1
|
Muranov KO, Poliansky NB, Borzova VA. Impact of crowding on aggregation of UV-irradiated β L-crystallin and chaperone like activity of α-crystallin depends of the nature of a crowding agent. Int J Biol Macromol 2025; 310:143433. [PMID: 40274163 DOI: 10.1016/j.ijbiomac.2025.143433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The effect of crowding on the aggregation of UV irradiated βL-crystallin and the chaperone-like activity of α-crystallin has been studied. PEG-20000, BSA and γ-crystallin were used as crowders. It was shown that the initial rate of aggregation of UV irradiated βL-crystallin depended on the type of crowder: the rate did not change in the presence of BSA, doubled when the concentration of γ-crystallin reached 30 mg/ml, and increased linearly with increasing PEG concentration. It was found that PEG is not an inert compound, but causes additional destabilization and denaturation of UV irradiated βL-crystallin. The nucleation time of UV irradiated βL-crystallin aggregation in the presence of BSA and γ-crystallin decreased linearly with an increase in the excluded volume up to 5 %, then remained constant. It was found that BSA and γ-crystallin reduced the initial adsorption capacity of α-crystallin, which was used to quantify chaperone-like activity, in a concentration-dependent manner. g-crystallin demonstrated a greater ability to suppress chaperone-like activity compared to BSA. This difference is due to γ-crystallin ability to interact with α-crystallin. The obtained results indicate the importance of using the exact same crowders that in vivo create the environment of the biochemical process for study in vitro.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia.
| | - Nikolay B Poliansky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Vera A Borzova
- Federal Research Centre "Fundamentals of Biotechnology" of Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky pr. 33, Moscow 119334, Russia
| |
Collapse
|
2
|
Zou LN. Structured Random Binding: a minimal model of protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645477. [PMID: 40196495 PMCID: PMC11974877 DOI: 10.1101/2025.03.26.645477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
We describe Structured Random Binding (SRB), a minimal model of protein-protein interactions rooted in the statistical physics of disordered systems. In this model, nonspecific binding is a generic consequence of the interaction between random proteins, exhibiting a phase transition from a high temperature state where nonspecific complexes are transient and lack well-defined interaction interfaces, to a low temperature state where the complex structure is frozen and a definite interaction interface is present. Numerically, weakly-bound nonspecific complexes can evolve into tightly-bound, highly specific complexes, but only if the structural correlation length along the peptide backbone is short; moreover, evolved tightly-bound homodimers favor the same interface structure that is predominant in real protein homodimers.
Collapse
Affiliation(s)
- Ling-Nan Zou
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16801. USA
| |
Collapse
|
3
|
Mallon CJ, Hassani M, Osofsky EH, Familo SB, Fenlon EE, Tucker MJ. Unraveling Hydration Shell Dynamics and Viscosity Effects Around Cyanamide Probes via 2D IR Spectroscopy. J Am Chem Soc 2025; 147:7264-7273. [PMID: 39701978 DOI: 10.1021/jacs.4c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Hydration dynamics and solvent viscosity play critical roles in the structure and function of biomolecules. An overwhelming body of evidence suggests that protein and membrane fluctuations are closely linked to solvent fluctuations. While extensive research exists on the use of vibrational probes to detect local interactions and solvent dynamics, fewer studies have explored how the behavior of these reporters changes in response to bulk viscosity. To address this gap, two-dimensional infrared spectroscopy (2D IR) was employed in this study to investigate the ultrafast hydration dynamics around a cyanamide (NCN) probe attached to a nucleoside, deoxycytidine, in aqueous solutions with varying glycerol content. The use of a small vibrational probe on a targeted nucleic acid offers the potential to capture more localized hydration dynamics than alternative methods. The time scales for the frequency correlation decays were found to increase linearly with bulk viscosity, ranging from 0.9 to 11.4 ps over viscosities of 0.96-49.1 cP. Additionally, molecular dynamics (MD) simulations were performed to model the local hydration dynamics around the NCN probe. Interestingly, increasing the glycerol content did not significantly alter the hydration of the deoxycytidine. The MD simulations further suggested that the NCN probe's frequency fluctuations were primarily influenced by the dynamics of water in the second solvation shell. Cage correlation functions, which measure the movement of water molecules in and out of the second solvation shell, exhibited decays that closely matched those of the frequency-fluctuation correlation function (FFCF). These findings offer new insights into hydration dynamics and the impact of viscosity on biological systems.
Collapse
Affiliation(s)
- Christopher J Mallon
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Majid Hassani
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Ellia H Osofsky
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Savannah B Familo
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Edward E Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Wozniak S, Feig M. Diffusion and Viscosity in Mixed Protein Solutions. J Phys Chem B 2024; 128:11676-11693. [PMID: 39560935 PMCID: PMC11613455 DOI: 10.1021/acs.jpcb.4c06877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The viscosity and diffusion properties of crowded protein systems were investigated with molecular dynamics simulations of SH3 mixtures with different crowders, and results were compared with experimental data. The simulations accurately reproduced experimental trends across a wide range of protein concentrations, including highly crowded environments up to 300 g/L. Notably, viscosity increased with crowding but varied little between different crowder types, while diffusion rates were significantly reduced depending on protein-protein interaction strength. Analysis using the Stokes-Einstein relation indicated that the reduction in diffusion exceeded what was expected from viscosity changes alone, with the additional slow-down attributable to transient cluster formation driven by weakly attractive interactions. Contact kinetics analysis further revealed that longer-lived interactions contributed more significantly to reduced diffusion rates than short-lived interactions. This study also highlights the accuracy of current computational methodologies for capturing the dynamics of proteins in highly concentrated solutions and provides insights into the molecular mechanisms affecting protein mobility in crowded environments.
Collapse
Affiliation(s)
- Spencer Wozniak
- Department of Biochemistry
and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry
and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Wozniak S, Feig M. Diffusion and Viscosity in Mixed Protein Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617612. [PMID: 39416204 PMCID: PMC11483061 DOI: 10.1101/2024.10.10.617612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The viscosity and diffusion properties of crowded protein systems were investigated with molecular dynamics simulations of SH3 mixtures with different crowders, and results were compared with experimental data. The simulations accurately reproduced experimental trends across a wide range of protein concentrations, including highly crowded environments up to 300 g/L. Notably, viscosity increased with crowding but varied little between different crowder types, while diffusion rates were significantly reduced depending on protein-protein interaction strength. Analysis using the Stokes-Einstein relation indicated that the reduction in diffusion exceeded what was expected from viscosity changes alone, with the additional slow-down attributable to transient cluster formation driven by weakly attractive interactions. Contact kinetics analysis further revealed that longer-lived interactions contributed more significantly to reduced diffusion rates than short-lived interactions. This study also highlights the accuracy of current computational methodologies for capturing the dynamics of proteins in highly concentrated solutions and provides insights into the molecular mechanisms affecting protein mobility in crowded environments.
Collapse
Affiliation(s)
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Singh A, Kundrotas PJ, Vakser IA. Diffusion of proteins in crowded solutions studied by docking-based modeling. J Chem Phys 2024; 161:095101. [PMID: 39225532 PMCID: PMC11374379 DOI: 10.1063/5.0220545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The diffusion of proteins is significantly affected by macromolecular crowding. Molecular simulations accounting for protein interactions at atomic resolution are useful for characterizing the diffusion patterns in crowded environments. We present a comprehensive analysis of protein diffusion under different crowding conditions based on our recent docking-based approach simulating an intracellular crowded environment by sampling the intermolecular energy landscape using the Markov Chain Monte Carlo protocol. The procedure was extensively benchmarked, and the results are in very good agreement with the available experimental and theoretical data. The translational and rotational diffusion rates were determined for different types of proteins under crowding conditions in a broad range of concentrations. A protein system representing most abundant protein types in the E. coli cytoplasm was simulated, as well as large systems of other proteins of varying sizes in heterogeneous and self-crowding solutions. Dynamics of individual proteins was analyzed as a function of concentration and different diffusion rates in homogeneous and heterogeneous crowding. Smaller proteins diffused faster in heterogeneous crowding of larger molecules, compared to their diffusion in the self-crowded solution. Larger proteins displayed the opposite behavior, diffusing faster in the self-crowded solution. The results show the predictive power of our structure-based simulation approach for long timescales of cell-size systems at atomic resolution.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
7
|
Fleming PJ, Correia JJ, Fleming KG. The molecular basis for hydrodynamic properties of PEGylated human serum albumin. Biophys J 2024; 123:2379-2391. [PMID: 38778541 PMCID: PMC11365107 DOI: 10.1016/j.bpj.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Polyethylene glycol (PEG) conjugation provides a protective modification that enhances the pharmacokinetics and solubility of proteins for therapeutic use. A knowledge of the structural ensemble of these PEGylated proteins is necessary to understand the molecular details that contribute to their hydrodynamic and colligative properties. Because of the large size and dynamic flexibility of pharmaceutically important PEGylated proteins, the determination of structure is challenging. In addition, the hydration of these conjugates that contain large polymers is difficult to determine with traditional methods that identify only first shell hydration water, which does not account for the complete hydrodynamic volume of a macromolecule. Here, we demonstrate that structural ensembles, generated by coarse-grained simulations, can be analyzed with HullRad and used to predict sedimentation coefficients and concentration-dependent hydrodynamic and diffusion nonideality coefficients of PEGylated proteins. A knowledge of these concentration-dependent properties enhances the ability to design and analyze new modified protein therapeutics. HullRad accomplishes this analysis by effectively accounting for the complete hydration of a macromolecule, including that of flexible polymers.
