1
|
Wang Y, Sun L, Xuan W. Genetically Encoded Fluorescent and Bioluminescent Probes for HDAC8. Chembiochem 2025; 26:e202500096. [PMID: 40045791 DOI: 10.1002/cbic.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Protein-based probes constructed via genetically encoding acetyl lysine (AcK) or its close analogs represent an important way to detect protein lysine deacetylases. Existing reported probes exhibit excellent sensitivity to NAD+-dependent sirtuins but lack responsiveness to Zn2+-dependent histone deacetylases (HDACs). Herein, we reformed the probe design by replacing the genetically encoded AcK with trifluoroacetyl lysine (TfAcK) and generated fluorescent and bioluminescent probes that could respond specifically to HDAC8 recombinantly expressed in E. coli and to endogenous HDACs in mammalian cells. We believe these probes would benefit the biological investigation of HDAC8 and promisingly some other HDACs, as well as the discovery of innovative HDAC inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Lin Sun
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Weimin Xuan
- State Key Lab of Synthetic Biology, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Wang Y, Fan J, Meng X, Shu Q, Wu Y, Chu GC, Ji R, Ye Y, Wu X, Shi J, Deng H, Liu L, Li YM. Development of nucleus-targeted histone-tail-based photoaffinity probes to profile the epigenetic interactome in native cells. Nat Commun 2025; 16:415. [PMID: 39762271 PMCID: PMC11704063 DOI: 10.1038/s41467-024-55046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Dissection of the physiological interactomes of histone post-translational modifications (hPTMs) is crucial for understanding epigenetic regulatory pathways. Peptide- or protein-based histone photoaffinity tools expanded the ability to probe the epigenetic interactome, but in situ profiling in native cells remains challenging. Here, we develop a nucleus-targeting histone-tail-based photoaffinity probe capable of profiling the hPTM-mediated interactomes in native cells, by integrating cell-permeable and nuclear localization peptide modules into an hPTM peptide equipped with a photoreactive moiety. These types of probes, such as histone H3 lysine 4 trimethylation and histone H3 Lysine 9 crotonylation probes, enable the probing of epigenetic interactomes both in HeLa cell and hard-to-transfect RAW264.7 cells, resulting in the discovery of distinct interactors in different cell lines. The utility of this probe is further exemplified by characterizing interactome of emerging hPTM, such as AF9 was detected as a binder of histone H3 Lysine 9 lactylation, thus expanding the toolbox for profiling of hPTM-mediated PPIs in live cells.
Collapse
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Jian Fan
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qingyao Shu
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yincui Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Rong Ji
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yinshan Ye
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Shi
- Department of Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
- Beijing Institute of Life Science and Technology, Beijing, 102206, China.
| |
Collapse
|
3
|
Wang WJ, Ling YY, Shi Y, Wu XW, Su X, Li ZQ, Mao ZW, Tan CP. Identification of mitochondrial ATP synthase as the cellular target of Ru-polypyridyl- β-carboline complexes by affinity-based protein profiling. Natl Sci Rev 2024; 11:nwae234. [PMID: 39114378 PMCID: PMC11304990 DOI: 10.1093/nsr/nwae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Ruthenium polypyridyl complexes are promising anticancer candidates, while their cellular targets have rarely been identified, which limits their clinical application. Herein, we design a series of Ru(II) polypyridyl complexes containing bioactive β-carboline derivatives as ligands for anticancer evaluation, among which Ru5 shows suitable lipophilicity, high aqueous solubility, relatively high anticancer activity and cancer cell selectivity. The subsequent utilization of a photo-clickable probe, Ru5a, serves to validate the significance of ATP synthase as a crucial target for Ru5 through photoaffinity-based protein profiling. Ru5 accumulates in mitochondria, impairs mitochondrial functions and induces mitophagy and ferroptosis. Combined analysis of mitochondrial proteomics and RNA-sequencing shows that Ru5 significantly downregulates the expression of the chloride channel protein, and influences genes related to ferroptosis and epithelial-to-mesenchymal transition. Finally, we prove that Ru5 exhibits higher anticancer efficacy than cisplatin in vivo. We firstly identify the molecular targets of ruthenium polypyridyl complexes using a photo-click proteomic method coupled with a multiomics approach, which provides an innovative strategy to elucidate the anticancer mechanisms of metallo-anticancer candidates.
Collapse
Affiliation(s)
- Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Shi
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Xiao-Wen Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuxian Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zheng-Qiu Li
- School of Pharmacy, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Ren X, Li H, Peng H, Yang Y, Su H, Huang C, Wang X, Zhang J, Liu Z, Wei W, Cheng K, Zhu T, Lu Z, Li Z, Zhao Q, Tang BZ, Yao SQ, Song X, Sun H. Reactivity-Tunable Fluorescent Platform for Selective and Biocompatible Modification of Cysteine or Lysine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402838. [PMID: 38896788 PMCID: PMC11336953 DOI: 10.1002/advs.202402838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.
Collapse
Affiliation(s)
- Xiaojie Ren
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Haokun Li
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Hui Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Yang Yang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Hang Su
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Chen Huang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Xuan Wang
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Jie Zhang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhiyang Liu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Wenyu Wei
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Ke Cheng
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Tianyang Zhu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Zhenpin Lu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Shao Q. Yao
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Xiangzhi Song
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Hongyan Sun
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| |
Collapse
|
5
|
Moreno-Yruela C, Fierz B. Revealing chromatin-specific functions of histone deacylases. Biochem Soc Trans 2024; 52:353-365. [PMID: 38189424 DOI: 10.1042/bst20230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Histone deacylases are erasers of Nε-acyl-lysine post-translational modifications and have been targeted for decades for the treatment of cancer, neurodegeneration and other disorders. Due to their relatively promiscuous activity on peptide substrates in vitro, it has been challenging to determine the individual targets and substrate identification mechanisms of each isozyme, and they have been considered redundant regulators. In recent years, biochemical and biophysical studies have incorporated the use of reconstituted nucleosomes, which has revealed a diverse and complex arsenal of recognition mechanisms by which histone deacylases may differentiate themselves in vivo. In this review, we first present the peptide-based tools that have helped characterize histone deacylases in vitro to date, and we discuss the new insights that nucleosome tools are providing into their recognition of histone substrates within chromatin. Then, we summarize the powerful semi-synthetic approaches that are moving forward the study of chromatin-associated factors, both in vitro by detailed single-molecule mechanistic studies, and in cells by live chromatin modification. We finally offer our perspective on how these new techniques would advance the study of histone deacylases. We envision that such studies will help elucidate the role of individual isozymes in disease and provide a platform for the development of the next generation of therapeutics.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Drug Design and Pharmacology (ILF), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Fan Z, Liu Z, Zhang N, Wei W, Cheng K, Sun H, Hao Q. Identification of SIRT3 as an eraser of H4K16la. iScience 2023; 26:107757. [PMID: 37720100 PMCID: PMC10504495 DOI: 10.1016/j.isci.2023.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
Lysine lactylation (Kla) is a novel histone post-translational modification discovered in late 2019. Later, HDAC1-3, were identified as the robust Kla erasers. While the Sirtuin family proteins showed weak eraser activities toward Kla, as reported. However, the catalytic mechanisms and physiological functions of HDACs and Sirtuins are not identical. In this study, we observed that SIRT3 exhibits a higher eraser activity against the H4K16la site than the other human Sirtuins. Crystal structures revealed the detailed binding mechanisms between lactyl-lysine peptides and SIRT3. Furthermore, a chemical probe, p-H4K16laAlk, was developed to capture potential Kla erasers from cell lysates. SIRT3 was captured by this probe and detected via proteomic analysis. And another chemical probe, p-H4K16la-NBD, was developed to detect the eraser-Kla delactylation processes directly via fluorescence indication. Our findings and chemical probes provide new directions for further investigating Kla and its roles in gene transcription regulation.
