1
|
Jiang X, Zhao K, Feng H, Ke L, Wang X, Liu Y, Li L, Sun P, Chen Z, Sun Y, Wang Z, Yu L, Yan N. Unraveling Side Reactions in Paired CO 2 Electrolysis at Operando Conditions: A Case Study of Ethylene Glycol Oxidation. J Am Chem Soc 2025; 147:13471-13482. [PMID: 40215484 DOI: 10.1021/jacs.5c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Replacing the oxygen evolution reaction (OER) in CO2 electrolysis with an energetically and economically favorable alternative is very promising. Yet, understanding paired organic oxidation in the environment for CO2 reduction is particularly challenging, as monitoring multiple side reactions is problematic. Herein, we examined the oxidation of ethylene glycol (EG), one of the simplest polyols, as a model reaction on a series of nickel oxyhydroxide model catalysts (β-NiMxOOH, M = Ni, Co, Fe, and Cu). Using in situ techniques, including surface-enhanced infrared absorption spectroscopy (SEIRAS) and differential electrochemical mass spectrometry (DEMS), together with various ex situ approaches, we obtained the potential-resolved and quantitative information on various side reactions comprising the OER, overoxidation to CO/CO2, catalyst dissolution, and CO2 evolution from electrolyte decarbonation. Many factors including impurity cations, pH, and potential can substantially influence the product distribution and side reactions. Such influences are nearly identical for both the electrocatalytic and chemical-electrochemical oxidation pathways. The optimized system can achieve stable and high Faradaic efficiencies of formate (∼100%), glycolaldehyde (∼86%), and glycolate (∼66%), respectively. Importantly, paired electrolysis can easily suffer from higher energy consumption than the conventional counterpart, provided side reactions are unregulated. Yet the modulated one consumed 21.1% less energy even when product separation was considered. This work reveals the unique side reactions in paired CO2 electrolysis, opening up opportunities for designing efficient systems for real-life applications.
Collapse
Affiliation(s)
- Xiaoyi Jiang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China
| | - Kai Zhao
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China
| | - Haozhou Feng
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China
| | - Le Ke
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China
| | - Xiude Wang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China
| | - Yuchen Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lingjiao Li
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Pengfei Sun
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhou Chen
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Zhiping Wang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Ning Yan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China
| |
Collapse
|
2
|
Huang Z, Yu Z, Guo Z, Shi P, Hu J, Deng H, Huang Z. Selective Cleavage of C β-O-4 Bond for Lignin Depolymerization via Paired-Electrolysis in an Undivided Cell. Angew Chem Int Ed Engl 2024; 63:e202407750. [PMID: 38899860 DOI: 10.1002/anie.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The cleavage of C-O bonds is one of the most promising strategies for lignin-to-chemicals conversion, which has attracted considerable attention in recent years. However, current catalytic system capable of selectively breaking C-O bonds in lignin often requires a precious metal catalyst and/or harsh conditions such as high-pressure H2 and elevated temperatures. Herein, we report a novel protocol of paired electrolysis to effectively cleave the Cβ-O-4 bond of lignin model compounds and real lignin at room temperature and ambient pressure. For the first time, "cathodic hydrogenolysis of Cβ-O-4 linkage" and "anodic C-H/N-H cross-coupling reaction" are paired in an undivided cell, thus the cleavage of C-O bonds and the synthesis of valuable triarylamine derivatives could be simultaneously achieved in an energy-effective manner. This protocol features mild reaction conditions, high atom economy, remarkable yield with excellent chemoselectivity, and feasibility for large-scale synthesis. Mechanistic studies indicate that indirect H* (chemical absorbed hydrogen) reduction instead of direct electron transfer might be the pathway for the cathodic hydrogenolysis of Cβ-O-4 linkage.
Collapse
Affiliation(s)
- Zhenghui Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zihan Yu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, P. R. China
| | - Zhaogang Guo
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Pingsen Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Hongbing Deng
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zhiliang Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| |
Collapse
|
3
|
Zhu Y, Chen X, Zhang Y, Zhu Z, Chen H, Chai K, Xu W. Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation. Molecules 2024; 29:3734. [PMID: 39202814 PMCID: PMC11357156 DOI: 10.3390/molecules29163734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm-2 in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.
Collapse
Affiliation(s)
- Yizhen Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangyu Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuanyao Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhifei Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Handan Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Kejie Chai
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiming Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Zhang G, Li Y, Zhao C, Gu J, Zhou G, Shi Y, Zhou Q, Xiao F, Fu WJ, Chen Q, Ji Q, Qu J, Liu H. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. NATURE NANOTECHNOLOGY 2024; 19:1130-1140. [PMID: 38724611 DOI: 10.1038/s41565-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/01/2024] [Indexed: 08/18/2024]
Abstract
Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination-dehalogenation-hydroxylation route involving radical-radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7-8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.