Collapse
Affiliation(s)
- Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
8
|
Michalski J, Kalwarczyk T, Kwapiszewska K, Enderlein J, Poniewierski A, Karpińska A, Kucharska K, Hołyst R. Rotational and translational diffusion of biomolecules in complex liquids and HeLa cells. SOFT MATTER 2024; 20:5810-5821. [PMID: 38995242 DOI: 10.1039/d4sm00422a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Diffusive motion accompanies many physical and biological processes. The Stokes-Sutherland-Einstein relation for the translational diffusion coefficient, DT, agrees with experiments done in simple fluids but fails for complex fluids. Moreover, the interdependence between DT and rotational diffusion coefficient, DR, also deviates in complex fluids from the classical relation of DT/DR = 4r2/3 known in simple fluids. Makuch et al. Soft Matter, 2020, 16, 114-124 presented a generalization of the classical translational and rotational diffusion theory for complex fluids. In this work, we empirically verify this model based on simultaneous translational and rotational diffusion measurements. We use fluorescently stained cowpea chlorotic mottle virus (CCMV) particles as monodisperse probes and aqueous polyethylene glycol (PEG) solutions as a model complex fluid. The theory and experimental data obtained from fluorescence correlation spectroscopy (FCS) measurements agreed. Finally, we used the same model and analyzed the diffusion of Yo-Pro-1 stained large ribosomal subunits (LSU) in the cytoplasm and nucleus of living HeLa cells.
Collapse
Affiliation(s)
- Jarosław Michalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Andrzej Poniewierski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Aneta Karpińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Karolina Kucharska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
9
|
Jin J, Voth GA. Understanding dynamics in coarse-grained models. IV. Connection of fine-grained and coarse-grained dynamics with the Stokes-Einstein and Stokes-Einstein-Debye relations. J Chem Phys 2024; 161:034114. [PMID: 39012809 DOI: 10.1063/5.0212973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Applying an excess entropy scaling formalism to the coarse-grained (CG) dynamics of liquids, we discovered that missing rotational motions during the CG process are responsible for artificially accelerated CG dynamics. In the context of the dynamic representability between the fine-grained (FG) and CG dynamics, this work introduces the well-known Stokes-Einstein and Stokes-Einstein-Debye relations to unravel the rotational dynamics underlying FG trajectories, thereby allowing for an indirect evaluation of the effective rotations based only on the translational information at the reduced CG resolution. Since the representability issue in CG modeling limits a direct evaluation of the shear stress appearing in the Stokes-Einstein and Stokes-Einstein-Debye relations, we introduce a translational relaxation time as a proxy to employ these relations, and we demonstrate that these relations hold for the ambient conditions studied in our series of work. Additional theoretical links to our previous work are also established. First, we demonstrate that the effective hard sphere radius determined by the classical perturbation theory can approximate the complex hydrodynamic radius value reasonably well. Furthermore, we present a simple derivation of an excess entropy scaling relationship for viscosity by estimating the elliptical integral of molecules. In turn, since the translational and rotational motions at the FG level are correlated to each other, we conclude that the "entropy-free" CG diffusion only depends on the shape of the reference molecule. Our results and analyses impart an alternative way of recovering the FG diffusion from the CG description by coupling the translational and rotational motions at the hydrodynamic level.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Geiger J, Grimm N, Fuchs M, Zumbusch A. Decoupling of rotation and translation at the colloidal glass transition. J Chem Phys 2024; 161:014507. [PMID: 38958164 DOI: 10.1063/5.0205459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
In dense particle systems, the coupling of rotation and translation motion becomes intricate. Here, we report the results of confocal fluorescence microscopy where simultaneous recording of translational and rotational particle trajectories from a bidisperse colloidal dispersion is achieved by spiking the samples with rotational probe particles. The latter consist of colloidal particles containing two fluorescently labeled cores suited for tracking the particle's orientation. A comparison of the experimental data with event driven Brownian simulations gives insights into the system's structure and dynamics close to the glass transition and sheds new light onto the translation-rotation coupling. The data show that with increasing volume fractions, translational dynamics slows down drastically, whereas rotational dynamics changes very little. We find convincing agreement between simulation and experiments, even though the simulations neglect far-field hydrodynamic interactions. An additional analysis of the glass transition following mode coupling theory works well for the structural dynamics but indicates a decoupling of the diffusion of the smaller particle species. Shear stress correlations do not decorrelate in the simulated glass states and are not affected by rotational motion.
Collapse
Affiliation(s)
- John Geiger
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Niklas Grimm
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Andreas Zumbusch
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
11
|
Weißheit S, Kuttich B, Vogel M, Thiele CM. Elastin-Like Peptide as a Model for Disordered Proteins: Diffusion Behaviour in Self-Crowding Conditions. Chemphyschem 2024; 25:e202400117. [PMID: 38511646 DOI: 10.1002/cphc.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Despite the current high interest, there is limited information on diffusion data for intrinsically disordered proteins (IDPs). This study investigates the effect of crowding on the diffusion behaviour of an elastin-like peptide (ELP), by combined pulse field gradient (PFG) and static field gradient (SFG) NMR techniques. We interpret our findings in terms of highly dynamic chain assemblies with weak interactions, resulting in ELP diffusion that is primarily governed by the viscous flow of the solvent. The diffusion behaviour of the peptide appears to resemble that of globular proteins rather than flexible linear polymers over a wide concentration range.
Collapse
Affiliation(s)
- Susann Weißheit
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 16, 64287, Darmstadt, Germany
| | - Björn Kuttich
- Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstr. 6, 64289, Darmstadt, Germany
| | - Michael Vogel
- Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstr. 6, 64289, Darmstadt, Germany
| | - Christina Marie Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Peter-Grünberg-Straße 16, 64287, Darmstadt, Germany
| |
Collapse
|
12
|
Röwekamp L, Moch K, Seren M, Münzner P, Böhmer R, Gainaru C. Relaxation and diffusion of an ionic plasticizer in amorphous poly(vinylpyrrolidone). Phys Chem Chem Phys 2024; 26:13219-13229. [PMID: 38634288 DOI: 10.1039/d4cp01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The present work focuses on the dynamics of the ionic constituents of 1-propyl-3-methyl-imidazolium-bis-(trifluormethylsulfonyl)-imide (PT), a paradigmatic ionic liquid, as an additive in poly(vinylpyrrolidone) (PVP). Hence, the resulting product can be regarded as a polymer electrolyte as well as an amorphous dispersion. Leveraging dielectric spectroscopy and oscillatory shear rheology, complemented by differential scanning calorimetry, the spectral shapes and the relaxation maps of the supercooled PVP-PT mixtures are accessed in their full compositional range. The study also presents dielectric and shear responses of neat PVP with a molecular weight of 2500 g mol-1. We discuss the plasticizing role of the PT additive and the decoupling between ionic dynamics and segmental relaxation in these mixtures. The extracted relaxation times, steady-state viscosities, and conductivities are employed to estimate the translational diffusivities of the ionic penetrants by means of the Stokes-Einstein, Nernst-Einstein, and Almond-West relations. While some of the estimated diffusivities agree with each other, some do not, pointing to the importance of the chosen hydrodynamic approximations and the type of response considered for the analysis. The present extensive dielectric, rheological, and calorimetric study enables a deeper understanding of relaxation and transport of ionic ingredients in polymers, particularly in the slow-dynamics regime which is difficult to access experimentally by direct-diffusivity probes.
Collapse
Affiliation(s)
- Lara Röwekamp
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
| | - Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
| | - Merve Seren
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
| | - Philipp Münzner
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
13
|
Prass T, Garidel P, Blech M, Schäfer LV. Viscosity Prediction of High-Concentration Antibody Solutions with Atomistic Simulations. J Chem Inf Model 2023; 63:6129-6140. [PMID: 37757589 PMCID: PMC10565822 DOI: 10.1021/acs.jcim.3c00947] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 09/29/2023]
Abstract
The computational prediction of the viscosity of dense protein solutions is highly desirable, for example, in the early development phase of high-concentration biopharmaceutical formulations where the material needed for experimental determination is typically limited. Here, we use large-scale atomistic molecular dynamics (MD) simulations with explicit solvation to de novo predict the dynamic viscosities of solutions of a monoclonal IgG1 antibody (mAb) from the pressure fluctuations using a Green-Kubo approach. The viscosities at simulated mAb concentrations of 200 and 250 mg/mL are compared to the experimental values, which we measured with rotational rheometry. The computational viscosity of 24 mPa·s at the mAb concentration of 250 mg/mL matches the experimental value of 23 mPa·s obtained at a concentration of 213 mg/mL, indicating slightly different effective concentrations (or activities) in the MD simulations and in the experiments. This difference is assigned to a slight underestimation of the effective mAb-mAb interactions in the simulations, leading to a too loose dynamic mAb network that governs the viscosity. Taken together, this study demonstrates the feasibility of all-atom MD simulations for predicting the properties of dense mAb solutions and provides detailed microscopic insights into the underlying molecular interactions. At the same time, it also shows that there is room for further improvements and highlights challenges, such as the massive sampling required for computing collective properties of dense biomolecular solutions in the high-viscosity regime with reasonable statistical precision.
