. In addition, the binding affinity of compound 42 is equivalent to that of G50. This study further enriches the examples of developing DprE1 inhibitors based on the backbone of pyrimidinetrione and also provides potential anti-tuberculosis lead compounds.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Guan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yan Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Zhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China; Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Guo W, Ma Y, Mou Q, Shao X, Lyu M, Garcia V, Kong L, Lewis W, Yang Z, Lu S, Lu Y. Sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay for spatial imaging of glycoRNAs in single cells. Nat Protoc 2025:10.1038/s41596-024-01103-x. [PMID: 39779896 DOI: 10.1038/s41596-024-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Glycosylated RNAs (glycoRNAs) have recently emerged as a new class of molecules of substantial interest owing to their potential roles in cellular processes and diseases. However, studying glycoRNAs is challenging owing to the lack of effective research tools including, but not limited to, imaging techniques to study the spatial distribution of glycoRNAs. Recently, we reported the development of a glycoRNA imaging technique, called sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA), to visualize sialic acid-containing glycoRNAs with high sensitivity and specificity. Here we describe the experimental design principles and detailed step-by-step procedures for ARPLA-assisted glycoRNA imaging across multiple cell types. The procedure includes details for target selection, oligo design and preparation, optimized steps for RNA in situ hybridization, glycan recognition, proximity ligation, rolling circle amplification and a guideline for image acquisition and analysis. With properly designed probe sets and cells prepared, ARPLA-based glycoRNA imaging can typically be completed within 1 d by users with expertise in biochemistry and fluorescence microscopy. The ARPLA approach enables researchers to explore the spatial distribution, trafficking and functional contributions of glycoRNAs in various cellular processes.
Collapse
Affiliation(s)
- Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Yuan Ma
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Mingkuan Lyu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Valeria Garcia
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Shuya Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Yi Lu
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Wang Y, Liu Y, Long M, Dong Y, Li L, Zhou X. Nanoparticles target M2 macrophages to silence kallikrein-related peptidase 12 for the treatment of tuberculosis and drug-resistant tuberculosis. Acta Biomater 2024; 188:358-373. [PMID: 39305944 DOI: 10.1016/j.actbio.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Matrix metalloproteinases (MMPs) are involved in the breakdown of lung extracellular matrix and the consequent release of Mycobacterium tuberculosis into the airways. Recent studies indicate that kallikrein-related peptidase 12 (KLK12) regulate MMP-1 and MMP-9, suggesting that targeting the KLK12 gene could be a promising tuberculosis (TB) treatment. To maximise therapeutic potential, this strategy of silencing KLK12 needs to be delivered to the pathogenic cell population while preserving the immunoprotective and tissue homeostatic functions of other lung macrophages. Our research found that KLK12 is highly expressed in M2 macrophages, leading us to design mannose-based bovine serum albumin nanoparticles (MBNPs) for delivering siRNA to silence KLK12 in these cells. The results of in vitro experiments showed that MBNPs could accurately enter M2 macrophages and sustainably release KLK12-siRNA with the help of mannose and mannose receptor targeting. The results of the in vivo experiments showed that MBNPs could reach the lungs within 1 h after intraperitoneal injection and peaked at 6 h. MBNPs increased collagen fibre content in the lungs by decreasing the levels of KLK12/MMPs thereby limiting the progression of TB. Importantly, MBNPs provided greater alleviation of pulmonary TB symptoms and reduced bacterial load in both TB and drug-resistant TB models. These findings provide an alternative and effective option for the treatment of TB, especially when drug resistance occurs. STATEMENT OF SIGNIFICANCE: RNA interference using small interfering RNA (siRNA) can target various genes and has potential for treating diseases such as tuberculosis (TB). However, siRNAs are unstable in the blood and within cells. This study presents bovine serum albumin nanoparticles encapsulating KLK12-siRNA (BNPs) synthesized via desolvation. A mannose layer was added (MBNPs) to target mannose receptors on M2 macrophages, facilitating endocytosis. The low pH-responsive MBNPs enhance lysosomal escape for siRNA delivery, downregulating the KLK12 pathway. Tests confirmed that MBNPs effectively inhibited Mycobacterium bovis proliferation, reduced granulomas, and decreased inflammation in a mouse model. This research aims to reduce antibiotic use, shorten treatment duration, and provide a novel TB treatment option.
Collapse
Affiliation(s)
- Yuanzhi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiduo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Meizhen Long
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhui Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiangmei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Meng Y, Wang Y, Zhan Z, Chen Y, Zhang C, Peng W, Ying B, Chen P. Fructose@histone synergistically improve the performance of DNA-templated Cu NPs: rapid analysis of LAM in tuberculosis urine samples using a handheld fluorometer and a smartphone RGB camera. J Mater Chem B 2024; 12:6668-6677. [PMID: 38884176 DOI: 10.1039/d4tb00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
This study presented a nanoparticle-enhanced aptamer-recognizing homogeneous detection system combined with a portable instrument (NASPI) to quantify lipoarabinomannan (LAM). This system leveraged the high binding affinity of aptamers, the high sensitivity of nanoparticle cascade amplification, and the stabilization effect of dual stabilizers (fructose and histone), and used probe-Cu2+ to achieve LAM detection at concentrations ranging from 10 ag mL-1 to 100 fg mL-1, with a limit of detection of 3 ag mL-1 using a fluorometer. It can also be detected using an independently developed handheld fluorometer or the red-green-blue (RGB) camera of a smartphone, with a minimum detection concentration of 10 ag mL-1. We validated the clinical utility of the biosensor by testing the LAM in the urine of patients. Forty urine samples were tested, with positive LAM results in the urine of 18/20 tuberculosis (TB) cases and negative results in the urine of 6/10 latent tuberculosis infection cases and 10/10 non-TB cases. The assay results revealed a 100% specificity and a 90% sensitivity, with an area under the curve of 0.9. We believe that the NASPI biosensor can be a promising clinical tool with great potential to convert LAM into clinical indicators for TB patients.