Collapse
Affiliation(s)
- Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yongqi Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Chenxuan Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jiabao Gu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanfeng Shi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qi Zhou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Feng Xiao
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Wen-Jie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qingbai Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Liu ZR, Zhu XY, Guo JF, Ma C, Zuo Z, Mei TS. Synergistic use of photocatalysis and convergent paired electrolysis for nickel-catalyzed arylation of cyclic alcohols. Sci Bull (Beijing) 2024; 69:1866-1874. [PMID: 38670850 DOI: 10.1016/j.scib.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The merging of transition metal catalysis with electrochemistry has become a powerful tool for organic synthesis because catalysts can govern the reactivity and selectivity. However, coupling catalysts with alkyl radical species generated by anodic oxidation remains challenging because of electrode passivation, dimerization, and overoxidation. In this study, we developed convergent paired electrolysis for the coupling of nickel catalysts with alkyl radicals derived from photoinduced ligand-to-metal charge-transfer of cyclic alcohols and iron catalysts, providing a practical method for site-specific and remote arylation of ketones. The synergistic use of photocatalysis with convergent paired electrolysis can provide alternative avenues for metal-catalyzed radical coupling reactions.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
6
|
Avanthay M, Goodrich OH, Tiemessen D, Alder CM, George MW, Lennox AJJ. Bromide-Mediated Silane Oxidation: A Practical Counter-Electrode Process for Nonaqueous Deep Reductive Electrosynthesis. JACS AU 2024; 4:2220-2227. [PMID: 38938809 PMCID: PMC11200245 DOI: 10.1021/jacsau.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
The counter-electrode process of an organic electrochemical reaction is integral for the success and sustainability of the process. Unlike for oxidation reactions, counter-electrode processes for reduction reactions remain limited, especially for deep reductions that apply very negative potentials. Herein, we report the development of a bromide-mediated silane oxidation counter-electrode process for nonaqueous electrochemical reduction reactions in undivided cells. The system is found to be suitable for replacing either sacrificial anodes or a divided cell in several reported reactions. The conditions are metal-free, use inexpensive reagents and a graphite anode, are scalable, and the byproducts are reductively stable and readily removed. We showcase the translation of a previously reported divided cell reaction to a >100 g scale in continuous flow.
Collapse
Affiliation(s)
- Mickaël
E. Avanthay
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Oliver H. Goodrich
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David Tiemessen
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Catherine M. Alder
- Modalities
Platform Technologies, Molecular Modalities Discovery, GSK Medicines Research Centre, Stevenage SG1 2NY, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | | |
Collapse
|
7
|
Liu K, Lei M, Li X, Zhang X, Zhang Y, Fan W, Li MB, Zhang S. Paired electrocatalysis unlocks cross-dehydrogenative coupling of C(sp 3)-H bonds using a pentacoordinated cobalt-salen catalyst. Nat Commun 2024; 15:2897. [PMID: 38575564 PMCID: PMC10995126 DOI: 10.1038/s41467-024-47220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Cross-dehydrogenative coupling of C(sp3)-H bonds is an ideal approach for C(sp3)-C(sp3) bond construction. However, conventional approaches mainly rely on a single activation mode by either stoichiometric oxidants or electrochemical oxidation, which would lead to inferior selectivity in the reaction between similar C(sp3)-H bonds. Herein we describe our development of a paired electrocatalysis strategy to access an unconventional selectivity in the cross-dehydrogenative coupling of alcoholic α C(sp3)-H with allylic (or benzylic) C-H bonds, which combines hydrogen evolution reaction catalysis with hydride transfer catalysis. To maximize the synergistic effect of the catalyst combinations, a HER catalyst pentacoordinated Co-salen is disclosed. The catalyst displays a large redox-potential gap (1.98 V) and suitable redox potential. With the optimized catalyst combination, an electrochemical cross-dehydrogenative coupling protocol features unconventional chemoselectivity (C-C vs. C-O coupling), excellent functional group tolerance (84 examples), valuable byproduct (hydrogen), and high regio- and site-selectivity. A plausible reaction mechanism is also proposed to rationalize the experimental observations.