Collapse
Affiliation(s)
- Tobias
M. Prass
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Patrick Garidel
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, D-88397 Biberach
an der Riss, Germany
| | - Michaela Blech
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, D-88397 Biberach
an der Riss, Germany
| | - Lars V. Schäfer
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| |
Collapse
|
14
|
Zuev YF, Kusova AM, Sitnitsky AE. Protein translational diffusion as a way to detect intermolecular interactions. Biophys Rev 2023; 15:1111-1125. [PMID: 37975004 PMCID: PMC10643801 DOI: 10.1007/s12551-023-01108-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 11/19/2023] Open
Abstract
In this work, we analyze the information on the protein intermolecular interactions obtained from macromolecular diffusion. We have shown that the most hopeful results are given by our approach based on analysis of protein translational self-diffusion and collective diffusion obtained by dynamic light scattering and pulsed-field gradient NMR (PFG NMR) spectroscopy with the help of Vink's approach to analyze diffusion motion of particles by frictional formalism of non-equilibrium thermodynamics and the usage of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloid particles interactions in electrolyte solutions. Early we have shown that integration of Vink's theory with DLVO provides a reliable basis for uniform interpreting of PFG NMR and DLS experiments on concentration dependence of diffusion coefficients. Basic details of theoretical and mathematical procedures and a broad analysis of experimental attestation of proposed conception on proteins of various structural form, size, and shape are presented. In the present review, the main capabilities of our approach obtain the details of intermolecular interactions of proteins with different shapes, internal structures, and mass. The universality of Vink's approach is experimentally shown, which gives the appropriate description of experimental results for proteins of complicated structure and shape.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Aleksandra M. Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| | - Aleksandr E. Sitnitsky
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St., 2/31, 420111 Kazan, Russia
| |
Collapse
|
15
|
Stecher K, Krieger F, Schleeger M, Kiefhaber T. Local and Large-Scale Conformational Dynamics in Unfolded Proteins and IDPs. I. Effect of Solvent Viscosity and Macromolecular Crowding. J Phys Chem B 2023; 127:8095-8105. [PMID: 37722681 PMCID: PMC10544011 DOI: 10.1021/acs.jpcb.3c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Protein/solvent interactions largely influence protein dynamics, particularly motions in unfolded and intrinsically disordered proteins (IDPs). Here, we apply triplet-triplet energy transfer (TTET) to investigate the coupling of internal protein motions to solvent motions by determining the effect of solvent viscosity (η) and macromolecular crowding on the rate constants of loop formation (kc) in several unfolded polypeptide chains including IDPs. The results show that the viscosity dependence of loop formation depends on amino acid sequence, loop length, and co-solute size. Below a critical size (rc), co-solutes exert a maximum effect, indicating that under these conditions microviscosity experienced by chain motions matches macroviscosity of the solvent. rc depends on chain stiffness and reflects the length scale of the chain motions, i.e., it is related to the persistence length. Above rc, the effect of solvent viscosity decreases with increasing co-solute size. For co-solutes typically used to mimic cellular environments, a scaling of kc ∝ η-0.1 is observed, suggesting that dynamics in unfolded proteins are only marginally modulated in cells. The effect of solvent viscosity on kc in the small co-solute limit (below rc) increases with increasing chain length and chain flexibility. Formation of long and very flexible loops exhibits a kc ∝ η-1 viscosity dependence, indicating full solvent coupling. Shorter and less flexible loops show weaker solvent coupling with values as low as kc ∝ η-0.75 ± 0.02. Coupling of formation of short loops to solvent motions is very little affected by amino acid sequence, but solvent coupling of long-range loop formation is decreased by side chain sterics.
Collapse
Affiliation(s)
- Karin Stecher
- Chemistry
Department, Technische Universität
München, Lichtenbergstrasse 4, Garching D-85747, Germany
| | - Florian Krieger
- Biozentrum
der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Michael Schleeger
- Abteilung
Proteinbiochemie, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Thomas Kiefhaber
- Abteilung
Proteinbiochemie, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| |
Collapse
|
16
|
Kanakubo Y, Watanabe C, Yamamoto J, Yanagisawa N, Sakuta H, Nikoubashman A, Yanagisawa M. Cell-Sized Confinements Alter Molecular Diffusion in Concentrated Polymer Solutions Due to Length-Dependent Wetting of Polymers. ACS MATERIALS AU 2023; 3:442-449. [PMID: 38089102 PMCID: PMC10510498 DOI: 10.1021/acsmaterialsau.3c00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/26/2024]
Abstract
Living cells are characterized by the micrometric confinement of various macromolecules at high concentrations. Using droplets containing binary polymer blends as artificial cells, we previously showed that cell-sized confinement causes phase separation of the binary polymer solutions because of the length-dependent wetting of the polymers. Here, we demonstrate that the confinement-induced heterogeneity of polymers also emerges in single-component polymer solutions. The resulting structural heterogeneity also leads to a slower transport of small molecules at the center of cell-sized droplets than that in bulk solutions. Coarse-grained molecular simulations support this confinement-induced heterogeneous distribution by polymer length and demonstrate that the effective wetting of the shorter chains at the droplet surface originates from the length-dependent conformational entropy. Our results suggest that cell-sized confinement functions as a structural regulator for polydisperse polymer solutions that specifically manipulates the diffusion of molecules, particularly those with sizes close to the correlation length of the polymer chains.
Collapse
Affiliation(s)
- Yuki Kanakubo
- Komaba
Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Chiho Watanabe
- School
of Integrated Arts and Sciences, Graduate School of Integrated Sciences
for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Johtaro Yamamoto
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
| | - Naoya Yanagisawa
- Komaba
Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Hiroki Sakuta
- Komaba
Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Center
for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Arash Nikoubashman
- Institute
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
7, 55128 Mainz, Germany
- Department
of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama 223-8522, Japan
| | - Miho Yanagisawa
- Komaba
Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Graduate
School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
- Center
for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
17
|
Timr S, Melchionna S, Derreumaux P, Sterpone F. Optimized OPEP Force Field for Simulation of Crowded Protein Solutions. J Phys Chem B 2023; 127:3616-3623. [PMID: 37071827 PMCID: PMC10150358 DOI: 10.1021/acs.jpcb.3c00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Macromolecular crowding has profound effects on the mobility of proteins, with strong implications on the rates of intracellular processes. To describe the dynamics of crowded environments, detailed molecular models are needed, capturing the structures and interactions arising in the crowded system. In this work, we present OPEPv7, which is a coarse-grained force field at amino-acid resolution, suited for rigid-body simulations of the structure and dynamics of crowded solutions formed by globular proteins. Using the OPEP protein model as a starting point, we have refined the intermolecular interactions to match the experimentally observed dynamical slowdown caused by crowding. The resulting force field successfully reproduces the diffusion slowdown in homogeneous and heterogeneous protein solutions at different crowding conditions. Coupled with the lattice Boltzmann technique, it allows the study of dynamical phenomena in protein assemblies and opens the way for the in silico rheology of protein solutions.
Collapse
Affiliation(s)
- Stepan Timr
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 rue Pierre et Marie Curie, Paris, 75005, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 13 rue Pierre et Marie Curie, Paris, 75005, France
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic
| | - Simone Melchionna
- IAC-CNR, Via dei Taurini 19, 00185, Rome, Italy
- Lexma Technology 1337 Massachusetts Avenue, Arlington, Massachusetts 02476, United States
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 rue Pierre et Marie Curie, Paris, 75005, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 13 rue Pierre et Marie Curie, Paris, 75005, France
- Institut Universitaire de France, 75005 Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 rue Pierre et Marie Curie, Paris, 75005, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 13 rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
18
|
Hirschmann F, Lopez H, Roosen-Runge F, Seydel T, Schreiber F, Oettel M. Effects of flexibility in coarse-grained models for bovine serum albumin and immunoglobulin G. J Chem Phys 2023; 158:084112. [PMID: 36859072 DOI: 10.1063/5.0132493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We construct a coarse-grained, structure-based, low-resolution, 6-bead flexible model of bovine serum albumin (BSA, PDB: 4F5S), which is a popular example of a globular protein in biophysical research. The model is obtained via direct Boltzmann inversion using all-atom simulations of a single molecule, and its particular form is selected from a large pool of 6-bead coarse-grained models using two suitable metrics that quantify the agreement in the distribution of collective coordinates between all-atom and coarse-grained Brownian dynamics simulations of solutions in the dilute limit. For immunoglobulin G (IgG), a similar structure-based 12-bead model has been introduced in the literature [Chaudhri et al., J. Phys. Chem. B 116, 8045 (2012)] and is employed here to compare findings for the compact BSA molecule and the more anisotropic IgG molecule. We define several modified coarse-grained models of BSA and IgG, which differ in their internal constraints and thus account for a variation of flexibility. We study denser solutions of the coarse-grained models with purely repulsive molecules (achievable by suitable salt conditions) and address the effect of packing and flexibility on dynamic and static behavior. Translational and rotational self-diffusivity is enhanced for more elastic models. Finally, we discuss a number of effective sphere sizes for the BSA molecule, which can be defined from its static and dynamic properties. Here, it is found that the effective sphere diameters lie between 4.9 and 6.1 nm, corresponding to a relative spread of about ±10% around a mean of 5.5 nm.