Collapse
Affiliation(s)
- Yanming Meng
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yue Wang
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zixuan Zhan
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yuemei Chen
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chunying Zhang
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Wu Peng
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Binwu Ying
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med + X Center for Manufacturing, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Zhang Y, Xu D, Nie Q, Wang J, Fang D, Xie Y, Xiong H, Pan Q, Zhang XL. Macrophages exploit the mannose receptor and JAK-STAT1-MHC-II pathway to drive antigen presentation and the antimycobacterial immune response after BCG vaccination. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1130-1144. [PMID: 38894685 PMCID: PMC11399420 DOI: 10.3724/abbs.2024100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis ( M. tb), remains one of the leading causes of fatal infectious diseases worldwide. The only licensed vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), has variable efficacy against TB in adults. Insufficiency of immune cell function diminishes the protective effects of the BCG vaccine. It is critical to clarify the mechanism underlying the antimycobacterial immune response during BCG vaccination. Macrophage mannose receptor (MR) is important for enhancing the uptake and processing of glycoconjugated antigens from pathogens for presentation to T cells, but the roles of macrophage MR in the BCG-induced immune response against M. tb are not yet clear. Here, we discover that macrophage MR deficiency impairs the antimycobacterial immune response in BCG-vaccinated mice. Mechanistically, macrophage MR triggers JAK-STAT1 signaling, which promotes antigen presentation via upregulated MHC-II and induces IL-12 production by macrophages, contributing to CD4 + T cell activation and IFN-γ production. MR deficiency in macrophages reduces the vaccine efficacy of BCG and increases susceptibility to M. tb H37Ra challenge in mice. Our results suggest that MR is critical for macrophage antigen presentation and the antimycobacterial immune response to BCG vaccination and offer valuable guidance for the preventive strategy of BCG immunization.
Collapse
Affiliation(s)
- Ying Zhang
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Dandan Xu
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of Blood Transfusionthe Affiliated Xuzhou Municipal Hospital of Xuzhou Medical UniversityXuzhou First People’s HospitalXuzhou221116China
| | - Qi Nie
- Wuhan Jinyintan HospitalTongji Medical College of Huazhong University of Science and TechnologyWuhan430023China
| | - Jing Wang
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Dan Fang
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Yan Xie
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Huang Xiong
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Qin Pan
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- Department of AnatomyWuhan University Taikang Medical School (School of Basic Medical Sciences) and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan430071China
| | - Xiao-Lian Zhang
- Department of ImmunologyWuhan University Taikang Medical School (School of Basic Medical Sciences)Department of Allergy of Zhongnan Hospital and Hubei Province Key Laboratory of Allergy and ImmunologyWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| |
Collapse
|
6
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
7
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
8
|
Srivastava S, Dey S, Mukhopadhyay S. Vaccines against Tuberculosis: Where Are We Now? Vaccines (Basel) 2023; 11:vaccines11051013. [PMID: 37243117 DOI: 10.3390/vaccines11051013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 leading causes of death in low-income countries. Statistically, TB kills more than 30,000 people each week and leads to more deaths than any other infectious disease, such as acquired immunodeficiency syndrome (AIDS) and malaria. TB treatment is largely dependent on BCG vaccination and impacted by the inefficacy of drugs, absence of advanced vaccines, misdiagnosis improper treatment, and social stigma. The BCG vaccine provides partial effectiveness in demographically distinct populations and the prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB incidences demands the design of novel TB vaccines. Various strategies have been employed to design vaccines against TB, such as: (a) The protein subunit vaccine; (b) The viral vector vaccine; (c) The inactivation of whole-cell vaccine, using related mycobacteria, (d) Recombinant BCG (rBCG) expressing Mycobacterium tuberculosis (M.tb) protein or some non-essential gene deleted BCG. There are, approximately, 19 vaccine candidates in different phases of clinical trials. In this article, we review the development of TB vaccines, their status and potential in the treatment of TB. Heterologous immune responses generated by advanced vaccines will contribute to long-lasting immunity and might protect us from both drug-sensitive and drug-resistant TB. Therefore, advanced vaccine candidates need to be identified and developed to boost the human immune system against TB.
Collapse
Affiliation(s)
- Shruti Srivastava
- Research and Development Office, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India
| | - Sajal Dey
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, Telangana, India
| |
Collapse
|
9
|
Gong Y, Wang J, Li F, Zhu B. Polysaccharides and glycolipids of Mycobacterium tuberculosis and their induced immune responses. Scand J Immunol 2023; 97:e13261. [PMID: 39008002 DOI: 10.1111/sji.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (M. tuberculosis). The structures of polysaccharides and glycolipids at M. tuberculosis cell wall vary among different strains, which affect the physiology and pathogenesis of mycobacteria by activating or inhibiting innate and acquired immunity. Among them, some components such as lipomannan (LM) and lipoarabinomannan (LAM) activate innate immunity by recognizing some kinds of pattern recognition receptors (PRRs) like Toll-like receptors, while other components like mannose-capped lipoarabinomannan (ManLAM) could prevent innate immune responses by inhibiting the secretion of pro-inflammatory cytokines and maturation of phagosomes. In addition, many glycolipids can activate natural killer T (NKT) cells and CD1-restricted T cells to produce interferon-γ (IFN-γ). Furthermore, humoral immunity against cell wall components, such as antibodies against LAM, plays a role in immunity against M. tuberculosis infection. Cell wall polysaccharides and glycolipids of M. tuberculosis have potential applications as antigens and adjuvants for novel TB subunit vaccines.
Collapse
Affiliation(s)
- Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Radhakrishnan A, Brown CM, Guy CS, Cooper C, Pacheco-Gomez R, Stansfeld PJ, Fullam E. Interrogation of the Pathogen Box reveals small molecule ligands against the mycobacterial trehalose transporter LpqY-SugABC. RSC Med Chem 2022; 13:1225-1233. [PMID: 36320433 PMCID: PMC9579956 DOI: 10.1039/d2md00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, claims ∼1.5 million lives annually. Effective chemotherapy is essential to control TB, however the emergence of drug-resistant strains of TB have seriously threatened global attempts to control and eradicate this deadly pathogen. Trehalose recycling via the LpqY-SugABC importer is essential for the virulence and survival of Mtb and inhibiting or hijacking this transport system is an attractive approach for the development of novel anti-tubercular and diagnostic agents. Therefore, we interrogated the drug-like compounds in the open-source Medicines for Malaria Pathogen Box and successfully identified seven compounds from the TB, kinetoplastids and reference compound disease sets that recognise LpqY. The molecules have diverse chemical scaffolds, are not specific trehalose analogues, and may be used as novel templates to facilitate the development of therapeutics that kill Mtb with a novel mechanism of action via the mycobacterial trehalose LpqY-SugABC transport system.
Collapse
Affiliation(s)
- Anjana Radhakrishnan
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Chelsea M Brown
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Collette S Guy
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Charlotte Cooper
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Raul Pacheco-Gomez
- Malvern Panalytical Ltd, Enigma Business Park Grovewood Road Malvern WR14 1XZ UK
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| |
Collapse
|
11
|
Alves I, Fernandes Â, Santos-Pereira B, Azevedo CM, Pinho SS. Glycans as a key factor in self and non-self discrimination: Impact on the breach of immune tolerance. FEBS Lett 2022; 596:1485-1502. [PMID: 35383918 DOI: 10.1002/1873-3468.14347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from non-self. As such, glycans are a class of "Self-Associated Molecular Patterns" that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory or anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|
12
|
Maru B, Nadeau L, McKeague M. Enhancing CAR-T Cell Therapy with Functional Nucleic Acids. ACS Pharmacol Transl Sci 2021; 4:1716-1727. [PMID: 34927006 DOI: 10.1021/acsptsci.1c00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a relatively new form of immunotherapy that has had success in treating patients with hematologic malignancies, leading to three recent United States Food and Drug Administration approvals. However, several challenges hinder the widespread use of CAR-T therapy. Here, we review the application of functional nucleic acids such as aptamers and ribozymes as novel tools to improve a variety of steps in CAR-T cell therapy development. We critically examine key studies that highlight the benefits of functional nucleic acids at different stages of cell-based therapy and discuss the feasibility of their practical clinical application. Finally, we offer insights into potential opportunities where chemists can significantly contribute to the innovative incorporation of functional nucleic acids to overcome challenges associated with this cutting-edge immunotherapy.