Collapse
Affiliation(s)
- Ke Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Mengna Lei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Xin Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Xuemei Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Ying Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China.
| | - Sheng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
8
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
9
|
Jiang X, Ke L, Zhao K, Yan X, Wang H, Cao X, Liu Y, Li L, Sun Y, Wang Z, Dang D, Yan N. Integrating hydrogen utilization in CO 2 electrolysis with reduced energy loss. Nat Commun 2024; 15:1427. [PMID: 38365776 PMCID: PMC10873292 DOI: 10.1038/s41467-024-45787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Electrochemical carbon dioxide reduction reaction using sustainable energy is a promising approach of synthesizing chemicals and fuels, yet is highly energy intensive. The oxygen evolution reaction is particularly problematic, which is kinetically sluggish and causes anodic carbon loss. In this context, we couple CO2 electrolysis with hydrogen oxidation reaction in a single electrochemical cell. A Ni(OH)2/NiOOH mediator is used to fully suppress the anodic carbon loss and hydrogen oxidation catalyst poisoning by migrated reaction products. This cell is highly flexible in producing either gaseous (CO) or soluble (formate) products with high selectivity (up to 95.3%) and stability (>100 h) at voltages below 0.9 V (50 mA cm-2). Importantly, thanks to the "transferred" oxygen evolution reaction to a water electrolyzer with thermodynamically and kinetically favored reaction conditions, the total polarization loss and energy consumption of our H2-integrated CO2 reduction reaction, including those for hydrogen generation, are reduced up to 22% and 42%, respectively. This work demonstrates the opportunity of combining CO2 electrolysis with the hydrogen economy, paving the way to the possible integration of various emerging energy conversion and storage approaches for improved energy/cost effectiveness.
Collapse
Affiliation(s)
- Xiaoyi Jiang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Le Ke
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Kai Zhao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Yan
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hongbo Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaojuan Cao
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuchen Liu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Lingjiao Li
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yifei Sun
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Zhiping Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ning Yan
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China.
| |
Collapse
|
10
|
Zhang X, Li Z, Chen H, Shen C, Wu H, Dong K. Pairing Electrocarboxylation of Unsaturated Bonds with Oxidative Transformation of Alcohol and Amine. CHEMSUSCHEM 2023; 16:e202300807. [PMID: 37366066 DOI: 10.1002/cssc.202300807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
A parallel paired electrosynthetic method, coupling electrocarboxylation incorporating CO2 into ketone, imine, and alkene with alcohol oxidation or oxidative cyanation of amine, was developed for the first time. Various carboxylic acids as well as aldehyde/ketone or α-nitrile amine were prepared at the cathode and anode respectively in a divided cell. Its utility and merits on simultaneously achieving high atom-economic CO2 utilization, elevated faradaic efficiency (FE, total FE of up to 166 %), and broad substrate scope were demonstrated. The preparation of pharmaceutical intermediates for Naproxen and Ibuprofen via this approach proved its potential application in green organic electrosynthesis.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zonghan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Hongshuai Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
11
|
Sun B, Wang ZH, Wang YZ, Gu YC, Ma C, Mei TS. Parallel paired electrolysis-enabled asymmetric catalysis: simultaneous synthesis of aldehydes/aryl bromides and chiral alcohols. Sci Bull (Beijing) 2023; 68:2033-2041. [PMID: 37507259 DOI: 10.1016/j.scib.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Metal-catalyzed asymmetric electro-reductive couplings have emerged as a powerful tool for organic synthesis, wherein a sacrificial anode is typically required. Herein, a parallel paired electrolysis (PPE)-enabled asymmetric catalysis has been developed, and the alcohols and ketones could be simultaneously converted to the corresponding aldehydes and chiral tertiary alcohols with high yields and enantioselectivity in an undivided cell. Additionally, this Ni-catalyzed asymmetric reductive coupling can well match the anodic oxidative C-H bond bromination of (hetero)arenes. This protocol opens an alternative avenue for organic synthesis.
Collapse
Affiliation(s)
- Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
12
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Sun GQ, Yu P, Zhang W, Zhang W, Wang Y, Liao LL, Zhang Z, Li L, Lu Z, Yu DG, Lin S. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 2023; 615:67-72. [PMID: 36603811 PMCID: PMC10036166 DOI: 10.1038/s41586-022-05667-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C-H functionalization would provide a direct way of making these medicinally active products3-5. For example, nicotinic acid derivatives could be made by C-H carboxylation, but this remains an elusive transformation6-8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin-Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Peng Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Wei Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Li-Li Liao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Li Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Zhipeng Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China.
- Beijing National Laboratory for Molecular Sciences, Beijing, People's Republic of China.