Collapse
Affiliation(s)
- Zhuming Fan
- Institute of High Energy Physics, CAS, Beijing 100000, China
- Spallation Neutron Source Science Center, CAS, Dongguan, Guangdong 523000, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Nan Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Ke Cheng
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, Hong Kong, China
| | - Quan Hao
- Institute of High Energy Physics, CAS, Beijing 100000, China
- Spallation Neutron Source Science Center, CAS, Dongguan, Guangdong 523000, China
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Maus H, Müller P, Meta M, Hoba SN, Hammerschmidt SJ, Zimmermann RA, Zimmer C, Fuchs N, Schirmeister T, Barthels F. Next Generation of Fluorometric Protease Assays: 7-Nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-Amides) as Class-Spanning Protease Substrates. Chemistry 2023; 29:e202301855. [PMID: 37313627 DOI: 10.1002/chem.202301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Fluorometric assays are one of the most frequently used methods in medicinal chemistry. Over the last 50 years, the reporter molecules for the detection of protease activity have evolved from first-generation colorimetric p-nitroanilides, through FRET substrates, and 7-amino-4-methyl coumarin (AMC)-based substrates. The aim of further substrate development is to increase sensitivity and reduce vulnerability to assay interferences. Herein, we describe a new generation of substrates for protease assays based on 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-amides). In this study, we synthesized and tested substrates for 10 different proteases from the serine-, cysteine-, and metalloprotease classes. Enzyme- and substrate-specific parameters as well as the inhibitory activity of literature-known inhibitors confirmed their suitability for application in fluorometric assays. Hence, we were able to present NBD-based alternatives for common protease substrates. In conclusion, these NBD substrates are not only less susceptible to common assay interference, but they are also able to replace FRET-based substrates with the requirement of a prime site amino acid residue.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Patrick Müller
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
8
|
Nickel GA, Diehl KL. Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. ACS Chem Biol 2023; 18:1014-1026. [PMID: 35238546 PMCID: PMC9440160 DOI: 10.1021/acschembio.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In eukaryotes, DNA is packaged with histone proteins in a complex known as chromatin. Both the DNA and histone components of chromatin can be chemically modified in a wide variety of ways, resulting in a complex landscape often referred to as the "epigenetic code". These modifications are recognized by effector proteins that remodel chromatin and modulate transcription, translation, and repair of the underlying DNA. In this Review, we examine the development of methods for characterizing proteins that interact with these histone and DNA modifications. "Mark first" approaches utilize chemical, peptide, nucleosome, or oligonucleotide probes to discover interactors of a specific modification. "Reader first" approaches employ arrays of peptides, nucleosomes, or oligonucleotides to profile the binding preferences of interactors. These complementary strategies have greatly enhanced our understanding of how chromatin modifications effect changes in genomic regulation, bringing us ever closer to deciphering this complex language.
Collapse
Affiliation(s)
- Garrison A. Nickel
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Katharine L. Diehl
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
9
|
Zessin M, Meleshin M, Hilscher S, Schiene-Fischer C, Barinka C, Jung M, Schutkowski M. Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines. Int J Mol Sci 2023; 24:ijms24087416. [PMID: 37108579 PMCID: PMC10138348 DOI: 10.3390/ijms24087416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
10
|
Wei W, Zhang J, Xu Z, Liu Z, Huang C, Cheng K, Meng L, Matsuda Y, Hao Q, Zhang H, Sun H. Universal Strategy to Develop Fluorogenic Probes for Lysine Deacylase/Demethylase Activity and Application in Discriminating Demethylation States. ACS Sens 2023; 8:28-39. [PMID: 36602906 DOI: 10.1021/acssensors.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dynamically controlling the post-translational modification of the ε-amino groups of lysine residues is critical for regulating many cellular events. Increasing studies have revealed that many important diseases, including cancer and neurological disorders, are associated with the malfunction of lysine deacylases and demethylases. Developing fluorescent probes that are capable of detecting lysine deacylase and demethylase activity is highly useful for interrogating their roles in epigenetic regulation and diseases. Due to the distinct substrate recognition of these epigenetic eraser enzymes, designing a universal strategy for detecting their activity poses substantial difficulty. Moreover, designing activity-based probes for differentiating their demethylation states is even more challenging and still remains largely unexplored. Herein, we report a universal strategy to construct probes that can detect the enzymatic activity of epigenetic "erasers" through NBD-based long-distance intramolecular reactions. The probes can be easily prepared by installing the O-NBD group at the C-terminal residue of specific peptide substrates by click chemistry. Based on this strategy, detecting the activity of lysine deacetylase, desuccinylase, or demethylase with superior sensitivity and selectivity has been successfully achieved through single-step probe development. Furthermore, the demethylase probe based on this strategy is capable of distinguishing different demethylation states by both absorption and fluorescence lifetime readout. We envision that these newly developed probes will provide powerful tools to facilitate drug discovery in epigenetics in the future.