Collapse
Affiliation(s)
- Bruktawit Maru
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Lea Nadeau
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Maureen McKeague
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.,Department of Chemistry, Faculty of Science, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
13
|
Li G, Li J, Hou Y, Xie S, Xu J, Yang M, Li D, Du Y. Levofloxacin-Loaded Nanosonosensitizer as a Highly Efficient Therapy for Bacillus Calmette-Guérin Infections Based on Bacteria-Specific Labeling and Sonotheranostic Strategy. Int J Nanomedicine 2021; 16:6553-6573. [PMID: 34602818 PMCID: PMC8478796 DOI: 10.2147/ijn.s321631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The rapid emergence of multidrug-resistant Mycobacterium tuberculosis (MTB) poses a significant challenge to the treatment of tuberculosis (TB). Sonodynamic antibacterial chemotherapy (SACT) combined with sonosensitizer-loaded nanoparticles with targeted therapeutic function is highly expected to eliminate bacteria without fear of drug resistance. This study aimed to investigate the antibacterial effect and underlying mechanism of levofloxacin-loaded nanosonosensitizer with targeted therapeutic function against Bacillus Calmette-Guérin bacteria (BCG, an MTB model). Methods This study developed levofloxacin-loaded PLGA-PEG (poly lactide-co-glycolide-polyethylene glycol) nanoparticles with BM2 aptamer conjugation on its surface using the crosslinking agents EDC and NHS (BM2-LVFX-NPs). The average diameter, zeta potential, morphology, drug-loading properties, and drug release efficiency of the BM2-LVFX-NPs were investigated. In addition, the targeting and toxicity of BM2-LVFX-NPs in the subcutaneous BCG infection model were evaluated. The biosafety, reactive oxygen species (ROS) production, cellular phagocytic effect, and antibacterial effect of BM2-LVFX-NPs in the presence of ultrasound stimulations (42 kHz, 0.67 W/cm2, 5 min) were also systematically evaluated. Results BM2-LVFX-NPs not only specifically recognized BCG bacteria in vitro but also gathered accurately in the lesion tissues. Drugs loaded in BM2-LVFX-NPs with the ultrasound-responsive feature were effectively released compared to the natural state. In addition, BM2-LVFX-NPs exhibited significant SACT efficiency with higher ROS production levels than others, resulting in the effective elimination of bacteria in vitro. Meanwhile, in vivo experiments, compared with other options, BM2-LVFX-NPs also exhibited an excellent therapeutic effect in a rat model with BCG infection after exposure to ultrasound. Conclusion Our work demonstrated that a nanosonosensitizer formulation with LVFX could efficiently translocate therapeutic drugs into the cell and improve the bactericidal effects under ultrasound, which could be a promising strategy for targeted therapy for MTB infections with high biosafety.
Collapse
Affiliation(s)
- Gangjing Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianhu Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuru Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuang Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jieru Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Min Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
14
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
15
|
Wu J, Zhu X, Guo X, Yang Z, Cai Q, Gu D, Luo W, Yuan C, Xiang Y. Helicobacter urease suppresses cytotoxic CD8 + T cell responses through activating Myh9-dependent induction of PD-L1. Int Immunol 2021; 33:491-504. [PMID: 34297096 DOI: 10.1093/intimm/dxab044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/23/2021] [Indexed: 11/14/2022] Open
Abstract
As a key virulence factor for persistent colonization, Urease B subunit (UreB) is considered to be an ideal vaccine antigen against Helicobacter pylori (H. pylori) infection. However, the role and molecular mechanisms of UreB involved in immune microenvironment dysregulation still remains largely unknown. In the present study, we evaluated the effects of UreB on macrophage activation and found that UreB induced PD-L1 accumulation on Bone marrow-derived macrophages (BMDMs). Co-culture assays further revealed that UreB-induced PD-L1 expression on BMDMs significantly decreased the proliferation and secretion of cytolytic molecules (granzyme B and perforin) of splenic CD8 + T cells isolated from inactivated H. pylori-immunized mice. More importantly, myosin heavy chain 9 (Myh9) was confirmed to be a direct membrane receptor of UreB via using LC-MS/MS and Co-immunoprecipitation and required for PD-L1 upregulation on BMDMs. Molecular studies further demonstrated that the interaction between UreB and Myh9 decreased GCN2 autophosphorylation and enhanced intracellular pool of amino acids, leading to the upregulation of S6K phosphorylation, a commonly used marker for monitoring activation of mTORC1 signaling activity. Furthermore, blocking mTORC1 activation with its inhibitor Temsirolimus reversed UreB-induced PD-L1 upregulation and the subsequently inhibitory effects of BMDMs on activation of cytotoxic CD8 + T cell responses. Overall, our data unveil a novel immunosuppressive mechanism of UreB during H. pylori infection, which may provide valuable clue for the optimization of H. pylori vaccine.
Collapse
Affiliation(s)
- Jian Wu
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Xiaowen Zhu
- Department of Gastroenterology, Affiliated Taihe Hospital of Hubei university of Medicine, Shiyan 442099, P.R. China
| | - Xia Guo
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Ze Yang
- Blood Transfusion Department, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, P.R. China
| | - Qinzhen Cai
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Dongmei Gu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wei Luo
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, P.R. China
| |
Collapse
|
16
|
Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura‐Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye X, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021; 22:e51678. [PMID: 33987949 PMCID: PMC8256295 DOI: 10.15252/embr.202051678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor β-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.