Collapse
Affiliation(s)
- Frank Hirschmann
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hender Lopez
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Grangegorman D07 ADY7, Ireland
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | - Tilo Seydel
- Institut Max von Laue-Paul Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Martin Oettel
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Heo L, Gamage K, Valdes-Garcia G, Lapidus LJ, Feig M. Characterizing Transient Protein-Protein Interactions by Trp-Cys Quenching and Computer Simulations. J Phys Chem Lett 2022; 13:10175-10182. [PMID: 36279257 PMCID: PMC9870652 DOI: 10.1021/acs.jpclett.2c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transient protein-protein interactions occur frequently under the crowded conditions encountered in biological environments. Tryptophan-cysteine quenching is introduced as an experimental approach with minimal labeling for characterizing such interactions between proteins due to its sensitivity to nano- to microsecond dynamics on subnanometer length scales. The experiments are paired with computational modeling at different resolutions including fully atomistic molecular dynamics simulations for interpretation of the experimental observables and to gain molecular-level insights. This approach is applied to model systems, villin variants and the drkN SH3 domain, in the presence of protein G crowders. It is demonstrated that Trp-Cys quenching experiments can differentiate between overall attractive and repulsive interactions between different proteins, and they can discern variations in interaction preferences at different protein surface locations. The close integration between experiment and simulations also provides an opportunity to evaluate different molecular force fields for the simulation of concentrated protein solutions.
Collapse
Affiliation(s)
- Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kasun Gamage
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Gilberto Valdes-Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa J. Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Yanagisawa M, Watanabe C, Yoshinaga N, Fujiwara K. Cell-Size Space Regulates the Behavior of Confined Polymers: From Nano- and Micromaterials Science to Biology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11811-11827. [PMID: 36125172 DOI: 10.1021/acs.langmuir.2c01397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer micromaterials in a liquid or gel phase covered with a surfactant membrane are widely used materials in pharmaceuticals, cosmetics, and foods. In particular, cell-sized micromaterials of biopolymer solutions covered with a lipid membrane have been studied as artificial cells to understand cells from a physicochemical perspective. The characteristics and phase transitions of polymers confined to a microscopic space often differ from those in bulk systems. The effect that causes this difference is referred to as the cell-size space effect (CSE), but the specific physicochemical factors remain unclear. This study introduces the analysis of CSE on molecular diffusion, nanostructure transition, and phase separation and presents their main factors, i.e., short- and long-range interactions with the membrane surface and small volume (finite element nature). This serves as a guide for determining the dominant factors of CSE. Furthermore, we also introduce other factors of CSE such as spatial closure and the relationships among space size, the characteristic length of periodicity, the structure size, and many others produced by biomolecular assemblies through the analysis of protein reaction-diffusion systems and biochemical reactions.
Collapse
Affiliation(s)
- Miho Yanagisawa
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Chiho Watanabe
- School of Integrated Arts and Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan
- MathAM-OIL, National Institute of Advanced Industrial Science and Technology, Sendai 980-8577, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
21
|
Beck C, Grimaldo M, Lopez H, Da Vela S, Sohmen B, Zhang F, Oettel M, Barrat JL, Roosen-Runge F, Schreiber F, Seydel T. Short-Time Transport Properties of Bidisperse Suspensions of Immunoglobulins and Serum Albumins Consistent with a Colloid Physics Picture. J Phys Chem B 2022; 126:7400-7408. [PMID: 36112146 PMCID: PMC9527755 DOI: 10.1021/acs.jpcb.2c02380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The crowded environment of biological systems such as
the interior
of living cells is occupied by macromolecules with a broad size distribution.
This situation of polydispersity might influence the dependence of
the diffusive dynamics of a given tracer macromolecule in a monodisperse
solution on its hydrodynamic size and on the volume fraction. The
resulting size dependence of diffusive transport crucially influences
the function of a living cell. Here, we investigate a simplified model
system consisting of two constituents in aqueous solution, namely,
of the proteins bovine serum albumin (BSA) and bovine polyclonal gamma-globulin
(Ig), systematically depending on the total volume fraction and ratio
of these constituents. From high-resolution quasi-elastic neutron
spectroscopy, the separate apparent short-time diffusion coefficients
for BSA and Ig in the mixture are extracted, which show substantial
deviations from the diffusion coefficients measured in monodisperse
solutions at the same total volume fraction. These deviations can
be modeled quantitatively using results from the short-time rotational
and translational diffusion in a two-component hard sphere system
with two distinct, effective hydrodynamic radii. Thus, we find that
a simple colloid picture well describes short-time diffusion in binary
mixtures as a function of the mixing ratio and the total volume fraction.
Notably, the self-diffusion of the smaller protein BSA in the mixture
is faster than the diffusion in a pure BSA solution, whereas the self-diffusion
of Ig in the mixture is slower than in the pure Ig solution.
Collapse
Affiliation(s)
- Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut Max von Laue─Paul Langevin (ILL), CS 20156, F-38042 Grenoble Cedex 9, France
| | - Marco Grimaldo
- Institut Max von Laue─Paul Langevin (ILL), CS 20156, F-38042 Grenoble Cedex 9, France
| | - Hender Lopez
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, D07 XT95 Grangegorman, Ireland
| | - Stefano Da Vela
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Benedikt Sohmen
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Martin Oettel
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut Max von Laue─Paul Langevin (ILL), CS 20156, F-38042 Grenoble Cedex 9, France
| |
Collapse
|
22
|
Vishvakarma V, Engberg O, Huster D, Maiti S. The effect of cholesterol on highly curved membranes measured by nanosecond Fluorescence Correlation Spectroscopy. Methods Appl Fluoresc 2022; 10. [PMID: 35940167 DOI: 10.1088/2050-6120/ac87ea] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Small lipid vesicles (with diameter ≤ 100nm) with their highly curved membranes comprise a special class of biological lipid bilayers. The mechanical properties of such membranes are critical for their function, e.g. exocytosis. Cholesterol is a near-universal regulator of membrane properties in animal cells. Yet measurements of the effect of cholesterol on the mechanical properties of membranes have remained challenging, and the interpretation of such measurements has remained a matter of debate. Here we show that nanosecond fluorescence correlation spectroscopy (FCS) can directly measure the ns-microsecond rotational correlation time (τr) of a lipid probe in high curvature vesicles with extraordinary sensitivity. Using a home-built 4-Pi fluorescence cross-correlation spectrometer containing polarization-modulating elements, we measure the rotational correlation time (τr) of Nile Red in neurotransmitter vesicle mimics. As the cholesterol mole fraction increases from 0 to 50 %, τr increases from 17 ± 1 to 112 ± 12 ns, indicating a viscosity change of nearly a factor of 7. These measurements are corroborated by solid-state NMR results, which show that the order parameter of the lipid acyl chains increases by about 50% for the same change in cholesterol concentration. Additionally, we measured the spectral parameters of polarity-sensitive fluorescence dyes, which provide an indirect measure of viscosity. The green/red ratio of Nile Red and the generalized polarization of Laurdan show consistent increases of 1.3x and 2.6x, respectively. Our results demonstrate that rotational FCS can directly measure the viscosity of highly curved membranes with higher sensitivity and wider dynamic range compared to other conventional techniques. Significantly, we observe that the viscosity of neurotransmitter vesicle mimics is remarkably sensitive to their cholesterol content.
Collapse
Affiliation(s)
- Vicky Vishvakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Navy Nagar Colaba, MUMBAI, Mumbai, Maharashtra, 400005, INDIA
| | - Oskar Engberg
- Institut für Medizinische Physik und Biophysik Universität Leipzig, Universität Leipzig Medizinische Fakultät, Härtelstr. 16-18 04107 Leipzig Germany, Leipzig, Sachsen, 04107, GERMANY
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik, Universität Leipzig Medizinische Fakultät, Härtelstr. 16-18 04107 Leipzig, Leipzig, Sachsen, 04107, GERMANY
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Navy Nagar Colaba, Mumbai, 400005, INDIA
| |
Collapse
|
23
|
Kusova AM, Iskhakova AK, Zuev YF. NMR and dynamic light scattering give different diffusion information for short-living protein oligomers. Human serum albumin in water solutions of metal ions. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:375-383. [PMID: 35687130 DOI: 10.1007/s00249-022-01605-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
Diffusive behavior of human serum albumin (HSA) in the presence of Mg2+ and Cu2+ ions was studied by pulsed field gradient nuclear magnetic resonance (PFG NMR) and dynamic light scattering (DLS). According to NMR data yielding measurements of HSA self-diffusion coefficient, a weighted average of the protein monomers and oligomers diffusion mobility in the presence of metal ions was observed. While the short-time collective diffusion measured by DLS showed one type of diffusing species in ion-free HSA solution and two molecular forms of HSA in the presence of metal ions. The light intensity correlation function analysis showed that HSA oligomers have a limited lifetime (lower limit is about 0.4 ms) intermediate between characteristic time scales of PFG NMR and DLS experiments. For a theoretical description of concentration dependence of HSA self- and collective diffusion coefficients, the phenomenological approach based on the frictional formalism of non-equilibrium thermodynamics was used (Vink theory), allowing analysis of the solvent-solute and solute-solute interactions in protein solutions. In the presence of metal ions, a significant increase of HSA protein-protein friction coefficient was shown. Based on theoretical analysis of collective diffusion data, the positive values of second virial coefficients A2 for HSA monomers were obtained. The A2 values were found to be higher for the HSA with metal ions compared with the ion-free HSA solution. This is due to the more pronounced contribution of repulsion in protein-protein interactions of HSA monomers in the presence of Mg2+ and Cu2+ ions.