Collapse
Affiliation(s)
- Wenyu Wei
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| | - Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| | - Zhiqiang Xu
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| | - Zhiyang Liu
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| | - Chen Huang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| | - Ke Cheng
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| | - Lingkuan Meng
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| | - Yudai Matsuda
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China
| | - Quan Hao
- Department of Physiology, University of Hong Kong, Pok Fu Lam, Hong Kong999077, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong510006, China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen518057, China
| |
Collapse
|
11
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
12
|
Tan S, Li X. Small-Molecule Fluorescent Probes for Detecting HDAC Activity. Chem Asian J 2022; 17:e202200835. [PMID: 36117388 DOI: 10.1002/asia.202200835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Indexed: 11/05/2022]
Abstract
Histone deacetylases (HDACs) play critical roles in epigenetic modification. These enzymes can remove acetyl groups from the N-terminal lysine residues of histones, thereby regulating gene expression. Because of their great relevance to various diseases, numerous HDAC inhibitors have been developed. In this context, assays for HDAC activity are prerequisite. Due to the advantages of small-molecule fluorescent probes, researchers have developed many probes to detect HDAC activity for developing HDAC inhibitors. Based on the mechanism of action, two main types of small-molecule fluorescent probes are known. One type is based on binding affinity that are generally HDAC inhibitor-fluorophore conjugates. The other one is enzyme-activated probes, which act as HDAC substrates and show fluorogenic or ratiometric response after being deacetylated by HDACs.
Collapse
Affiliation(s)
- Shuyu Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
13
|
Tang C, Wang X, Jin Y, Wang F. Recent advances in HDAC-targeted imaging probes for cancer detection. Biochim Biophys Acta Rev Cancer 2022; 1877:188788. [PMID: 36049581 DOI: 10.1016/j.bbcan.2022.188788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
14
|
He H, Song A. Design of Fluorogenic Probe Based on Intramolecular Condensation for Specific Detection of HDAC3. Chem Asian J 2022; 17:e202200575. [PMID: 35765155 DOI: 10.1002/asia.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Indexed: 11/10/2022]
Abstract
It is crucial to develop fluorogenic probes for selective targeting of HDACs to explore the roles of HDACs in the tumor onset and progression as well as HDAC-related drug development. However, considerable non-specific signals were produced by spontaneous hydrolysis and undesirable intermolecular attack of the unstable caging moiety in the detection of HDACs with previous probes. To improve the detection specificity, we proposed an intramolecular condensation strategy by the replacement of the traditional acetamide moiety with a trans-enamide unit. Upon deacetylation by HDACs, rapid intramolecular condensation reaction between newly formed terminal aldehyde and hydrazine moiety would occur to afford highly fluorescent hydrazone product. Systematic studies demonstrated that the probe exhibited an extraordinary selectivity for HDAC3 over other HDAC isoforms and interfering substances. The stability and specificity of the indicator make it a powerful tool for HDAC3 activity detection and HDAC3-related drug development.
Collapse
Affiliation(s)
- Huimin He
- Northwestern Polytechnic University, Institute of Medical Research, CHINA
| | - Aiguo Song
- Northwestern Polytechnical University, Institute of Medical Research, 127 West Youyi Road, 710072, Xi'an, CHINA
| |
Collapse
|
15
|
Kang W, Liu L, Yu P, Zhang T, Lei C, Nie Z. A switchable Cas12a enabling CRISPR-based direct histone deacetylase activity detection. Biosens Bioelectron 2022; 213:114468. [PMID: 35700604 DOI: 10.1016/j.bios.2022.114468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The efficient and robust signal reporting ability of CRISPR-Cas system exhibits huge value in biosensing, but its applicability for non-nucleic acid analyte detection relies on the coupling of additional recognition modules. To address this limitation, we described a switchable Cas12a and exploited it for CRISPR-based direct analysis of histone deacetylase (HDAC) activity. Starting from the acetylation-mediated inactivation of Cas12a by anti-CRISPR protein AcrVA5, we demonstrated that the acetyl-inactivated Cas12a could be reversibly activated by HDAC-mediated deacetylation based on computational simulations (e.g., deep learning and protein-protein docking analysis) and experimental verifications. By leveraging this switchable Cas12a for both target sensing and signal amplification, we established a sensitive one-pot assay capable of detecting deacetylase sirtuin-1 with sub-nanomolar sensitivity, which is 50 times lower than the standard two-step peptide-based assay. The versability of this assay was validated by the sensitive assessment of cellular HDAC activities in different cell lines with good accuracy, making it a valuable tool for biochemical studies and clinical diagnostics.
Collapse
Affiliation(s)
- Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Lin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Peihang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Tianyi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
16
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022; 61:e202200303. [PMID: 35302274 DOI: 10.1002/anie.202200303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Lysine acylation plays pivotal roles in cell physiology, including DNA transcription and repair, signal transduction, immune defense, metabolism, and many other key cellular processes. Molecular mechanisms of dysregulated lysine acylation are closely involved in the pathophysiological progress of many human diseases, most notably cancers. In recent years, chemical biology tools have become instrumental in studying the function of post-translational modifications (PTMs), identifying new "writers", "erasers" and "readers", and in targeted therapies. Here, we describe key developments in chemical biology approaches that have advanced the study of lysine acylation and its regulatory proteins (2016-2021). We further discuss the discovery of ligands (inhibitors and PROTACs) that are capable of targeting regulators of lysine acylation. Next, we discuss some current challenges of these chemical biology probes and suggest how chemists and biologists can utilize chemical probes with more discriminating capacity. Finally, we suggest some critical considerations in future studies of PTMs from our perspective.