Collapse
|
17
|
Srivastava S, Abraham PR, Mukhopadhyay S. Aptamers: An Emerging Tool for Diagnosis and Therapeutics in Tuberculosis. Front Cell Infect Microbiol 2021; 11:656421. [PMID: 34277465 PMCID: PMC8280756 DOI: 10.3389/fcimb.2021.656421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) has been plaguing human civilization for centuries, and currently around one-third of the global population is affected with TB. Development of novel intervention tools for early diagnosis and therapeutics against Mycobacterium tuberculosis (M.tb) is the main thrust area in today's scenario. In this direction global efforts were made to use aptamers, the chemical antibodies as tool for TB diagnostics and therapeutics. This review describes the various aptamers introduced for targeting M.tb and highlights the need for development of novel aptamers to selectively target virulent proteins of M.tb for vaccine and anti-TB drugs. The objective of this review is to highlight the diagnostic and therapeutic application of aptamers used for tuberculosis. The discovery of aptamers, SELEX technology, different types of SELEX development processes, DNA and RNA aptamers reported for diseases and pathogenic agents as well have also been described in detail. But the emphasis of this review is on the development of aptamers which can block the function of virulent mycobacterial components for developing newer TB vaccine candidates and/or drug targets. Aptamers designed to target M.tb cell wall proteins, virulent factors, secretory proteins, or combination could orchestrate advanced diagnosis and therapeutic measures for tuberculosis.
Collapse
Affiliation(s)
- Shruti Srivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Philip Raj Abraham
- Unit of OMICS, ICMR-Vector Control Research Centre (VCRC), Puducherry, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
18
|
Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021; 12:643797. [PMID: 33679681 PMCID: PMC7933031 DOI: 10.3389/fmicb.2021.643797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptamers can serve as efficient bioreceptors for the development of biosensing detection platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, which enable them to selectively bind to target analytes. The method used to identify aptamers is Systematic Evolution of Ligands through Exponential Enrichment (SELEX). Target properties can have an impact on aptamer efficiencies. Therefore, characteristics of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer development. Several aptamers have been described for key water-borne pathogens. Here, we provide an exhaustive overview of these aptamers and discuss important microbial aspects to consider when developing such aptamers.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Sebastien P. Faucher
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
19
|
Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:219-237. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Collapse
Affiliation(s)
- Xiao-Lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Haoran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
20
|
Qu Z, Zhou J, Zhou Y, Xie Y, Jiang Y, Wu J, Luo Z, Liu G, Yin L, Zhang XL. Mycobacterial EST12 activates a RACK1-NLRP3-gasdermin D pyroptosis-IL-1β immune pathway. SCIENCE ADVANCES 2020; 6:6/43/eaba4733. [PMID: 33097533 PMCID: PMC7608829 DOI: 10.1126/sciadv.aba4733] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/11/2020] [Indexed: 05/28/2023]
Abstract
Pyroptosis, an inflammatory form of programmed cell death, has been implicated in eliminating pathogenic infections. However, macrophage pyroptosis-related proteins from Mycobacterium tuberculosis (M.tb) have largely gone unexplored. Here, we identified a cell pyroptosis-inducing protein, Rv1579c, named EST12, secreted from the M.tb H37Rv region of difference 3. EST12 binds to the receptor for activated C kinase 1 (RACK1) in macrophages, and the EST12-RACK1 complex recruits the deubiquitinase UCHL5 to promote the K48-linked deubiquitination of NLRP3, subsequently leading to an NLRP3 inflammasome caspase-1/11-pyroptosis gasdermin D-interleukin-1β immune process. Analysis of the crystal structure of EST12 reveals that the amino acid Y80 acts as a critical binding site for RACK1. An EST12-deficient strain (H37RvΔEST12) displayed higher susceptibility to M.tb infection in vitro and in vivo. These results provide the first proof that RACK1 acts as an endogenous host sensor for pathogens and that EST12-RACK1-induced pyroptosis plays a pivotal role in M.tb-induced immunity.
Collapse
Affiliation(s)
- Zilu Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China
| | - Yidan Zhou
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yanjing Jiang
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China
| | - Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Zuoqin Luo
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China
| | - Guanghui Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Lei Yin
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430077, China.
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
21
|
Li X, Weng C, Wang J, Yang W, Lu Q, Yan X, Sakran MA, Hong J, Zhu W, Zhou X. A label-free electrochemical magnetic aptasensor based on exonuclease III-assisted signal amplification for determination of carcinoembryonic antigen. Mikrochim Acta 2020; 187:492. [PMID: 32770422 DOI: 10.1007/s00604-020-04457-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
A novel label-free and exonuclease III (Exo III)-assisted signal amplification electrochemical aptasensor was constructed for the determination of carcinoembryonic antigen (CEA) via magnetic field-induced self-assembly of magnetic biocomposites (Fe3O4@Au NPs-S1-S2-S3). The magnetic biocomposites were acquired by modifying double-stranded DNA (S1-S2-S3) on the surface of Fe3O4@Au nanoparticles (Fe3O4@Au NPs). Among them, Fe3O4@Au NPs were used as carriers for magnetic separation, thiolated single-stranded DNA (S1) provided signal sequence, CEA aptamer (S2) worked as a recognition element, and complementary strand (S3) was used to form double strands. In the presence of CEA, S2 bonded with CEA competitively; the exposed S1 could not be cleaved since Exo III was inactive against ssDNA. The G-quadruplex/hemin complexes finally formed with the existence of K+, and the high electrochemical signal of G-quadruplex/hemin complexes was recorded by differential pulse voltammetry (DPV) at - 0.6 V. Conversely, in the absence of CEA, dsDNA was cleaved from the 3' blunt end by Exo III; the disappearance of G-rich sequence blocked the generation of the signal. This method exhibited good selectivity and sensitivity for the determination of CEA; the linear range was from 0.1 to 200 ng mL-1 and the limit of detection was 0.4 pg mL-1. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xiaoqiang Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Marwan Ahmad Sakran
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
22
|
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020; 21:ijms21145074. [PMID: 32708376 PMCID: PMC7404326 DOI: 10.3390/ijms21145074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.
Collapse
|
23
|
Liu CG, Wang Y, Liu P, Yao QL, Zhou YY, Li CF, Zhao Q, Liu GH, Zhang XL. Aptamer-T Cell Targeted Therapy for Tumor Treatment Using Sugar Metabolism and Click Chemistry. ACS Chem Biol 2020; 15:1554-1565. [PMID: 32401486 DOI: 10.1021/acschembio.0c00164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of a tumor-targeted immunotherapy is highly required. The most advanced application is the use of CD19 chimeric antigen receptor (CAR)T (CAR-T) cells to B cell malignancies, but there are still side effects including potential carcinogenicity of lentiviral or retroviral insertion into the host cell genome. Here, we developed a nonviral aptamer-T cell targeted strategy for tumor therapy. Tumor cells surface-specific ssDNA aptamers were conjugated to CD3+T cells (aptamer-T cells) using N-azidomannosamine (ManNAz) sugar metabolic cell labeling and click chemistry. We found that the aptamer-T cells could specifically target and bind to tumor cells (such as SGC-7901 gastric cancer cell and CT26 colon carcinoma cell) in vitro and in mice after adoptively transfer in. Aptamer-T cells led to significant regression in tumor volume due to being enriched at tumor microenvironment and producing strong cytotoxicity activities of CD3+T cells with enhanced perforin, granzyme B, CD107a, CD69, and FasL expression. Moreover, aptamer-T displayed even stronger antitumor effects than an anti-PD1 immune-checkpoint monoclonal antibody (mAb) treatment in mice and combination with anti-PD1 yielded synergic antitumor effects. This study uncovers the strong potential of the adoptive nonviral aptamer-T cell strategy as a feasible and efficacious approach for tumor-targeted immunotherapy application.