Collapse
Affiliation(s)
- A M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan, 420111, Russian Federation.
| | - A K Iskhakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan, 420111, Russian Federation
| | - Yu F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan, 420111, Russian Federation.,A. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan, 420008, Russian Federation
| |
Collapse
|
24
|
Becher M, Horstmann R, Kloth S, Rössler EA, Vogel M. A Relation between the Formation of a Hydrogen-Bond Network and a Time-Scale Separation of Translation and Rotation in Molecular Liquids. J Phys Chem Lett 2022; 13:4556-4562. [PMID: 35580032 DOI: 10.1021/acs.jpclett.2c00821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the relation between the translational and rotational motions of liquids, which is anticipated in the framework of the Stokes-Einstein-Debye (SED) treatment. For this purpose, we exploit the fact that 1H field-cycling nuclear magnetic resonance relaxometry and molecular dynamics simulations provide access to both modes of motion. The experimental and computational findings are fully consistent and show that the time-scale separation between translation and rotation increases from the van der Waals liquid o-terphenyl over ethylene glycol to the hydrogen-bonded liquid glycerol, indicating an increasing degree of breakdown of the SED relation. Furthermore, the simulation results for two ethylene glycol models with different molecular conformations indicate that the translation is more retarded than the rotation when the density of intermolecular hydrogen bonds increases. We conclude that an increasing connectivity of a hydrogen-bond network leads to an increasing time-scale separation and, thus, to a stronger SED violation.
Collapse
Affiliation(s)
- Manuel Becher
- Anorganische Chemie 3, Nordbayerisches NMR Zentrum, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Robin Horstmann
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Ernst A Rössler
- Anorganische Chemie 3, Nordbayerisches NMR Zentrum, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
25
|
Camacho-Zarco AR, Schnapka V, Guseva S, Abyzov A, Adamski W, Milles S, Jensen MR, Zidek L, Salvi N, Blackledge M. NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins. Chem Rev 2022; 122:9331-9356. [PMID: 35446534 PMCID: PMC9136928 DOI: 10.1021/acs.chemrev.1c01023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Intrinsically disordered
proteins are ubiquitous throughout all
known proteomes, playing essential roles in all aspects of cellular
and extracellular biochemistry. To understand their function, it is
necessary to determine their structural and dynamic behavior and to
describe the physical chemistry of their interaction trajectories.
Nuclear magnetic resonance is perfectly adapted to this task, providing
ensemble averaged structural and dynamic parameters that report on
each assigned resonance in the molecule, unveiling otherwise inaccessible
insight into the reaction kinetics and thermodynamics that are essential
for function. In this review, we describe recent applications of NMR-based
approaches to understanding the conformational energy landscape, the
nature and time scales of local and long-range dynamics and how they
depend on the environment, even in the cell. Finally, we illustrate
the ability of NMR to uncover the mechanistic basis of functional
disordered molecular assemblies that are important for human health.
Collapse
Affiliation(s)
| | - Vincent Schnapka
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Serafima Guseva
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Anton Abyzov
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Wiktor Adamski
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Lukas Zidek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 82500 Brno, Czech Republic
| | - Nicola Salvi
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
26
|
Gruber T, Lewitzky M, Machner L, Weininger U, Feller SM, Balbach J. Macromolecular crowding induces a binding competent transient structure in intrinsically disordered Gab1. J Mol Biol 2021; 434:167407. [PMID: 34929201 DOI: 10.1016/j.jmb.2021.167407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an important class of proteins which lack tertiary structure elements. Their dynamic properties can depend on reversible post-translational modifications and the complex cellular milieu, which provides a crowded environment. Both influences the thermodynamic stability and folding of globular proteins as well as the conformational plasticity of IDPs. Here we investigate the intrinsically disordered C-terminal region (amino acids 613-694) of human Grb2-associated binding protein 1 (Gab1), which binds to the disease-relevant Src homolog region2 (SH2) domain-containing protein tyrosine phosphatase SHP2 (PTPN11). This binding is mediated by phosphorylation at Tyr 627 and Tyr 659 in Gab1. We characterize induced structure in Gab1613-694 and binding to SHP2 by NMR, CD and ITC under non-crowding and crowding conditions, employing chemical and biological crowding agents and compare the results of the non-phosphorylated and tyrosine phosphorylated C-terminal Gab1 fragment. Our results show that under crowding conditions pre-structured motifs in two distinct regions of Gab1 are formed whereas phosphorylation has no impact on the dynamics and IDP character. These structured regions are identical to the binding regions towards SHP2. Therefore, biological crowders could induce some SHP2 binding capacity. Our results therefore indicate that high concentrations of macromolecules stabilize the preformed or excited binding state in the C-terminal Gab1 region and foster the binding to the SH2 tandem motif of SHP2, even in the absence of tyrosine phosphorylation.
Collapse
Affiliation(s)
- Tobias Gruber
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Marc Lewitzky
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Lisa Machner
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany
| | - Stephan M Feller
- Institute of Molecular Medicine, Tumor Biology, Martin-Luther-University of Halle-Wittenberg, Germany.
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University of Halle-Wittenberg, Germany; Institute of Technical Biochemistry e.V. and Center for Structure and Dynamics of Proteins, Martin-Luther-University of Halle-Wittenberg, Germany.
| |
Collapse
|
27
|
A microfluidic approach to studying the injection flow of concentrated albumin solutions. SN APPLIED SCIENCES 2021; 3:783. [PMID: 34723096 PMCID: PMC8550001 DOI: 10.1007/s42452-021-04767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Abstract Subcutaneous injection by means of prefilled syringes allows patients to self-administrate high-concentration (100 g/L or more) protein-based drugs. Although the shear flow of concentrated globulins or monoclonal antibodies has been intensively studied and related to the injection force proper of SC processes, very small attention has been paid to the extensional behavior of this category of complex fluids. This work focuses on the flow of concentrated bovine serum albumin (BSA) solutions through a microfluidic “syringe-on-chip” contraction device which shares some similarities with the geometry of syringes used in SC self-injection. By comparing the velocity and pressure measurements in complex flow with rheometric shear measurements obtained by means of the “Rheo-chip” device, it is shown that the extensional viscosity plays an important role in the injection process of protinaceous drugs. Article Highlights A microfluidic “syringe on chip” device mimicking the injection flow of protinaceous drugs has been developed. The velocity field of concentrated BSA solutions through the “syringe on chip” is Newtonian-like. The extensional viscosity of concentrated protein solutions should also be considered when computing injection forces through needles.
Collapse
|
28
|
Roche A, Gentiluomo L, Sibanda N, Roessner D, Friess W, Trainoff SP, Curtis R. Towards an improved prediction of concentrated antibody solution viscosity using the Huggins coefficient. J Colloid Interface Sci 2021; 607:1813-1824. [PMID: 34624723 DOI: 10.1016/j.jcis.2021.08.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023]
Abstract
The viscosity of a monoclonal antibody solution must be monitored and controlled as it can adversely affect product processing, packaging and administration. Engineering low viscosity mAb formulations is challenging as prohibitive amounts of material are required for concentrated solution analysis, and it is difficult to predict viscosity from parameters obtained through low-volume, high-throughput measurements such as the interaction parameter, kD, and the second osmotic virial coefficient, B22. As a measure encompassing the effect of intermolecular interactions on dilute solution viscosity, the Huggins coefficient, kh, is a promising candidate as a parameter measureable at low concentrations, but indicative of concentrated solution viscosity. In this study, a differential viscometry technique is developed to measure the intrinsic viscosity, [η], and the Huggins coefficient, kh, of protein solutions. To understand the effect of colloidal protein-protein interactions on the viscosity of concentrated protein formulations, the viscometric parameters are compared to kD and B22 of two mAbs, tuning the contributions of repulsive and attractive forces to the net protein-protein interaction by adjusting solution pH and ionic strength. We find a strong correlation between the concentrated protein solution viscosity and the kh but this was not observed for the kD or the b22, which have been previously used as indicators of high concentration viscosity. Trends observed in [η] and kh values as a function of pH and ionic strength are rationalised in terms of protein-protein interactions.
Collapse
Affiliation(s)
- Aisling Roche
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK; Currently at: National Institute for Biological Standards and Control, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Lorenzo Gentiluomo
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany; Currently at: Coriolis Pharma, Fraunhoferstraße 18B, 82152 Munich, Germany
| | - Nicole Sibanda
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstrasse 18, 56307 Dernbach, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 Munich, Germany
| | - Steven P Trainoff
- Wyatt Technology Corporation, 6330 Hollister Ave, Goleta, CA 93117, United States
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, School of Chemical Engineering and Analytical Science, Manchester M1 7DN, UK.
| |
Collapse
|
29
|
Ostrowska N, Feig M, Trylska J. Crowding affects structural dynamics and contributes to membrane association of the NS3/4A complex. Biophys J 2021; 120:3795-3806. [PMID: 34270995 PMCID: PMC8456185 DOI: 10.1016/j.bpj.2021.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
Using molecular dynamics simulations, we describe how crowded environments affect the internal dynamics and diffusion of the hepatitis C virus proteases NS3/4A. This protease plays a key role in viral replication and is successfully used as a target for antiviral treatment. The NS3 enzyme requires a peptide cofactor, called NS4A, with its central part interacting with the NS3 β-sheet, and flexible, protruding terminal tails that are unstructured in water solution. The simulations describe the enzyme and water molecules at atomistic resolution, whereas crowders are modeled via either all-atom or coarse-grained models to emphasize different aspects of crowding. Crowders reflect the polyethylene glycol (PEG) molecules used in the experiments to mimic the crowded surrounding. A bead-shell model of folded coarse-grained PEG molecules considers mainly the excluded volume effect, whereas all-atom PEG models afford more protein-like crowder interactions. Circular dichroism spectroscopy experiments of the NS4A N-terminal tail show that a helical structure is formed in the presence of PEG crowders. The simulations suggest that crowding may assist in the formation of an NS4A helical fragment, positioned exactly where a transmembrane helix would fold upon the NS4A contact with the membrane. In addition, partially interactive PEGs help the NS4A N-tail to detach from the protease surface, thus enabling the process of helix insertion and potentially helping the virus establish a replication machinery needed to produce new viruses. Results point to an active role of crowding in assisting structural changes in disordered protein fragments that are necessary for their biological function.