Collapse
Affiliation(s)
- Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Zhiyang Liu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhiqiang Xu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hongyan Sun
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
17
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
18
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yusheng Xie
- Shandong University School of Basic Medical Science 250012 Jinan CHINA
| | - Shubo Du
- National University of Singapore Department of Chemistry SINGAPORE
| | - Zhiyang Liu
- City University of Hong Kong chemistry HONG KONG
| | - Min Liu
- Shandong University School of Basic Medical Sciences CHINA
| | - Zhiqiang Xu
- City University of Hong Kong Department of Chemistry HONG KONG
| | - Xiaojie Wang
- Shandong University School of Basic Medical Sciences CHINA
| | - Jia Xuan Kee
- National University of Singapore Chemistry SINGAPORE
| | - Fan Yi
- Shandong University School of basic medical sciences CHINA
| | - Hongyan Sun
- City University of Hong Kong department of chemistry HONG KONG
| | - Shao Q. Yao
- National University of Singapore Department of Chemistry 3 Science Dr. 117543 Singapore SINGAPORE
| |
Collapse
|
19
|
Wang P, Chen D, An JX, Lin SX, Liu T, Li Y, Chen L, He B. Development of a single-step fluorogenic sirtuin assay and its applications for high-throughput screening. Org Biomol Chem 2022; 20:1243-1252. [PMID: 35050299 DOI: 10.1039/d1ob02347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sirtuins (SIRTs) are a class of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases. Since SIRTs have different subcellular locations and different preferences for deacylation activity, SIRTs are not only highly gaining significance in biological functions but also implications in human diseases. Therefore, it is valuable to establish a high-throughput screening method for the rapid and accurate discovery of SIRT modulators. In this study, we designed and synthesized small molecules 4a-d as fluorogenic probes based on the different lysine substrates of SIRTs, which can be recognized and catalyzed by SIRTs and then spontaneous intramolecular transesterification can give the fluorescence. We have undertaken a comprehensive study of these fluorogenic probes with different SIRTs for assay optimization, validation, kinetics, parameters, and applications of high-throughput screening formats. We envision that these probes will provide useful and powerful tools for the highly efficient discovery of more SIRT inhibitors.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Jian-Xiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Shu-Xian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 50004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
20
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
21
|
Zessin M, Meleshin M, Simic Z, Kalbas D, Arbach M, Gebhardt P, Melesina J, Liebscher S, Bordusa F, Sippl W, Barinka C, Schutkowski M. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg Chem 2021; 117:105425. [PMID: 34695733 DOI: 10.1016/j.bioorg.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Zeljko Simic
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Miriam Arbach
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Philip Gebhardt
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
22
|
Roopa, Priya B, Bhalla V, Kumar M, Kumar N. Fluorescent molecular probe-based activity and inhibition monitoring of histone deacetylases. Chem Commun (Camb) 2021; 57:11153-11164. [PMID: 34613324 DOI: 10.1039/d1cc04034k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in recent decades have revealed that gene expression regulation is not limited to genetic mutations but also to processes that do not alter the genetic sequence. Post-translational histone modification is one of these processes in addition to DNA or RNA modifications. Histone modifications are essential in controlling histone functions and play a vital role in cellular gene expression. The reversible histone acetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is an example of such modifications. HDACs are involved in the deacetylation of histones and lead to the termination of gene expression. Although this cellular process is essential, upregulation of HDACs is found in numerous cancers. Therefore, research related to the activity and inhibition monitoring of HDACs is necessary to gain profound knowledge of these enzymes and evaluate the success of the therapeutic approach. In this perspective, methodology derived from fluorescent molecular probes is one of the preferable methods. Herein, we describe fluorescent probes developed to target HDACs by considering their activity and inhibition characteristics.
Collapse
Affiliation(s)
- Roopa
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala 144603, Punjab, India.
| | - Bhanu Priya
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala 144603, Punjab, India.
| | - Vandana Bhalla
- Department of Chemistry, UGC Center of Advanced Study-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Center of Advanced Study-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Naresh Kumar
- Department of Chemistry, SRM University, Delhi-NCR, Sonepat-131029, Haryana, India.
| |
Collapse
|
23
|
Yang L, Chen S, Yi D, Chen Q, Zhang J, Xie Y, Sun H. Synthesis and fluorescence properties of red-to-near-infrared-emitting push-pull dyes based on benzodioxazole scaffolds. J Mater Chem B 2021; 9:8512-8517. [PMID: 34554170 DOI: 10.1039/d1tb01189h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence imaging with high temporal and spatial resolution has emerged as one of the most promising techniques to monitor biomolecules and biological processes in living systems. Among many kinds of small molecular fluorescent dyes, 2,1,3-benzoxadiazole (BD) derivatives have been widely applied in many chemical and biological applications due to their excellent photophysical properties. However, only a limited number of BD dyes with long emission wavelengths were reported. Herein, we have reported a new class of red-to near-infrared-emitting small molecular dyes 2a-3a based on benzodioxazole scaffolds, which are named VBDfluors. To bathochromically shift both absorption and emission, the conjugation system was extended by introducing electron-withdrawing group-substituted vinyl groups at position 7 via a Knoevenagel condensation reaction. The basic photophysical properties of VBDfluors were detected and summarized. The VBDfluors display excellent photophysical properties, including emission in the red-to-NIR region, large Stokes shifts, good stability/photostability and cell permeability. The geometry of the molecules was optimized by density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Bioimaging results indicated that 2a and 3a exhibited excellent cell permeability and could be utilized for visualization of lipid droplets in living cells.
Collapse
Affiliation(s)
- Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.,Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Suyuan Chen
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
24
|
Yan Y, Huang C, Shu Y, Wen H, Shan C, Wang X, Liu J, Li W. An HDAC8-selective fluorescent probe for imaging in living tumor cell lines and tissue slices. Org Biomol Chem 2021; 19:8352-8366. [PMID: 34528053 DOI: 10.1039/d1ob01367j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase 8 (HDAC8) has been used as a therapeutic target for many cancers as it is highly expressed in neuroblastoma cells and breast cancer cells. HDAC8-selective fluorescent probes need to be urgently developed. Herein, two novel fluorescent probes, namely NP-C6-PCI and AM-C6-PCI, based on the conjugation of 1,8-naphthalimide with a highly selective inhibitor of HDAC8 (PCI-34051) were reported. Compared with PCI-34051 (KD = 6.25 × 10-5 M), NP-C6-PCI (KD = 8.05 × 10-6 M) and AM-C6-PCI (KD = 7.42 × 10-6 M) showed great selectivity toward HDAC8. Two fluorescent probes exhibited high fluorescence intensity under λex = 450 nm and a large Stokes shift (100 nm). NP-C6-PCI was selected for cell and tissue imaging due to the similarity in the bioactivity of NP-C6-PCI with PCI-34051. The ability of NP-C6-PCI to target imaging HDAC8 in SH-SY5Y and MDA-MB-231 tumor cells was demonstrated. Furthermore, NP-C6-PCI was applied to imaging SH-SY5Y tumor tissue slices to indicate the relative expression level of HDAC8. Therefore, this HDAC8-selective fluorescent probe can be expected for applications in HDAC8-targeted drug screening as well as in pathologic diagnoses.
Collapse
Affiliation(s)
- Yinyu Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
25
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
26
|
Fang H, Peng B, Ong SY, Wu Q, Li L, Yao SQ. Recent advances in activity-based probes (ABPs) and affinity-based probes (A fBPs) for profiling of enzymes. Chem Sci 2021; 12:8288-8310. [PMID: 34221311 PMCID: PMC8221178 DOI: 10.1039/d1sc01359a] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a technique that uses highly selective active-site targeted chemical probes to label and monitor the state of proteins. ABPP integrates the strengths of both chemical and biological disciplines. By utilizing chemically synthesized or modified bioactive molecules, ABPP is able to reveal complex physiological and pathological enzyme-substrate interactions at molecular and cellular levels. It is also able to provide critical information of the catalytic activity changes of enzymes, annotate new functions of enzymes, discover new substrates of enzymes, and allow real-time monitoring of the cellular location of enzymes. Based on the mechanism of probe-enzyme interaction, two types of probes that have been used in ABPP are activity-based probes (ABPs) and affinity-based probes (AfBPs). This review highlights the recent advances in the use of ABPs and AfBPs, and summarizes their design strategies (based on inhibitors and substrates) and detection approaches.