Collapse
Affiliation(s)
- Chuan-Gang Liu
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Yong Wang
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Peng Liu
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Qi-Li Yao
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Yuan-Yuan Zhou
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Chao-Fan Li
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology and Clinical Research Center for Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Guang-Hui Liu
- Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Allergy Department of Zhongnan Hospital Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Allergy Department of Zhongnan Hospital Wuhan University, Wuhan 430071, China
| |
Collapse
|
24
|
Liu P, Ren S, Xie Y, Liu C, Qin W, Zhou Y, Zhang M, Yang Q, Chen XC, Liu T, Yao Q, Xiao Z, Gu J, Zhang XL. Quantitative analysis of serum-based IgG agalactosylation for tuberculosis auxiliary diagnosis. Glycobiology 2020; 30:746-759. [PMID: 32149341 DOI: 10.1093/glycob/cwaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB) is the leading infectious cause of mortality worldwide, especially in developing countries. However, effective means for TB diagnosis, especially for bacillus-negative (Bn) TB laboratory diagnosis, are urgently needed. In the present study, serum IgG from each tuberculosis patients and healthy controls was purified using affinity chromatography. The samples were then analyzed using mass spectrometry (MS) and ultraperformance liquid chromatography (UPLC) methods. We quantitatively assessed the changes of serum IgG galactosylation in 567 human serum samples including 377 pulmonary TB patients and 190 healthy donors (HDs). We found significantly more agalactosylated (G0) vs monogalactosylated (G1) and digalactosylated (G2) N-glycans of IgG in TB patients, including smear-negative TB patients, than in HDs. The detection rate of TB diagnostic performance by MS for IgG-Gal ratio G0/(G1 + G2 × 2) is 90.48% for bacillus-positive (Bp) and 73.16% for Bn TB patients. Further, combination of MS method with other routine laboratory TB diagnostic methods significantly increased the detection rate to 91.01%-98.39%. Similar results were observed in Mycobacterium tuberculosis (M. tb) infection mouse models. The decrease in galactosylation of IgG in TB patients was also qualitatively confirmed using specific lectin blot assay. Using the above techniques, we can discriminate the content of IgG G0 with terminal N-acetylglucosamine and IgG-Gal ratio G0/(G1 + G2 × 2) between TB patients and HDs. Our data suggest that quantitative analysis of serum-based IgG-Gal ratio G0/(G1 + G2 × 2) could be used for TB auxiliary diagnosis with high effectiveness and feasibility and its combination with other routine laboratory TB diagnostic methods could remarkably improve the detection rate.
Collapse
Affiliation(s)
- Peng Liu
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Shifang Ren
- Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Chuangang Liu
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Wenjun Qin
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Mingxia Zhang
- Guangdong Key Laboratory for Emerging Infection & Immunity, Third People's Hospital of Shenzhen City, Shenzhen University and Shenzhen Clinical Centre for Infectious Diseases, Shenzhen, China
| | - Qianting Yang
- Guangdong Key Laboratory for Emerging Infection & Immunity, Third People's Hospital of Shenzhen City, Shenzhen University and Shenzhen Clinical Centre for Infectious Diseases, Shenzhen, China
| | - Xin-Chun Chen
- Guangdong Key Laboratory for Emerging Infection & Immunity, Third People's Hospital of Shenzhen City, Shenzhen University and Shenzhen Clinical Centre for Infectious Diseases, Shenzhen, China
| | - Ting Liu
- Wuhan Jinyintan Hospital, Wuhan 430072, China
| | - Qili Yao
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Zhen Xiao
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Jianxin Gu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences; Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
25
|
Tang Z, Luo C, Jun Y, Yao M, Zhang M, He K, Jin L, Ma J, Chen S, Sun S, Tao M, Ding L, Sun X, Chen X, Zhang L, Gao Y, Wang QL. Nanovector Assembled from Natural Egg Yolk Lipids for Tumor-Targeted Delivery of Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7984-7994. [PMID: 31971362 DOI: 10.1021/acsami.9b22293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomedicine uses nanotechnology-based strategies for precision tumor therapy, including passive and ligand-mediated active tumor targeting by nanocarriers. However, the possible biotoxicity of chemosynthetic nanovectors limits their clinical applications. A novel natural egg yolk lipid nanovector (EYLN) was developed for effective loading and delivery of therapeutic agents. Lipids were extracted from egg yolks and reassembled into nanosized particles. EYLNs' stability, cellular uptake, toxicity, and delivery capacity for therapeutic agents were evaluated in vitro. The systemic toxicity and biodistribution of EYLNs were analyzed in normal mice, and the therapeutic effects of doxorubicin (Dox)-loaded EYLNs were evaluated in mouse breast cancer and hepatoma models. EYLNs had a particle size of ∼40 nm and a surface ζ-potential of -45 mV and were effectively internalized by tumor cells, without showing toxicity and side effects in vitro and in vivo. Importantly, their excellent permeability and retention effect significantly enhanced the distribution of EYLNs at tumor sites, and EYLN-Dox effectively inhibited the tumor growth in both mouse models. Targeted modification with folic acid further promoted vector-mediated drug distribution in tumors. This study demonstrates that lipids with specific proportions in the egg yolk can be used to construct natural drug vectors, providing a new strategy for nano-oncology research.