Collapse
Affiliation(s)
- Natalia Ostrowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland,Corresponding author
| |
Collapse
|
30
|
Janc T, Korb JP, Lukšič M, Vlachy V, Bryant RG, Mériguet G, Malikova N, Rollet AL. Multiscale Water Dynamics on Protein Surfaces: Protein-Specific Response to Surface Ions. J Phys Chem B 2021; 125:8673-8681. [PMID: 34342225 DOI: 10.1021/acs.jpcb.1c02513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA). The experiments reveal that the presence of salts (NaCl or NaI) leads to an opposite ion-specific response for the two proteins: an addition of salt to LZM solutions increases water relaxation rates with respect to the salt-free case, while for BSA solutions, a decrease is observed. The magnitude of the change depends on the ion identity. The developed model accounts for the non-Lorentzian shape of the NMRD profiles and reproduces the experimental data over four decades in Larmor frequency (10 kHz to 110 MHz). It is applicable up to high protein concentrations. The model incorporates the observed ion-specific effects via changes in the protein surface roughness, represented by the surface fractal dimension, and the accompanying changes in the surface water residence times. The response is protein-specific, linked to geometrical aspects of the individual protein surfaces, and goes beyond protein-independent Hofmeister-style ordering of ions.
Collapse
Affiliation(s)
- Tadeja Janc
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jean-Pierre Korb
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert G Bryant
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Natalie Malikova
- Laboratoire PHENIX, CNRS, Sorbonne Université, Paris 75252, France
| | | |
Collapse
|
31
|
Shepherd JW, Payne-Dwyer AL, Lee JE, Syeda A, Leake MC. Combining single-molecule super-resolved localization microscopy with fluorescence polarization imaging to study cellular processes. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/ac015d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Super-resolution microscopy has catalyzed valuable insights into the sub-cellular, mechanistic details of many different biological processes across a wide range of cell types. Fluorescence polarization spectroscopy tools have also enabled important insights into cellular processes through identifying orientational changes of biological molecules typically at an ensemble level. Here, we combine these two biophysical methodologies in a single home-made instrument to enable the simultaneous detection of orthogonal fluorescence polarization signals from single fluorescent protein molecules used as common reporters on the localization of proteins in cellular processes. These enable measurement of spatial location to a super-resolved precision better than the diffraction-limited optical resolution, as well as estimation of molecular stoichiometry based on the brightness of individual fluorophores. In this innovation we have adapted a millisecond timescale microscope used for single-molecule detection to enable splitting of fluorescence polarization emissions into two separate imaging channels for s- and p-polarization signals, which are imaged onto separate halves of the same high sensitivity back-illuminated CMOS camera detector. We applied this fluorescence polarization super-resolved imaging modality to a range of test fluorescent samples relevant to the study of biological processes, including purified monomeric green fluorescent protein, single combed DNA molecules, and protein assemblies and complexes from live Escherichia coli and Saccharomyces cerevisiae cells. Our findings are qualitative but demonstrate promise in showing how fluorescence polarization and super-resolved localization microscopy can be combined on the same sample to enable simultaneous measurements of polarization and stoichiometry of tracked molecular complexes, as well as the translational diffusion coefficient.
Collapse
|
32
|
Lanzaro A, Roche A, Sibanda N, Corbett D, Davis P, Shah M, Pathak JA, Uddin S, van der Walle CF, Yuan XF, Pluen A, Curtis R. Cluster Percolation Causes Shear Thinning Behavior in Concentrated Solutions of Monoclonal Antibodies. Mol Pharm 2021; 18:2669-2682. [PMID: 34121411 DOI: 10.1021/acs.molpharmaceut.1c00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-concentration (>100 g/L) solutions of monoclonal antibodies (mAbs) are typically characterized by anomalously large solution viscosity and shear thinning behavior for strain rates ≥103 s-1. Here, the link between protein-protein interactions (PPIs) and the rheology of concentrated solutions of COE-03 and COE-19 mAbs is studied by means of static and dynamic light scattering and microfluidic rheometry. By comparing the experimental data with predictions based on the Baxter sticky hard-sphere model, we surprisingly find a connection between the observed shear thinning and the predicted percolation threshold. The longest shear relaxation time of mAbs was much larger than that of model sticky hard spheres within the same region of the phase diagram, which is attributed to the anisotropy of the mAb PPIs. Our results suggest that not only the strength but also the patchiness of short-range attractive PPIs should be explicitly accounted for by theoretical approaches aimed at predicting the shear rate-dependent viscosity of dense mAb solutions.
Collapse
Affiliation(s)
- Alfredo Lanzaro
- Institute for Systems Rheology, Guangzhou University, No. 230 West Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Aisling Roche
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nicole Sibanda
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Daniel Corbett
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Davis
- Department of Molecular Biology and Biotechnology, University of Sheffield UK, Sheffield S10 2TN, United Kingdom
| | - Maryam Shah
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jai A Pathak
- Dosage Form Design and Development, Biopharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - Shahid Uddin
- Dosage Form Design and Development, Biopharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - Christopher F van der Walle
- Dosage Form Design and Development, Biopharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - Xue-Feng Yuan
- Institute for Systems Rheology, Guangzhou University, No. 230 West Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Robin Curtis
- School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
33
|
Yamamoto J, Matsui A, Gan F, Oura M, Ando R, Matsuda T, Gong JP, Kinjo M. Quantitative evaluation of macromolecular crowding environment based on translational and rotational diffusion using polarization dependent fluorescence correlation spectroscopy. Sci Rep 2021; 11:10594. [PMID: 34011998 PMCID: PMC8134472 DOI: 10.1038/s41598-021-89987-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Macromolecular crowding (MMC) in cells is a hot topic in biology; therefore, well-characterized measurement standards for the evaluation of the nano-environment in MMC solutions are necessary. We propose to use polarization-dependent fluorescence correlation spectroscopy (Pol-FCS) for evaluation of macromolecular crowding in solutions. Pol-FCS can simultaneously measure the relaxation times of rotational and translational diffusion of fluorescent molecules at the same position, even in living cells with low damage. In this report, the differences in the nano-environment among solutions of small molecules, gels, and MMC solutions were evaluated by comparing their rotational and translational diffusion using Pol-FCS. Moreover, this method could distinguish the phase shift in the polyethylene glycol solution. Finally, we separately evaluated the nano-environment in the cytosol and nucleus of living cells in different cell lines and cell cycles. We expect this evaluation method to be useful in characterizing the nano-environment in MMC studies. In addition, the proposed method may be useful for other nano-environments such as liquid-liquid phase separation.
Collapse
Affiliation(s)
- Johtaro Yamamoto
- Bioimaging Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Akito Matsui
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Fusako Gan
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Makoto Oura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Riku Ando
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takahiro Matsuda
- Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Jian Ping Gong
- Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
34
|
Oh KI, Lee AR, Choi SR, Go Y, Ryu KS, Kim EH, Lee JH. Systematic Approach to Find the Global Minimum of Relaxation Dispersion Data for Protein-Induced B-Z Transition of DNA. Int J Mol Sci 2021; 22:3517. [PMID: 33805331 PMCID: PMC8037647 DOI: 10.3390/ijms22073517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion spectroscopy is commonly used for quantifying conformational changes of protein in μs-to-ms timescale transitions. To elucidate the dynamics and mechanism of protein binding, parameters implementing CPMG relaxation dispersion results must be appropriately determined. Building an analytical model for multi-state transitions is particularly complex. In this study, we developed a new global search algorithm that incorporates a random search approach combined with a field-dependent global parameterization method. The robust inter-dependence of the parameters carrying out the global search for individual residues (GSIR) or the global search for total residues (GSTR) provides information on the global minimum of the conformational transition process of the Zα domain of human ADAR1 (hZαADAR1)-DNA complex. The global search results indicated that a α-helical segment of hZαADAR1 provided the main contribution to the three-state conformational changes of a hZαADAR1-DNA complex with a slow B-Z exchange process. The two global exchange rate constants, kex and kZB, were found to be 844 and 9.8 s-1, respectively, in agreement with two regimes of residue-dependent chemical shift differences-the "dominant oscillatory regime" and "semi-oscillatory regime". We anticipate that our global search approach will lead to the development of quantification methods for conformational changes not only in Z-DNA binding protein (ZBP) binding interactions but also in various protein binding processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Ae-Ree Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Seo-Ree Choi
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Youyeon Go
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| | - Kyoung-Seok Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk 28119, Korea;
| | - Eun-Hee Kim
- Center for Research Equipment, Korea Basic Science Institute, Ochang, Chungbuk 28119, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea; (K.-I.O.); (A.-R.L.); (S.-R.C.); (Y.G.)
| |
Collapse
|
35
|
Roosen-Runge F, Schurtenberger P, Stradner A. Self-diffusion of nonspherical particles fundamentally conflicts with effective sphere models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:154002. [PMID: 33498038 DOI: 10.1088/1361-648x/abdff9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Modeling diffusion of nonspherical particles presents an unsolved and considerable challenge, despite its importance for the understanding of crowding effects in biology, food technology and formulation science. A common approach in experiment and simulation is to map nonspherical objects on effective spheres to subsequently use the established predictions for spheres to approximate phenomena for nonspherical particles. Using numerical evaluation of the hydrodynamic mobility tensor, we show that this so-called effective sphere model fundamentally fails to represent the self-diffusion in solutions of ellipsoids as well as rod-like assemblies of spherical beads. The effective sphere model drastically overestimates the slowing down of self-diffusion down to volume fractions below 0.01. Furthermore, even the linear term relevant at lower volume fraction is inaccurate, linked to a fundamental misconception of effective sphere models. To overcome the severe problems related with the use of effective sphere models, we suggest a protocol to predict the short-time self-diffusion of rod-like systems, based on simulations with hydrodynamic interactions that become feasible even for more complex molecules as the essential observable shows a negligible system-size effect.