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Xu Z, Peng C, Zheng G. Coupling Value-Added Anodic Reactions with Electrocatalytic CO 2 Reduction. Chemistry 2023; 29:e202203147. [PMID: 36380419 DOI: 10.1002/chem.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Electrocatalytic CO2 reduction features a promising approach to realize carbon neutrality. However, its competitiveness is limited by the sluggish oxygen evolution reaction (OER) at anode, which consumes a large portion of energy. Coupling value-added anodic reactions with CO2 electroreduction has been emerging as a promising strategy in recent years to enhance the full-cell energy efficiency and produce valuable chemicals at both cathode and anode of the electrolyzer. This review briefly summarizes recent progresses on the electrocatalytic CO2 reduction, and the economic feasibility of different CO2 electrolysis systems is discussed. Then a comprehensive summary of recent advances in the coupled electrolysis of CO2 and potential value-added anodic reactions is provided, with special focus on the specific cell designs. Finally, current challenges and future opportunities for the coupled electrolysis systems are proposed, which are targeted to facilitate progress in this field and push the CO2 electrolyzers to a more practical level.
Collapse
Affiliation(s)
- Zikai Xu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
15
|
Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat Chem 2023; 15:222-229. [PMID: 36376389 DOI: 10.1038/s41557-022-01078-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
New approaches are needed to both reduce and reuse plastic waste. In this context, poly(vinyl chloride) (PVC) is an appealing target as it is the least recycled high-production-volume polymer due to its facile release of plasticizers and corrosive HCl gas. Herein, these limitations become advantageous in a paired-electrolysis reaction in which HCl is intentionally generated from PVC to chlorinate arenes in an air- and moisture-tolerant process that is mediated by the plasticizer. The reaction proceeds efficiently with other plastic waste present and a commercial plasticized PVC product (laboratory tubing) can be used directly. A simplified life-cycle assessment reveals that using PVC waste as the chlorine source in the paired-electrolysis reaction has a lower global warming potential than HCl. Overall, this method should inspire other strategies for repurposing waste PVC and related polymers using electrosynthetic reactions, including those that take advantage of existing polymer additives.
Collapse
|
16
|
Michael KH, Su ZM, Wang R, Sheng H, Li W, Wang F, Stahl SS, Jin S. Pairing of Aqueous and Nonaqueous Electrosynthetic Reactions Enabled by a Redox Reservoir Electrode. J Am Chem Soc 2022; 144:22641-22650. [PMID: 36451553 PMCID: PMC9900757 DOI: 10.1021/jacs.2c09632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Paired electrolysis methods are appealing for chemical synthesis because they generate valuable products at both electrodes; however, development of such reactions is complicated by the need for both half-reactions to proceed under mutually compatible conditions. Here, a modular electrochemical synthesis (ModES) strategy bypasses these constraints using a "redox reservoir" (RR) to pair electrochemical half-reactions across aqueous and nonaqueous solvents. Electrochemical oxidation reactions in organic solvents, the conversion of 4-t-butyltoluene to benzylic dimethyl acetal and aldehyde in methanol or the oxidative C-H amination of naphthalene in acetonitrile, and the reduction of oxygen to hydrogen peroxide in water were paired using nickel hexacyanoferrate as an RR that can selectively store and release protons (and electrons) while serving as the counter electrode for these reactions. Selective proton transport through the RR is optimized and confirmed to enable the ion balance, and thus the successful pairing, between redox half-reactions that proceed with different rates, on different scales, and in different solvents (methanol, acetonitrile, and water).
Collapse
Affiliation(s)
- Katelyn H. Michael
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Zhi-Ming Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Rui Wang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Wenjie Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Fengmei Wang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.,State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
17
|
Zhong W, Huang W, Ruan S, Zhang Q, Wang Y, Xie S. Electrocatalytic Reduction of CO 2 Coupled with Organic Conversion to Selectively Synthesize High-Value Chemicals. Chemistry 2022; 29:e202203228. [PMID: 36454216 DOI: 10.1002/chem.202203228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
The electrochemical process of coupling electrocatalytic CO2 reduction and organic conversion reaction can effectively reduce the reaction overpotential and obtain value-added chemicals. Moreover, because of the diversity of substrates and the designability of coupling forms, more and more attention has been paid to this field. This review systematically summarizes the research progress of coupling electrolysis in recent years, (1) co-electrolysis of CO2 and organics at the cathode to obtain specific products with high selectivity, (2) replacing traditional anodic oxygen evolution reaction (OER) with other valuable oxidation reactions to improve energy utilization efficiency and economic benefits of CO2 conversion, (3) in an electrolytic cell without membrane, the cathode and anode jointly transform CO2 and organics to redox products. We hope that the examples and insights on coupling electrolysis introduced in this review can inspire researchers to further explore and innovate in this direction.