Collapse
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 P. R. China
| | - Sing Yee Ong
- Department of Chemistry, National University of Singapore 4 Science Drive 2 117544 Singapore
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore 4 Science Drive 2 117544 Singapore
| |
Collapse
|
27
|
|
28
|
Zhang K, Liu Z, Yao Y, Qiu Y, Li F, Chen D, Hamilton DJ, Li Z, Jiang S. Structure-Based Design of a Selective Class I Histone Deacetylase (HDAC) Near-Infrared (NIR) Probe for Epigenetic Regulation Detection in Triple-Negative Breast Cancer (TNBC). J Med Chem 2021; 64:4020-4033. [PMID: 33745280 DOI: 10.1021/acs.jmedchem.0c02161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abnormally high levels of class I histone deacetylases (HDACs) are associated with triple-negative breast cancer (TNBC) proliferation, malignant transformation, and poor prognosis of patients. Herein, we report a near-infrared imaging probe for TNBC detection via visualizing class I HDACs. Conjugating Cy5.5 to a cyclic depsipeptide inhibitor, we obtained the probe (20-Cy5.5) that retained desirable class I HDAC affinity and selectivity. Then, this probe could visualize epigenetic changes by class I HDACs in TNBC MDA-MB-231 cells and in xenograft tumor models in real time. Treatment with suberoylanilide hydroxamic acid (SAHA) significantly reduced the uptake of the probe in tumors, suggesting its potential use in evaluation of therapeutic responses of HDACi-mediated therapy. Moreover, 20-Cy5.5 could detect class I HDAC expression in TNBC lung metastasis. This novel NIR probe that achieves tumor class I HDAC imaging not only leads to a better understanding of epigenetic regulation in tumors but also has great potential for improving the TNBC diagnosis and treatment.
Collapse
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyi Liu
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Yiwu Yao
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yatao Qiu
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Dong Chen
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Zheng Li
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner, Houston, Texas 77030, United States
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
29
|
Hori Y, Nishiura M, Tao T, Baba R, Bull SD, Kikuchi K. Fluorogenic probes for detecting deacylase and demethylase activity towards post-translationally-modified lysine residues. Chem Sci 2021; 12:2498-2503. [PMID: 34164016 PMCID: PMC8179349 DOI: 10.1039/d0sc06551j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reversible enzymatic post-translational modification of the ε-amino groups of lysine residues (e.g. N-acylation reactions) plays an important role in regulating the cellular activities of numerous proteins. This study describes how enzyme catalyzed N-deprotection of lysine residues of non-fluorescent peptide-coumarin probes can be used to generate N-deprotected peptides that undergo spontaneous O- to N-ester transfer reactions (uncatalyzed) to generate a highly fluorescent N-carbamoyl peptide. This enables detection of enzyme catalyzed N-deacetylation, N-demalonylation, N-desuccinylation and N-demethylation reactions activities towards the N-modified lysine residues of these probes using simple ‘turn on’ fluorescent assays. We developed “turn-on” fluorescent probes that detect enzymatic lysine deacylation and demethylation critical for epigenetic and other cellular phenomena, using intramolecular O- to N-ester transfer reactions.![]()
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan .,IFReC, Osaka University Suita Osaka 565-0871 Japan
| | - Miyako Nishiura
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Tomomi Tao
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Reisuke Baba
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA27AY UK
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan .,IFReC, Osaka University Suita Osaka 565-0871 Japan.,Quantum Information and Quantum Biology Division, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
30
|
Xie Y, Yang L, Chen Q, Zhang J, Feng L, Chen JL, Hao Q, Zhang L, Sun H. Single-step fluorescent probes to detect decrotonylation activity of HDACs through intramolecular reactions. Eur J Med Chem 2020; 212:113120. [PMID: 33422982 DOI: 10.1016/j.ejmech.2020.113120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Lysine crotonylation plays vital roles in gene transcription and cellular metabolism. Nevertheless, methods for dissecting the molecular mechanisms of decrotonyaltion remains limited. So far, there is no single-step fluorescent method developed for enzymatic decrotonylation activity detection. The major difficulty is that the aliphatic crotonylated lysine doesn't allow π-conjugation to a fluorophore and decrotonylation can not modulate the electronic state directly. Herein, we have designed and synthesized two activity-based single-step fluorogenic probes KTcr-I and KTcr-II for detecting enzymatic decrotonylation activity. These two probes can be recognized by histone deacetylases and undergo intramolecular nucleophilic exchange reaction to generate fluorescence signal. Notably, peptide sequence-dependent effect was observed. KTcr-I can be recognized by Sirt2 more effectively, while KTcr-II with LGKcr peptide sequence preferentially reacted with HDAC3. Compared to other methods of studying enzymatic decrotonylation activity, our single-step fluorescent method has a number of advantages, such as facileness, high sensitivity, cheap facility and little material consumed. We envision that the probes developed in this study will provide useful tools to screen inhibitors which suppress the decrotonylation activity of HDACs. Such probes will be useful for further delineating the roles of decrotonylation enzyme and aid in biomarker identification and drug discovery.
Collapse
Affiliation(s)
- Yusheng Xie
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Liu Yang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Ling Feng
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jian Lin Chen
- School of Science and Technology, The Open University of Hong Kong, Hong Kong Special Administrative Region
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China; Department of Biomedical Science, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
31
|
The design of a novel near-infrared fluorescent HDAC inhibitor and image of tumor cells. Bioorg Med Chem 2020; 28:115639. [PMID: 32773090 DOI: 10.1016/j.bmc.2020.115639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/21/2022]
Abstract
Histone deacetylases (HDACs) have been found to be biomarkers of cancers and the corresponding inhibitors have attracted much attention these years. Herein we reported a near-infrared fluorescent HDAC inhibitor based on vorinostat (SAHA) and a NIR fluorophore. This newly designed inhibitor showed similar inhibitory activity to SAHA against three HDAC isoforms (HDAC1, 3, 6). The western blot assay showed significant difference in compared with the negative group. When used as probe for further kinematic imaging, Probe 1 showed enhanced retention in tumor cells and the potential of HDAC inhibitors in drug delivery was firstly brought out. The cytotoxicity assay showed Probe 1 had some anti-proliferation activities with corresponding IC50 values of 9.20 ± 0.96 μM on Hela cells and 5.91 ± 0.57 μM on MDA-MB-231 cells. These results indicated that Probe 1 could be used as a potential NIR fluorescent in the study of HDAC inhibitors and lead compound for the development of visible drugs.