Collapse
Affiliation(s)
- Felix Roosen-Runge
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society, Malmö University, Sweden
| | - Peter Schurtenberger
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| | - Anna Stradner
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| |
Collapse
|
36
|
Harusawa K, Watanabe C, Kobori Y, Tomita K, Kitamura A, Kinjo M, Yanagisawa M. Membrane Surface Modulates Slow Diffusion in Small Crowded Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:437-444. [PMID: 33351626 DOI: 10.1021/acs.langmuir.0c03086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes are ubiquitous structures in cells. The effects of membranes on various functional molecules have been reported, but their behaviors under macromolecular crowding and cell-sized confinement have not fully been understood. In this study, we model an intracellular environment by crowding micrometer-sized droplets and investigate the effects of membrane properties on molecular diffusion. The molecular diffusion inside small droplets covered with a lipid layer of phosphatidylcholine (PC) becomes slower compared with that of the corresponding bulk solutions under a crowding condition of polysaccharide dextran but not of its monomer unit, glucose. The addition of a poly(ethylene glycol) conjugated lipid (PEGylated lipid) to the PC membrane significantly alters the degree of slow diffusion observed inside small droplets of concentrated dextran. Interestingly, the change is not monotonic against dextran concentration; that is, the PEGylated membrane increases and decreases the degree of slow diffusion with increasing dextran concentration. We explain the nonmonotonic alternation from the increase in effective dextran concentration and the hindered temporal adsorption of dextran to the membrane. Because diffusion alteration by adding PEGylated lipid is observed for condensed small droplets of linear polymer PEG and hydrophilic protein bovine serum albumin, the phenomenon is general for other polymer systems as well. Furthermore, our findings may facilitate the understanding of intracellular molecular behaviors based on membrane effects as well as the development of numerous applications using polymer droplets.
Collapse
Affiliation(s)
- Kanae Harusawa
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Yuta Kobori
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kazuho Tomita
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Akira Kitamura
- Faculty of Advanced Life Science, Hokkaido University, Kita-21 Nishi-11 Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science, Hokkaido University, Kita-21 Nishi-11 Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Basic Science, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
37
|
Roosen-Runge F, Gulotta A, Bucciarelli S, Casal-Dujat L, Garting T, Skar-Gislinge N, Obiols-Rabasa M, Farago B, Zaccarelli E, Schurtenberger P, Stradner A. Crowding in the Eye Lens: Modeling the Multisubunit Protein β-Crystallin with a Colloidal Approach. Biophys J 2020; 119:2483-2496. [PMID: 33189682 PMCID: PMC7822730 DOI: 10.1016/j.bpj.2020.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022] Open
Abstract
We present a multiscale characterization of aqueous solutions of the bovine eye lens protein βH crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a comprehensive explanation of the observed experimental signatures from a model of polydisperse hard spheres with additional weak attraction. In particular, the model predictions quantitatively describe the multiscale dynamical results from microscopic nanometer cage diffusion over mesoscopic micrometer gradient diffusion up to macroscopic viscosity. Based on a comparative discussion with results from other crystallin proteins, we suggest an interesting common pathway for dynamical arrest in all crystallin proteins, with potential implications for the understanding of crowding effects in the eye lens.
Collapse
Affiliation(s)
| | | | | | | | - Tommy Garting
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | | | | | | | - Emanuela Zaccarelli
- Institute for Complex Systems, National Research Council, Uos Sapienza, Rome, Italy; Department of Physics, Sapienza Università di Roma, Rome, Italy
| | | | - Anna Stradner
- Division of Physical Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
38
|
Abstract
Diffusivity of a protein (a Brownian particle) is caused by random molecular collisions in the Stokes-Einstein picture. Alternatively, it can be viewed as driven by unbalanced stochastic forces acting from water on the protein. Molecular dynamics simulations of protein mutants carrying different charges are analyzed here in terms of the van der Waals (vdW) and electrostatic forces acting on the protein. They turn out to be remarkably strongly correlated and the total force is largely a compensation between vdW and electrostatic forces. Both vdW and electrostatic forces relax on the same time scale of 5-6 ns separated by 6 orders of magnitude from the relaxation time of the total force. Similar phenomenology applies to the dynamics and statistics of the fluctuating torque responsible for rotational diffusion. Standard linear theories of dielectric friction are grossly inapplicable to translational and rotational diffusion of proteins overestimating friction by many orders of magnitude.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| | - Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
39
|
Stadmiller SS, Aguilar JS, Parnham S, Pielak GJ. Protein–Peptide Binding Energetics under Crowded Conditions. J Phys Chem B 2020; 124:9297-9309. [DOI: 10.1021/acs.jpcb.0c05578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Samantha S. Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jhoan S. Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stuart Parnham
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
40
|
Micro- and macro-viscosity relations in high concentration antibody solutions. Eur J Pharm Biopharm 2020; 153:211-221. [DOI: 10.1016/j.ejpb.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 11/18/2022]
|
41
|
Oh KI, You X, Flanagan JC, Baiz CR. Liquid-Liquid Phase Separation Produces Fast H-Bond Dynamics in DMSO-Water Mixtures. J Phys Chem Lett 2020; 11:1903-1908. [PMID: 32069416 DOI: 10.1021/acs.jpclett.0c00378] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid-liquid phase separation is common in complex mixtures, but the behavior of nanoconfined liquids is poorly understood from a physical perspective. Dimethyl sulfoxide (DMSO) is an amphiphilic molecule with unique concentration-dependent bulk properties in mixtures with water. Here, we use ultrafast two-dimensional infrared (2D IR) spectroscopy to measure the H-bond dynamics of two probe molecules with different polarities: formamide (FA) and dimethylformamide (DMF). Picosecond H-bond dynamics are fastest in the intermediate concentration regime (20-50 mol % DMSO), because such confined water exhibits bulk-like dynamics. Each vibrational probe experiences a unique microscopic environment as a result of nanoscale phase separation. Molecular dynamics simulations show that the dynamics span multiple time scales, from femtoseconds to nanoseconds. Our studies suggest a previously unknown liquid environment, which we label "local bulk", in which despite the local heterogeneity, the ultrafast H-bond dynamics are similar to bulk water.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Xiao You
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Jennifer C Flanagan
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
42
|
Marín-Aguilar S, Wensink HH, Foffi G, Smallenburg F. Rotational and translational dynamics in dense fluids of patchy particles. J Chem Phys 2020; 152:084501. [PMID: 32113356 DOI: 10.1063/1.5143221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We explore the effect of directionality on rotational and translational relaxation in glassy systems of patchy particles. Using molecular dynamics simulations, we analyze the impact of two distinct patch geometries, one that enhances the local icosahedral structure and the other one that does not strongly affect the local order. We find that in nearly all investigated cases, rotational relaxation takes place on a much faster time scale than translational relaxation. By comparing to a simplified dynamical Monte Carlo model, we illustrate that rotational diffusion can be qualitatively explained as purely local motion within a fixed environment, which is not coupled strongly to the cage-breaking dynamics required for translational relaxation. Nonetheless, icosahedral patch placement has a profound effect on the local structure of the system, resulting in a dramatic slowdown at low temperatures, which is strongest at an intermediate "optimal" patch size.
Collapse
Affiliation(s)
- Susana Marín-Aguilar
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Henricus H Wensink
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
43
|
Watanabe C, Kobori Y, Yamamoto J, Kinjo M, Yanagisawa M. Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion. J Phys Chem B 2020; 124:1090-1098. [PMID: 31939302 DOI: 10.1021/acs.jpcb.9b10558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.