Collapse
Affiliation(s)
- Zhuang Tang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Chao Luo
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Yali Jun
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Mengchu Yao
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Mengyan Zhang
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Kang He
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Luhao Jin
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Jianshe Ma
- School of Basic Medicine , Wenzhou Medical University , Wenzhou 325035 , China
| | - Song Chen
- Institute of Medicinal Biotechnology , Jiangsu College of Nursing , Huai'an 223300 , China
| | - SuAn Sun
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Mingyue Tao
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Xiaoyang Sun
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Xiaofei Chen
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Li Zhang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Yong Gao
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| | - Qi-Long Wang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital , Nanjing Medical University , Huai'an 223300 , China
| |
Collapse
|
26
|
Zhou KL, Li X, Zhang XL, Pan Q. Mycobacterial mannose-capped lipoarabinomannan: a modulator bridging innate and adaptive immunity. Emerg Microbes Infect 2019; 8:1168-1177. [PMID: 31379262 PMCID: PMC6713153 DOI: 10.1080/22221751.2019.1649097] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is a high molecular mass amphipathic lipoglycan identified in pathogenic Mycobacterium tuberculosis (M. tb) and M. bovis Bacillus Calmette-Guérin (BCG). ManLAM, serves as both an immunogen and a modulator of the host immune system, and its critical role in mycobacterial survival during infection has been well-characterized. ManLAM can be recognized by various types of receptors on both innate and adaptive immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer T (NKT) cells, T cells and B cells. MamLAM has been shown to affect phagocytosis, cytokine production, antigen presentation, T cell activation and polarization, as well as antibody production. Exploring the mechanisms underlying the roles of ManLAM during mycobacterial infection will aid in improving tuberculosis (TB) prevention, diagnosis and treatment interventions. In this review, we highlight the interaction between ManLAM and receptors, intracellular signalling pathways triggered by ManLAM and its roles in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Kai-Liang Zhou
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China.,b The eighth hospital of Wuhan , Wuhan , People's Republic of China
| | - Xin Li
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Xiao-Lian Zhang
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Qin Pan
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| |
Collapse
|
27
|
Yuan CH, Li X, Luo L, Wang YP, Zhang DL, Zhou KL, Zhang XL, Pan Q. Mannose-capped lipoarabinomannan-induced B10 cells decrease severity of dextran sodium sulphate-induced inflammatory bowel disease in mice. Scand J Immunol 2019; 91:e12843. [PMID: 31657484 PMCID: PMC7050505 DOI: 10.1111/sji.12843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, non‐specific, inflammatory gastrointestinal disease that mainly consists of Crohn's disease and ulcerative colitis. However, the aetiology and pathogenesis of IBD are still unclear. B10 (IL‐10 producing regulatory B) cells, a subset of regulatory B cells, are known to contribute to intestinal homeostasis and the aberrant frequency of B10 cells is associated with IBD. We have recently reported that B10 cells can be induced by ManLAM (mannose‐capped lipoarabinomannan), a major cell‐wall lipoglycan of M tb (Mycobacterium tuberculosis). In the current study, the ManLAM‐induced B10 cells were adoptively transferred into IL(interleukin)‐10−/− mice and the roles of ManLAM‐induced B10 cells were investigated in DSS (dextran sodium sulphate)‐induced IBD model. ManLAM‐induced B10 cells decrease colitis severity in the mice. The B10 cells downregulate Th1 polarization in spleen and MLNs (mesenteric lymph nodes) of DSS‐treated mice. These results suggest that IL‐10 production by ManLAM‐treated B cells contributes to keeping the balance between CD4+ T cell subsets and protect mice from DSS‐induced IBD.
Collapse
Affiliation(s)
- Chun-Hui Yuan
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Liang Luo
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ya-Ping Wang
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Dong-Li Zhang
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | | | - Xiao-Lian Zhang
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Qin Pan
- Department of Immunology, State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
28
|
Yuan CH, Zhang S, Xiang F, Gong H, Wang Q, Chen Y, Luo W. Secreted Rv1768 From RD14 of Mycobacterium tuberculosis Activates Macrophages and Induces a Strong IFN-γ-Releasing of CD4 + T Cells. Front Cell Infect Microbiol 2019; 9:341. [PMID: 31681622 PMCID: PMC6802416 DOI: 10.3389/fcimb.2019.00341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
As the first line defensive mediators against Mycobacterium tuberculosis (M.tb) infection, macrophages can be modulated by M.tb to influence innate and adaptive immunity. Recently, we have identified several potential immunodominant T-cell antigens from the region of deletion (RD) of M.tb H37Rv, including Rv1768 from RD14. In this study, we further determined that Rv1768 was highly conserved among virulent M.tb strains and mainly distributed as a secreted protein. Exposure to recombinant purified Rv1768 (rRv1768) induced apoptosis of bone marrow derived macrophages (BMDMs) but showed no dose-dependent manner. Regarding macrophage activation, significant higher levels of iNOS and pro-inflammatory cytokines (like IL-6 and TNF-α) were detected in rRv1768-challenged BMDMs, whereas arginase 1 (Arg1) expression was markedly decreased. Meanwhile, MHC-II expression and antigen presentation activity of BMDMs were also enhanced by rRv1768 stimulation, leading to significantly increased IFN-γ expression of CD4+ T cells isolated from H37Rv-infected mice. It is worthy to note that Rv1768-induced IFN-γ production of peripheral blood mononuclear cells (PBMCs) and Rv1768-specific immunoglobulins was specifically observed in H37Rv-infected mice, but not BCG-infected or normal mice. Analysis of clinical blood samples further revealed that Rv1768 had a higher sensitivity and specificity (91.38 and 96.83%) for tuberculosis diagnosis than the results obtained from clinical CFP10 and ESAT6 peptides (CE)-based enzyme-linked immunospot (ELISPOT) assay. The area under ROC curve of Rv1768 was 0.9618 (95% CI: 0.919–1.000) when cutoff value set as 7 spots. In addition, Rv1768-specific IgG and IgM also exhibited moderate diagnostic performance for tuberculosis compared with CE specific antibodies. Our data suggest that Rv1768 is an antigen that strongly activates macrophages and has potential to serve as a novel ELISPOT-based TB diagnostic agent.
Collapse
Affiliation(s)
- Chun-Hui Yuan
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simin Zhang
- Department of Emergency, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiyan Xiang
- Clinical Research Center, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Gong
- Clinical Research Center, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Key Research Laboratory for Infectious, Disease Prevention for State Administration of Traditional Chinese Medicine, Department of Pathology, Tianjin Haihe Hospital, Tianjin, China
| | - Yan Chen
- Department of Laboratory Medicine, Wuhan Medical and Health Center for Women and Children, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Luo
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Deng JH, Chen HY, Huang C, Yan JM, Yin Z, Zhang XL, Pan Q. Accumulation of EBI3 induced by virulent Mycobacterium tuberculosis inhibits apoptosis in murine macrophages. Pathog Dis 2019; 77:5315753. [PMID: 30753412 PMCID: PMC6414311 DOI: 10.1093/femspd/ftz007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
Macrophages are the primary host target cells of Mycobacterium tuberculosis (M. tb). As a subunit of immunoregulatory cytokines IL-27 and IL-35, Epstein–Barr virus-induced gene 3 (EBI3) has typically been explored as the secreted form and assessed in terms of its effects triggered by extracellular EBI3. However, little is known about intracellular EBI3 function. In the current study, we report that EBI3 production by macrophages is elevated in TB patients. We further demonstrate that increased EBI3 accumulates in virulent M. tb-treated murine macrophages. Eukaryotic translation elongation factor 1-alpha 1 (eEF1A1) binds to intracellular EBI3 to reduce Lys48 (K48)-linked ubiquitination of EBI3, leading to EBI3 accumulation. Moreover, the intracellular EBI3 inhibits caspase-3-mediated apoptosis in M. tb-treated macrophages. Herein, we propose a novel mechanism for accumulating intracellular EBI3 and its regulation of macrophage apoptosis in response to virulent M. tb.