Collapse
|
32
|
Zhang J, Peng J, Huang Y, Meng L, Li Q, Xiong F, Li X. Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling. Angew Chem Int Ed Engl 2020; 59:17525-17532. [DOI: 10.1002/anie.202001205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/14/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Qingrong Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| |
Collapse
|
33
|
Zhang J, Peng J, Huang Y, Meng L, Li Q, Xiong F, Li X. Identification of Histone deacetylase (HDAC)‐Associated Proteins with DNA‐Programmed Affinity Labeling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Qingrong Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK Pokfulam Road Hong Kong SAR China
| |
Collapse
|
34
|
Zhang Z, Long S, Cao J, Du J, Fan J, Peng X. Revealing the Photodynamic Stress In Situ with a Dual-Mode Two-Photon 1O 2 Fluorescent Probe. ACS Sens 2020; 5:1411-1418. [PMID: 32314569 DOI: 10.1021/acssensors.0c00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Singlet oxygen (1O2) plays significant physiological and pathological functions, especially in causing photodynamic stress in vivo. However, specific 1O2 monitoring is an immense challenge, owing to its short half-lives and high oxidizing ability. To address this, we engineered three photostable two-photon fluorescence probe NBs for highly efficient 1O2 monitoring based on bioinspired novel tryptophan derivatives, among which NB-MOT was the best one comprehensively. Upon being cracked with 1O2, NB-MOT rapidly (within 5 s) demonstrated a remarkable enhancement in fluorescence intensity (∼180 fold) and lifetime (∼18 fold). Taking these advantages into account, NB-MOT was applied to evaluate exogenous and endogenous 1O2 in diverse biosystems. We successfully tracked the intracellular 1O2 level during photodynamic therapy, and for the first time achieved 1O2 mapping in live cells with dual-mode imaging as well as revealed ciprofloxacin-induced photodynamic stress in mice. NB-MOT was thus believed to be of instructive significance for studying the 1O2-mediated stress in wider biological milieus.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jianfang Cao
- School of Chemical and Environmental Engineering, Liaoning University of Technology, 169 Shiying Road, Jinzhou 121001, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
35
|
Yamaguchi T. [Development of a Novel Affinity Labeling Method for Target Identification of Bioactive Small Molecules]. YAKUGAKU ZASSHI 2020; 139:1513-1521. [PMID: 31787638 DOI: 10.1248/yakushi.19-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Target identification (target-ID) is an important step in elucidating the mechanisms of action of bioactive small molecules. In the past few decades, a number of target-ID methods have been developed. Among these, affinity labeling has been reliably used for specific modifications, as well as for the identification of weakly interacting protein targets, membrane-associated protein targets, and target-interacting proteins under native cellular conditions, which are generally difficult to achieve by conventional pull-down methods. In general, affinity labeling utilizes chemical probes composed of a bioactive small molecule, a reactive group, and a detection unit. However, the design and synthesis of highly functionalized chemical probes is often time-consuming. To address this issue, we have recently developed some simple affinity labeling methods using small fluorogenic tags, such as 4-alkoxy-7-nitro-2,1,3-benzoxadiazole (O-NBD), 2,3-dichloromaleimide (diCMI), and 4-azidophthalimide (AzPI), and successfully achieved the specific fluorescent labeling of target proteins, even in living cells. These methods should be useful for target-ID in phenotypic drug discovery.
Collapse
Affiliation(s)
- Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
36
|
Lu K, Hou W, Xu XF, Chen Q, Li Z, Lin J, Chen WM. Biological evaluation and chemoproteomics reveal potential antibacterial targets of a cajaninstilbene-acid analogue. Eur J Med Chem 2020; 188:112026. [DOI: 10.1016/j.ejmech.2019.112026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022]
|
37
|
Kutil Z, Mikešová J, Zessin M, Meleshin M, Nováková Z, Alquicer G, Kozikowski A, Sippl W, Bařinka C, Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS OMEGA 2019; 4:19895-19904. [PMID: 31788622 PMCID: PMC6882135 DOI: 10.1021/acsomega.9b02808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 05/05/2023]
Abstract
Histone deacetylase 11 (HDAC11) preferentially removes fatty acid residues from lysine side chains in a peptide or protein environment. Here, we report the development and validation of a continuous fluorescence-based activity assay using an internally quenched TNFα-derived peptide derivative as a substrate. The threonine residue in the +1 position was replaced by the quencher amino acid 3'-nitro-l-tyrosine and the fatty acyl moiety substituted by 2-aminobenzoylated 11-aminoundecanoic acid. The resulting peptide substrate enables fluorescence-based direct and continuous readout of HDAC11-mediated amide bond cleavage fully compatible with high-throughput screening formats. The Z'-factor is higher than 0.85 for the 15 μM substrate concentration, and the signal-to-noise ratio exceeds 150 for 384-well plates. In the absence of NAD+, this substrate is specific for HDAC11. Reevaluation of inhibitory data using our novel assay revealed limited potency and selectivity of known HDAC inhibitors, including Elevenostat, a putative HDAC11-specific inhibitor.
Collapse
Affiliation(s)
- Zsófia Kutil
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikešová
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Matthes Zessin
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marat Meleshin
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
| | - Zora Nováková
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Glenda Alquicer
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Alan Kozikowski
- StarWise
Therapeutics LLC, 505
S Rosa Road, Suite 27, Madison, Wisconsin 53719-1235, United States
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cyril Bařinka
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- E-mail: . Tel.: +420-325-873-777 (C.B.)
| | - Mike Schutkowski
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
- E-mail: . Tel.: +49-345-5524-828 (M.S.)