Collapse
Affiliation(s)
- Chiho Watanabe
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| | - Yuta Kobori
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Applied Physics , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16 , Koganei , Tokyo 184-8588 , Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Central 6, Higashi 1-1-1 , Tsukuba , Ibaraki 305-8568 , Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science , Hokkaido University , Kita-21 Nishi-11 Kita-ku , Sapporo , Hokkaido 001-0021 , Japan
| | - Miho Yanagisawa
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Basic Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| |
Collapse
|
44
|
Honegger P, Steinhauser O. The protein-water nuclear Overhauser effect (NOE) as an indirect microscope for molecular surface mapping of interaction patterns. Phys Chem Chem Phys 2019; 22:212-222. [PMID: 31799520 DOI: 10.1039/c9cp04752b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this computational study, the intermolecular solute-solvent Nuclear Overhauser Effect (NOE) of the model protein ubiquitin in different chemical environments (free, bound to a partner protein and encapsulated) is investigated. Short-ranged NOE observables such as the NOE/ROE ratio reveal hydration phenomena on absolute timescales such as fast hydration sites and slow water clefts. We demonstrate the ability of solute-solvent NOE differences measured of the same protein in different chemical environments to reveal hydration changes on the relative timescale. The resulting NOE/ROE-surface maps are shown to be a central key for analyzing biologically relevant chemical influences such as complexation and confinement: the presence of a complexing macromolecule or a confining surface wall modulates the water mobility in the vicinity of the probe protein, hence revealing which residues of said protein are proximate to the foreign interface and which are chemically unaffected. This way, hydration phenomena can serve to indirectly map the precise influence (position) of other molecules or interfaces onto the protein surface. This proposed one-protein many-solvents approach may offer experimental benefits over classical one-protein other-protein pseudo-intermolecular transient NOEs. Furthermore, combined influences such as complexation and confinement may exert non-additive influences on the protein compared to a reference state. We offer a mathematical method to disentangle the influence of these two different chemical environments.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria.
| | | |
Collapse
|
45
|
Bashardanesh Z, Elf J, Zhang H, van der Spoel D. Rotational and Translational Diffusion of Proteins as a Function of Concentration. ACS OMEGA 2019; 4:20654-20664. [PMID: 31858051 PMCID: PMC6906769 DOI: 10.1021/acsomega.9b02835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 05/21/2023]
Abstract
Atomistic simulations of three different proteins at different concentrations are performed to obtain insight into protein mobility as a function of protein concentration. We report on simulations of proteins from diluted to the physiological water concentration (about 70% of the mass). First, the viscosity was computed and found to increase by a factor of 7-9 going from pure water to the highest protein concentration, in excellent agreement with in vivo nuclear magnetic resonance results. At a physiological concentration of proteins, the translational diffusion is found to be slowed down to about 30% of the in vitro values. The slow-down of diffusion found here using atomistic models is slightly more than that of a hard sphere model that neglects the electrostatic interactions. Interestingly, rotational diffusion of proteins is slowed down somewhat more (by about 80-95% compared to in vitro values) than translational diffusion, in line with experimental findings and consistent with the increased viscosity. The finding that rotation is retarded more than translation is attributed to solvent-separated clustering. No direct interactions between the proteins are found, and the clustering can likely be attributed to dispersion interactions that are stronger between proteins than between protein and water. Based on these simulations, we can also conclude that the internal dynamics of the proteins in our study are affected only marginally under crowding conditions, and the proteins become somewhat more stable at higher concentrations. Simulations were performed using a force field that was tuned for dealing with crowding conditions by strengthening the protein-water interactions. This force field seems to lead to a reproducible partial unfolding of an α-helix in one of the proteins, an effect that was not observed in the unmodified force field.
Collapse
Affiliation(s)
- Zahedeh Bashardanesh
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| | - Johan Elf
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| | - Haiyang Zhang
- Department
of Biological Science and Engineering, School of Chemistry and Biological
Engineering, University of Science and Technology
Beijing, 100083 Beijing, China
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
- E-mail: . Phone: +46 18 4714205
| |
Collapse
|
46
|
Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending. Proc Natl Acad Sci U S A 2019; 116:24562-24567. [PMID: 31740611 DOI: 10.1073/pnas.1910771116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomistic molecular dynamics simulations of concentrated protein solutions in the presence of a phospholipid bilayer are presented to gain insights into the dynamics and interactions at the cytosol-membrane interface. The main finding is that proteins that are not known to specifically interact with membranes are preferentially excluded from the membrane, leaving a depletion zone near the membrane surface. As a consequence, effective protein concentrations increase, leading to increased protein contacts and clustering, whereas protein diffusion becomes faster near the membrane for proteins that do occasionally enter the depletion zone. Since protein-membrane contacts are infrequent and short-lived in this study, the structure of the lipid bilayer remains largely unaffected by the crowded protein solution, but when proteins do contact lipid head groups, small but statistically significant local membrane curvature is induced, on average.
Collapse
|
47
|
Falk BT, Liang Y, Bailly M, Raoufi F, Kekec A, Pissarnitski D, Feng D, Yan L, Lin S, Fayadat-Dilman L, McCoy MA. NMR Assessment of Therapeutic Peptides and Proteins: Correlations That Reveal Interactions and Motions. Chembiochem 2019; 21:315-319. [PMID: 31283075 DOI: 10.1002/cbic.201900296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/20/2019] [Indexed: 11/09/2022]
Abstract
NMR measurements of rotational and translational diffusion are used to characterize the solution behavior of a wide variety of therapeutic proteins and peptides. The timescales of motions sampled in these experiments reveal complicated intrinsic solution behavior such as flexibility, that is central to function, as well as self-interactions, stress-induced conformational changes and other critical attributes that can be discovery and development liabilities. Trends from proton transverse relaxation (R2 ) and hydrodynamic radius (Rh ) are correlated and used to identify and differentiate intermolecular from intramolecular interactions. In this study, peptide behavior is consistent with complicated multimer self-assembly, while multi-domain protein behavior is dominated by intramolecular interactions. These observations are supplemented by simulations that include effects from slow transient interactions and rapid internal motions. R2 -Rh correlations provide a means to profile protein motions as well as interactions. The approach is completely general and can be applied to therapeutic and target protein characterization.
Collapse
Affiliation(s)
- Bradley T Falk
- Mass Spectrometry and Biophysics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Yingkai Liang
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., 770 Sunneytown Pike, West Point, PA, 19486, USA
| | - Marc Bailly
- Protein Sciences, Merck & Co., Inc., 901 California Avenue, Palo Alto, CA, 94304, USA
| | - Fahimeh Raoufi
- Protein Sciences, Merck & Co., Inc., 901 California Avenue, Palo Alto, CA, 94304, USA
| | - Ahmet Kekec
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Dmitri Pissarnitski
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Dennis Feng
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Lin Yan
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Songnian Lin
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | | | - Mark A McCoy
- Mass Spectrometry and Biophysics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| |
Collapse
|
48
|
Adamski W, Salvi N, Maurin D, Magnat J, Milles S, Jensen MR, Abyzov A, Moreau CJ, Blackledge M. A Unified Description of Intrinsically Disordered Protein Dynamics under Physiological Conditions Using NMR Spectroscopy. J Am Chem Soc 2019; 141:17817-17829. [PMID: 31591893 DOI: 10.1021/jacs.9b09002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intrinsically disordered proteins (IDPs) are flexible biomolecules whose essential functions are defined by their dynamic nature. Nuclear magnetic resonance (NMR) spectroscopy is ideally suited to the investigation of this behavior at atomic resolution. NMR relaxation is increasingly used to detect conformational dynamics in free and bound forms of IDPs under conditions approaching physiological, although a general framework providing a quantitative interpretation of these exquisitely sensitive probes as a function of experimental conditions is still lacking. Here, measuring an extensive set of relaxation rates sampling multiple-time-scale dynamics over a broad range of crowding conditions, we develop and test an integrated analytical description that accurately portrays the motion of IDPs as a function of the intrinsic properties of the crowded molecular environment. In particular we observe a strong dependence of both short-range and long-range motional time scales of the protein on the friction of the solvent. This tight coupling between the dynamic behavior of the IDP and its environment allows us to develop analytical expressions for protein motions and NMR relaxation properties that can be accurately applied over a vast range of experimental conditions. This unified dynamic description provides new insight into the physical behavior of IDPs, extending our ability to quantitatively investigate their conformational dynamics under complex environmental conditions, and accurately predicting relaxation rates reporting on motions on time scales up to tens of nanoseconds, both in vitro and in cellulo.
Collapse
Affiliation(s)
- Wiktor Adamski
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Nicola Salvi
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Damien Maurin
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Justine Magnat
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Sigrid Milles
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Malene Ringkjøbing Jensen
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Anton Abyzov
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Christophe J Moreau
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| | - Martin Blackledge
- Institut de Biologie Structurale , Université Grenoble Alpes-CEA-CNRS , 71, Avenue des Martyrs , Grenoble , France
| |
Collapse
|
49
|
Abstract
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
50
|
Wolfe AJ, Parella KJ, Movileanu L. High-Throughput Screening of Protein-Detergent Complexes Using Fluorescence Polarization Spectroscopy. ACTA ACUST UNITED AC 2019; 97:e96. [PMID: 31517448 DOI: 10.1002/cpps.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides detailed protocols for a high-throughput fluorescence polarization (FP) spectroscopy approach to disentangle the interactions of membrane proteins with solubilizing detergents. Existing techniques for examining the membrane protein-detergent complex (PDC) interactions are low throughput and require high amounts of proteins. Here, we describe a 96-well analytical approach, which facilitates a scalable analysis of the PDC interactions at low-nanomolar concentrations of membrane proteins in native solutions. At detergent concentrations much greater than the equilibrium dissociation constant of the PDC, Kd , the FP anisotropy reaches a saturated value, so it is independent of the detergent concentration. On the contrary, at detergent concentrations comparable with or lower than the Kd , the FP anisotropy readout undergoes a time-dependent decrease, exhibiting a sensitive and specific detergent-dissociation signature. Our approach can also be used for determining the kinetic rate constants of association and dissociation. With further development, these protocols might be used in various arenas of membrane protein research that pertain to extraction, solubilization, and stabilization. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Ichor Therapeutics, Inc., LaFayette, New York.,Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Kyle J Parella
- Ichor Therapeutics, Inc., LaFayette, New York.,Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| |
Collapse
|