Collapse
Affiliation(s)
- Jia-Hui Deng
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Han-Yu Chen
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Chun Huang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Jia-Min Yan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, 601 Huangpu Rd, Guangzhou 510632, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Rd 185#, Wuhan 430071, China
| |
Collapse
|
30
|
Jamil B, Atlas N, Qazi A, Uzair B. Theranostic Potential of Aptamers in Antimicrobial Chemotherapy. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
31
|
Yuan C, Qu ZL, Tang XL, Liu Q, Luo W, Huang C, Pan Q, Zhang XL. Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4 +Th1 Immunity. iScience 2018; 11:13-30. [PMID: 30572206 PMCID: PMC6299163 DOI: 10.1016/j.isci.2018.11.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
The importance of Th1/interferon (IFN)-γ-mediated responses in mycobacterial infection has been well established. However, little is known about B cell-mediated immunity during Mycobacterium tuberculosis (Mtb) infection. Interleukin (IL)-10-producing B cells (B10 cells), a subset of B regulatory cells (Bregs), are implicated in modulating the immune response. Herein, we found that B10 cells were significantly increased in patients with tuberculosis. Furthermore, mannose-capped lipoarabinomannan (ManLAM), a major surface lipoglycan component from Mtb, induced a significant increase in B10 cells, which enriched in CD5+ B1a B cells. ManLAM induced IL-10 production mainly by activating MyD88/PI3K/AKT/Ap-1 and K63-linked ubiquitination of NF-κB essential modulator/nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathways in B cells via Toll-like receptor 2. IL-10 production by ManLAM-treated B cells further inhibited CD4+ Th1 polarization, leading to increased susceptibility to mycobacterial infection compared with ManLAM-treated IL-10−/− B group. Thus, we report a new immunoregulation mechanism in which Mtb ManLAM-induced B10 cells negatively regulate host anti-TB cellular immunity. Mtb mannose-capped lipoarabinomannan (ManLAM) induces IL-10 production in B cells ManLAM-induced B10 cells enrich in CD5+ B1a B cells ManLAM binding with TLR2 triggers MyD88 signaling pathways of B cells ManLAM-induced B10 cells hinder CD4+Th1 immunity during Mtb infection in mice
Collapse
Affiliation(s)
- Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Jiangan, Wuhan 430015, China
| | - Zi-Lu Qu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Xiao-Lei Tang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Wei Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Chun Huang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| |
Collapse
|
32
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
33
|
Kim PM, Lee JJ, Choi D, Eoh H, Hong YK. Endothelial lineage-specific interaction of Mycobacterium tuberculosis with the blood and lymphatic systems. Tuberculosis (Edinb) 2018; 111:1-7. [PMID: 30029892 DOI: 10.1016/j.tube.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has plagued humanity for tens of thousands of years, yet still remains a threat to human health. Its pathology is largely associated with pulmonary tuberculosis with symptoms including fever, hemoptysis, and chest pain. Mtb, however, also manifests in other extrapulmonary organs, such as the pleura, bones, gastrointestinal tract, central nervous system, and lymph nodes. Compared to the knowledge of pulmonary tuberculosis, extrapulmonary pathologies of Mtb are quite understudied. Lymph node tuberculosis is one of the most common extrapulmonary manifestations of tuberculosis, and presents significant challenges in its diagnosis, management, and treatment due to its elusive etiologies and pathologies. The objective of this review is to overview the current understanding of the tropism and pathogenesis of Mtb in endothelial cells of the extrapulmonary tissues, particularly, in lymph nodes. Lymphatic endothelial cells (LECs) are derived from blood vascular endothelial cells (BECs) during development, and these two types of endothelial cells demonstrate substantial molecular, cellular and genetic similarities. Therefore, systemic comparison of the differential and common responses of BECs vs. LECs to Mtb invasion could provide new insights into its pathogenesis, and may promote new investigations into this deadly disease.
Collapse
Affiliation(s)
- Paul M Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jae-Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dongwon Choi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Song N, Tan Y, Zhang L, Luo W, Guan Q, Yan MZ, Zuo R, Liu W, Luo FL, Zhang XL. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis. Emerg Microbes Infect 2018; 7:78. [PMID: 29691363 PMCID: PMC5915492 DOI: 10.1038/s41426-018-0076-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (M. tb) is emerging as a more serious pathogen due to the increased multidrug-resistant TB and co-infection of human immunodeficiency virus (HIV). The development of an effective and sensitive detection method is urgently needed for bacterial load evaluation in vaccine development, early TB diagnosis, and TB treatment. Droplet digital polymerase chain reaction (ddPCR) is a newly developed sensitive PCR method for the absolute quantification of nucleic acid concentrations. Here, we used ddPCR to quantify the circulating virulent M. tb-specific CFP10 (10-kDa culture filtrate protein, Rv3874) and Rv1768 DNA copy numbers in the blood samples from Bacille Calmette-Guerin (BCG)-vaccinated and/or virulent M. tb H37Rv-challenged rhesus monkeys. We found that ddPCR was more sensitive compared to real-time fluorescence quantitative PCR (qPCR), as the detection limits of CFP10 were 1.2 copies/μl for ddPCR, but 15.8 copies/μl for qPCR. We demonstrated that ddPCR could detect CFP10 and Rv1768 DNA after 3 weeks of infection and at least two weeks earlier than qPCR in M.tb H37Rv-challenged rhesus monkey models. DdPCR could also successfully quantify CFP10 and Rv1768 DNA copy numbers in clinical TB patients’ blood samples (active pulmonary TB, extrapulmonary TB (EPTB), and infant TB). To our knowledge, this study is the first to demonstrate that ddPCR is an effective and sensitive method of measuring the circulating CFP10 and Rv1768 DNA for vaccine development, bacterial load evaluation in vivo, and early TB (including EPTB and infant TB) diagnosis as well.