| |
Collapse
|
38
|
Zessin M, Kutil Z, Meleshin M, Nováková Z, Ghazy E, Kalbas D, Marek M, Romier C, Sippl W, Bařinka C, Schutkowski M. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry 2019; 58:4777-4789. [PMID: 31682411 DOI: 10.1021/acs.biochem.9b00786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Diana Kalbas
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Martin Marek
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Christophe Romier
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| |
Collapse
|
39
|
Xie Y, Chen L, Wang R, Wang J, Li J, Xu W, Li Y, Yao SQ, Zhang L, Hao Q, Sun H. Chemical Probes Reveal Sirt2's New Function as a Robust "Eraser" of Lysine Lipoylation. J Am Chem Soc 2019; 141:18428-18436. [PMID: 31644285 DOI: 10.1021/jacs.9b06913] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lysine lipoylation, a highly conserved lysine post-translational modification, plays a critical role in regulating cell metabolism. The catalytic activity of a number of vital metabolic proteins, such as pyruvate dehydrogenase (PDH), depends on lysine lipoylation. Despite its important roles, the detailed biological regulatory mechanism of lysine lipoylation remains largely unexplored. Herein we designed a powerful affinity-based probe, KPlip, to interrogate the interactions of lipoylated peptide/proteins under native cellular environment. Large-scale chemical proteomics analysis revealed a number of binding proteins of KPlip, including sirtuin 2 (Sirt2), an NAD+-dependent protein deacylase. To explore the potential activity of Sirt2 toward lysine lipoylation, we designed a single-step fluorogenic probe, KTlip, which reports delipoylation activity in a continuous manner. The results showed that Sirt2 led to significant delipoylation of KTlip, displaying up to a 60-fold fluorescence increase in the assay. Further kinetic experiments with different peptide substrates revealed that Sirt2 can catalyze the delipoylation of peptide (DLAT-PDH, K259) with a remarkable catalytic efficiency (kcat/Km) of 3.26 × 103 s-1 M-1. The activity is about 400-fold higher than that of Sirt4, the only mammalian enzyme with known delipoylation activity. Furthermore, overexpression and silencing experiments demonstrated that Sirt2 regulates the lipoylation level and the activity of endogenous PDH, thus unequivocally confirming that PDH is a genuine physiological substrate of Sirt2. Using our chemical probes, we have successfully established the relationship between Sirt2 and lysine lipoylation in living cells for the first time. We envision that such chemical probes will serve as useful tools for delineating the roles of lysine lipoylation in biology and diseases.
Collapse
Affiliation(s)
- Yusheng Xie
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong , China.,Key Laboratory of Biochip Technology, Biotech and Health Centre , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| | - Lanfang Chen
- School of Biomedical Sciences , University of Hong Kong , Hong Kong , China
| | - Rui Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Jigang Wang
- Department of Pharmacology , National University of Singapore , Singapore 119077 , Singapore
| | - Jingyu Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Wei Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Yingxue Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Shao Q Yao
- Department of Chemistry , National University of Singapore , Singapore 119077 , Singapore
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong , China
| | - Quan Hao
- School of Biomedical Sciences , University of Hong Kong , Hong Kong , China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong , China.,Key Laboratory of Biochip Technology, Biotech and Health Centre , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| |
Collapse
|
40
|
Hori Y, Kikuchi K. Chemical Tools with Fluorescence Switches for Verifying Epigenetic Modifications. Acc Chem Res 2019; 52:2849-2857. [PMID: 31577127 DOI: 10.1021/acs.accounts.9b00349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epigenetic DNA and histone modifications alter chromatin conformation and regulate gene expression. A major DNA modification is methylation, which is catalyzed by DNA methyltransferase (Dnmt) and results in gene suppression. Compared to DNA, histones undergo a greater variety of modification types, one of which is the acetylation of lysine. While histone acetyltransferase (HAT) catalyzes acetylation and activates gene expression, histone deacetylase (HDAC) removes the modification and causes gene suppression. As precise regulation of these epigenetic marks on DNA and histones is critical for cellular functions, their dysregulation causes various diseases including cancer, metabolic syndromes, immune diseases, and psychiatric diseases. Therefore, elucidation of the epigenetic phenomena is important not only in the field of biology but also in medical and pharmaceutical sciences. Furthermore, this field is also attracting industrial interest, because small-molecule inhibitors modulate enzymatic activity for epigenetic modification and are used for cancer treatment. Under these circumstances, various methods for detecting epigenetic modifications have been developed. However, most methods require cell lysis, which is not suitable for real-time detection of enzymatic activity. Since fluorescent probes are attractive chemical tools to solve this issue, chemists made considerable efforts to create fluorescent probes for epigenetics. To date, we have particularly focused on HDAC activity and DNA methylation and have developed fluorescent probes for their detection. The first part of this review describes our recent efforts to develop fluorescent probes for detecting HDAC activity. Since the discovery of HDAC activity in the late 1960s, no fluorescent probe has been developed that can detect enzymatic reactions in a simple, one-step procedure despite its biological and medical importance. We designed fluorescent probes to overcome this limitation by devising two different types of fluorescence switching mechanisms, which are based on aggregation-induced emission (AIE) and intramolecular transesterification. Using these probes, we detected HDAC activity simply by mixing the probes and HDAC for the first time. In the second part, a hybrid approach using a protein-labeling system was employed to detect DNA methylation in living cells. So far, live-cell detection of DNA methylation was conducted by imaging the localization of Fluorescent Proteins (FPs) fused to a methylated DNA-binding domain. However, FP lacks a fluorescence switch and emits fluorescence without binding to methylated DNA. We created a hybrid probe that comprises a fluorogen and a protein and enhances fluorescence intensity upon binding to methylated DNA. To create the hybrid probe, we applied our protein labeling system using the PYP-tag that we previously developed. This method successfully visualized methylated DNA in living cells and verified its dynamics during cell division. Both of the above-mentioned fluorescent probes have great potential for use not only in HDAC and DNA methylation but also in other epigenetics-associated modifications. For example, the mechanism of the HDAC probes can be used to detect histone demethylation. The hybrid probe can be converted to a sensor for imaging acetylated or methylated histones. In this review, we mainly describe how we designed the probes using chemical principles and solved the current obstacles with the probe design and discuss the future prospects of these probes.