Collapse
Affiliation(s)
- Neng Song
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yang Tan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lingyun Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wei Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qing Guan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Ming-Zhe Yan
- Wuhan Medical Treatment Center, Wuhan, 430071, China
| | - Ruiqi Zuo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Weixiang Liu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Feng-Ling Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
35
|
Luo W, Qu Z, Zhang L, Xie Y, Luo F, Tan Y, Pan Q, Zhang XL. Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 responses. Vaccine 2018; 36:2998-3009. [PMID: 29681409 DOI: 10.1016/j.vaccine.2018.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
There is a need to develop protective vaccines against tuberculosis (TB). Recently, we identified an immunodominant T-cell antigen, Rv2645, from the region of deletion 13 (RD13) of M. tuberculosis (M. tb) H37Rv, which is absent in Bacille Calmette-Guérin (BCG). Here, a recombinant BCG expressing Rv2645, namely, BCG::Rv2645, was constructed. Compared to BCG, we found that BCG::Rv2645 improved the antigen presentation capacity of dendritic cells (DCs) and elicited much stronger Th1 and Th17 responses, higher CD44highCD62low effector memory CD4+ T cells (TEM), and fewer T regulated cells (Treg) and regulatory B10 in mice. Importantly, BCG::Rv2645 exhibited enhanced protective efficacy against virulent M. tb H37Rv challenge in both mice and rhesus monkeys, showing less severe pathology and reduced pathogens. Further, transcriptomic analysis and reverse transcription-quantitative real time PCR revealed that the mRNA levels of ISGylation (Isg)-related genes such as interferon-stimulated gene 15 (Isg15), and Th1- and Th17-related genes such as interferon-γ (IFN-γ) and interleukin-17A (IL-17A) were significantly up-regulated in splenocytes and macrophages after stimulation with Rv2645. This study shows that BCG::Rv2645 is a promising TB vaccine candidate with enhanced protective immunity. The enhanced Th1/Th17 immune responses and up-regulation of ISGylation-related genes induced by Rv2645 may be major factors contributing to the protective immunity of BCG::Rv2645.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China; Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 30052, China
| | - Zilu Qu
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Lingyun Zhang
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Yan Xie
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Yang Tan
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China.
| |
Collapse
|
36
|
QIN SY, CHEN ND, WANG Q, HUANG J, HE XX, LIU JB, GUO QP, YANG XH, WANG KM. Application of Nucleic Acid Aptamers in Polypeptides Researches. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Lundahl MLE, Scanlan EM, Lavelle EC. Therapeutic potential of carbohydrates as regulators of macrophage activation. Biochem Pharmacol 2017; 146:23-41. [PMID: 28893617 DOI: 10.1016/j.bcp.2017.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential.
Collapse
Affiliation(s)
- Mimmi L E Lundahl
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland; School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin 2, Ireland.
| |
Collapse
|
38
|
Barnes DD, Lundahl MLE, Lavelle EC, Scanlan EM. The Emergence of Phenolic Glycans as Virulence Factors in Mycobacterium tuberculosis. ACS Chem Biol 2017; 12:1969-1979. [PMID: 28692249 DOI: 10.1021/acschembio.7b00394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis is the leading infectious cause of mortality worldwide. The global epidemic, caused by Mycobacterium tuberculosis, has prompted renewed interest in the development of novel vaccines for disease prevention and control. The cell envelope of M. tuberculosis is decorated with an assortment of glycan structures, including glycolipids, that are involved in disease pathogenesis. Phenolic glycolipids and the structurally related para-hydroxybenzoic acid derivatives display potent immunomodulatory activities and have particular relevance for both understanding the interaction of the bacterium with the host immune system and also in the design of new vaccine and therapeutic candidates. Interest in glycobiology has grown exponentially over the past decade, with advancements paving the way for effective carbohydrate based vaccines. This review highlights recent advances in our understanding of phenolic glycans, including their biosynthesis and role as virulence factors in M. tuberculosis. Recent chemical synthesis approaches and biochemical analysis of synthetic glycans and their conjugates have led to fundamental insights into their roles in host-pathogen interactions. The applications of these synthetic glycans as potential vaccine candidates are discussed.
Collapse
Affiliation(s)
- Danielle D. Barnes
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| | - Mimmi L. E. Lundahl
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Eoin M. Scanlan
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| |
Collapse
|
39
|
Yang Y, Zhou Y, Hu J, Luo F, Xie Y, Shen Y, Bian W, Yin Z, Li H, Zhang X. Ficolin-A/2, acting as a new regulator of macrophage polarization, mediates the inflammatory response in experimental mouse colitis. Immunology 2017; 151:433-450. [PMID: 28380665 PMCID: PMC5506452 DOI: 10.1111/imm.12741] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Human ficolin-2 (FCN-2) and mouse ficolin-A (FCN-A, a ficolin-2-like molecule in mouse) are activators of the lectin complement pathway, present in normal plasma and usually associated with infectious diseases, but little is known about the role of FCN-A/2 in inflammatory bowel disease (IBD). In our present study, we found that patients with IBD exhibited much higher serum FCN-2 levels than healthy controls. In the dextran sulphate sodium-induced acute colitis mouse model, FCN-A knockout mice showed much milder disease symptoms with less histological damage, lower expression levels of pro-inflammatory cytokines [interleukin-6 (IL-6), IL-1β and tumour necrosis factor-α (TNF-α)], chemokines (CXCL1/2/10 and CCL4) and higher levels of the anti-inflammatory cytokine IL-10 compared with wild-type mice. We demonstrated that FCN-A/2 exacerbated the inflammatory pathogenesis of IBD by stimulating M1 polarization through the TLR4/MyD88/MAPK/NF-κB signalling pathway in macrophages. Hence, our data suggest that FCN-A/2 may be used as a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- Yi‐Fei Yang
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yi‐Dan Zhou
- Department of MicrobiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Jia‐Chen Hu
- Department of Gastroenterology/HepatologyZhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Feng‐Ling Luo
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yan Xie
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yan‐Ying Shen
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Wen‐Xiu Bian
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Zhi‐Nan Yin
- Biomedical Translational Research InstituteJinan UniversityGuangzhouGuangdongChina
| | - Hong‐Liang Li
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Xiao‐Lian Zhang
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| |
Collapse
|
40
|
Selection and identification of specific glycoproteins and glycan biomarkers of macrophages involved in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2017; 104:95-106. [DOI: 10.1016/j.tube.2017.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/18/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
|
41
|
Pan Q, Yan J, Liu Q, Yuan C, Zhang XL. A single-stranded DNA aptamer against mannose-capped lipoarabinomannan enhances anti-tuberculosis activity of macrophages through downregulation of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor γ expression. Microbiol Immunol 2017; 61:92-102. [PMID: 28206680 DOI: 10.1111/1348-0421.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is an immunomodulatory epitope of Mycobacterium tuberculosis (Mtb). An aptamer (ZXL1) that specifically binds to ManLAM from the virulent Mtb H37Rv strain was previously generated and it was found that ZXL1 functions as an antagonist, inhibiting the ManLAM-induced immunosuppression of DCs. In the present study, it was found that ZXL1 inhibits Mtb entry into murine macrophages and that ZXL1 enhances IL-1β and IL-12 mRNA expression and cytokine production in ManLAM-treated macrophages but decreases IL-10 production. Inducible nitric oxide synthase expression in macrophages was upregulated in the presence of ZXL1 after stimulation with ManLAM. ZXL1 was also found to inhibit expression of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ). These results suggest that ZXL1 promotes anti-tuberculosis activity through downregulation of PPAR-γ expression, which may contribute to M1 macrophage polarization and Mtb killing by macrophages.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Jiamin Yan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| |
Collapse
|