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Activity-based proteomic profiling: The application of photoaffinity probes in the target identification of bioactive molecules. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Okada K, Yamaguchi T, Dodo K, Sodeoka M, Obika S. Detection of esterase activity by chromogenic and fluorogenic probe based on an O-nitrobenzoxadiazole (O-NBD) unit. Bioorg Med Chem 2019; 27:1444-1448. [DOI: 10.1016/j.bmc.2019.02.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
43
|
Jiao Y, Cui CF, He HY, He C, Duan CY. Fluorescent Recognition of 4-Amino-2,6-dinitrotoluene by a Cerium-Based Metal–Organic Tetrahedron. Inorg Chem 2019; 58:6575-6578. [DOI: 10.1021/acs.inorgchem.8b03077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Wang D, Yu M, Liu N, Lian C, Hou Z, Wang R, Zhao R, Li W, Jiang Y, Shi X, Li S, Yin F, Li Z. A sulfonium tethered peptide ligand rapidly and selectively modifies protein cysteine in vicinity. Chem Sci 2019; 10:4966-4972. [PMID: 31183045 PMCID: PMC6530539 DOI: 10.1039/c9sc00034h] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/24/2019] [Indexed: 01/06/2023] Open
Abstract
Significant efforts have been invested to develop site-specific protein modification methodologies in the past two decades. In most cases, a reactive moiety was installed onto ligands with the sole purpose of reacting with specific residues in proteins. Herein, we report a unique peptide macrocyclization method via the bis-alkylation between methionine and cysteine to generate cyclic peptides with significantly enhanced stability and cellular uptake. Notably, when the cyclized peptide ligand selectively recognizes its protein target with a proximate cysteine, a rapid nucleophilic substitution could occur between the protein Cys and the sulfonium center on the peptide to form a conjugate. The conjugation reaction is rapid, facile and selective, triggered solely by proximity. The high target specificity is further proved in cell lysate and hints at its further application in activity based protein profiling. This method enhances the peptide's biophysical properties and generates a selective ligand-directed reactive site for protein modification and fulfills multiple purposes by one modification. This proof-of-concept study reveals its potential for further broad biological applications.
Collapse
Affiliation(s)
- Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Mengying Yu
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Chenshan Lian
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Rui Wang
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong .
| | - Rongtong Zhao
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Wenjun Li
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Shuiming Li
- College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , 518055 , China .
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| |
Collapse
|
45
|
Halloran MW, Lumb JP. Recent Applications of Diazirines in Chemical Proteomics. Chemistry 2019; 25:4885-4898. [PMID: 30444029 DOI: 10.1002/chem.201805004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/12/2018] [Indexed: 02/06/2023]
Abstract
The elucidation of substrate-protein interactions is an important component of the drug development process. Due to the complexity of native cellular environments, elucidating these fundamental biochemical interactions remains challenging. Photoaffinity labeling (PAL) is a versatile technique that can provide insight into ligand-target interactions. By judicious modification of substrates with a photoreactive group, PAL creates a covalent crosslink between a substrate and its biological target following UV-irradiation. Among the commonly employed photoreactive groups, diazirines have emerged as the gold standard. In this Minireview, recent developments in the field of diazirine-based photoaffinity labeling will be discussed, with emphasis being placed on their applications in chemical proteomic studies.
Collapse
Affiliation(s)
- Matthew W Halloran
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
46
|
He X, Wu C, Qian Y, Li Y, Zhang L, Ding F, Chen H, Shen J. Highly sensitive and selective light-up fluorescent probe for monitoring gallium and chromium ions in vitro and in vivo. Analyst 2019; 144:3807-3816. [DOI: 10.1039/c9an00625g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here reported an NBDT sensor could be effectively responsive to gallium and chromium for bio-imaging in vivo.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| | - Chenglin Wu
- Organ Transplant Center
- The First Affiliated Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Yuna Qian
- Wenzhou Institute of Biomaterials and Engineering
- Chinese Academy of Science
- Wenzhou
- China
| | - Yahui Li
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| | - Lilei Zhang
- College of Food and Drug
- Luoyang Normal University
- Luoyang
- China
| | - Feng Ding
- Department of Microbiology and Immunology
- School of Basic Medical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Hong Chen
- College of Food and Drug
- Luoyang Normal University
- Luoyang
- China
| | - Jianliang Shen
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
47
|
Huang J, Hong D, Lang W, Liu J, Dong J, Yuan C, Luo J, Ge J, Zhu Q. Recent advances in reaction-based fluorescent probes for detecting monoamine oxidases in living systems. Analyst 2019; 144:3703-3709. [DOI: 10.1039/c9an00409b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This Minireview summarizes the recent advances in reaction based MAO type fluorescent probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Jintao Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Danqi Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jian Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jia Dong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Chaonan Yuan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jie Luo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| |
Collapse
|
48
|
Wu J, Jiang L, Verwilst P, An J, Zeng H, Zeng L, Niu G, Kim JS. A colorimetric and fluorescent lighting-up sensor based on ICT coupled with PET for rapid, specific and sensitive detection of nitrite in food. Chem Commun (Camb) 2019; 55:9947-9950. [DOI: 10.1039/c9cc05048e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A colorimetric and fluorogenic sensor exhibiting rapid, specific and sensitive detection of potentially toxic nitrite in food is described.
Collapse
Affiliation(s)
- Juanjuan Wu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
- College of Light Industry and Food Engineering
| | - Lirong Jiang
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- P. R. China
| | | | - Jusung An
- Department of Chemistry
- Korea University
- Seoul 02841
- Korea
| | - Hongyan Zeng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Lintao Zeng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
- College of Light Industry and Food Engineering
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | | |
Collapse
|
49
|
Smart fluorescent probes for in situ imaging of enzyme activity: design strategies and applications. Future Med Chem 2018; 10:2729-2744. [PMID: 30518266 DOI: 10.4155/fmc-2018-0193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enzymes play critical roles in the physiological and pathological processes of living systems. To provide detailed pictures of enzyme activity at the molecular and cellular levels, interdisciplinary studies of chemistry and biology have led to the emergence of many smart fluorescent probes, which emit fluorescence or show a shifted signal only upon interaction with their targets. With distinct advantage of a higher signal-to-noise ratio than traditional ‘always on’ probes, smart fluorescent probes enable sensitive detection of enzymes with clinical significance. In this review, we summarize the design strategies and selected applications of smart fluorescent probes for in situ imaging of enzyme activity. Current challenges and future developments in this field are also discussed.
Collapse
|
50
|
Wang Z, Guo Z, Song T, Zhang X, He N, Liu P, Wang P, Zhang Z. Proteome-Wide Identification of On- and Off-Targets of Bcl-2 Inhibitors in Native Biological Systems by Using Affinity-Based Probes (AfBPs). Chembiochem 2018; 19:2312-2320. [DOI: 10.1002/cbic.201800380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ziqian Wang
- Zhang Dayu School of Chemistry; State Key Laboratory of Fine Chemicals; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| | - Zongwei Guo
- School of Life Science and Technology; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| | - Ting Song
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| | - Nianzhe He
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| | - Peng Liu
- School of Life Science and Technology; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| | - Peiran Wang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; No. 2 Linggong Road Dalian 116024 P.R. China
| |
Collapse
|