Collapse
Affiliation(s)
- Wanfu Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Wenhao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Sunhong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, Fujian, P. R. China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, Fujian, P. R. China
| |
Collapse
|
18
|
Klein M, Waldvogel SR. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202204140. [PMID: 35668714 PMCID: PMC9828107 DOI: 10.1002/anie.202204140] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 01/12/2023]
Abstract
Over the past two decades, electro-organic synthesis has gained significant interest, both in technical and academic research as well as in terms of applications. The omission of stoichiometric oxidizers or reducing agents enables a more sustainable route for redox reactions in organic chemistry. Even if it is well-known that every electrochemical oxidation is only viable with an associated reduction reaction and vice versa, the relevance of the counter reaction is often less addressed. In this Review, the importance of the corresponding counter reaction in electro-organic synthesis is highlighted and how it can affect the performance and selectivity of the electrolytic conversion. A selection of common strategies and unique concepts to tackle this issue are surveyed to provide a guide to select appropriate counter reactions for electro-organic synthesis.
Collapse
Affiliation(s)
- Martin Klein
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
19
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
20
|
Pellumbi K, Wickert L, Kleinhaus JT, Wolf J, Leonard A, Tetzlaff D, Goy R, Medlock JA, Junge Puring K, Cao R, Siegmund D, Apfel UP. Opening the pathway towards a scalable electrochemical semi-hydrogenation of alkynols via earth-abundant metal chalcogenides. Chem Sci 2022; 13:12461-12468. [PMID: 36382291 PMCID: PMC9629083 DOI: 10.1039/d2sc04647d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 09/16/2023] Open
Abstract
Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in recent years. However, for the large-scale industrial application of electrochemical hydrogenations, low-resistance zero-gap electrolysers operating at high current densities and high substrate concentrations, ideally applying noble-metal-free catalyst systems, are required. Because of their conductivity, stability, and stoichiometric flexibility, transition metal sulfides of the pentlandite group have been thoroughly investigated as promising electrocatalysts for electrochemical applications but were not investigated for electrochemical hydrogenations of organic materials. An initial screening of a series of first row transition metal pentlandites revealed promising activity for the electrochemical hydrogenation of alkynols in water. The most active catalyst within the series was then incorporated into a zero-gap electrolyser enabling the hydrogenation of alkynols at current densities of up to 240 mA cm-2, Faraday efficiencies of up to 75%, and an alkene selectivity of up to 90%. In this scalable setup we demonstrate high stability of catalyst and electrode for at least 100 h. Altogether, we illustrate the successful integration of a sustainable catalyst into a scalable zero-gap electrolyser establishing electrosynthetic methods in an application-oriented manner.
Collapse
Affiliation(s)
- Kevinjeorjios Pellumbi
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Leon Wickert
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Julian T Kleinhaus
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Jonas Wolf
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Allison Leonard
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - David Tetzlaff
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Roman Goy
- DSM Nutritional Products AG Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jonathan A Medlock
- DSM Nutritional Products AG Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Daniel Siegmund
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Ulf-Peter Apfel
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| |
Collapse
|
21
|
Paired electrosynthesis in the CH3CN/CHal4 system: a one-pot procedure for diarylamines and N,N’-diarylbenzidines halogenation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Liu S, Tian B, Wang X, Sun Y, Wang Y, Ma J, Ding M. The Critical Role of Initial/Operando Oxygen Loading in General Bismuth-Based Catalysts for Electroreduction of Carbon Dioxide. J Phys Chem Lett 2022; 13:9607-9617. [PMID: 36206518 DOI: 10.1021/acs.jpclett.2c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Operando reconstruction of solid catalyst into a distinct active state frequently occurs during electrocatalytic processes. The correlation between initial and operando states, if ever existing, is critical for the understanding and precise design of a catalytic system. Inspired by recently established intermediate metallic state of Bi-based catalysts during electrocatalytic carbon dioxide reduction (CO2RR), here we investigate a series of Bi oxide catalysts (Bi, Bi2O3, BiO2) and demonstrate that the operando surface/subsurface oxygen loading, positively correlated to the initial oxygen content, plays a critical role in determining Bi-based CO2RR performance. Higher initial oxygen loading indicates a better electrocatalytic efficiency. Further analysis shows that this conclusion generally applies to all Bi-based electrocatalysts reported up to date. Following this principle, cost-effective BiO2 nanocrystals demonstrated the highest formate Faradaic efficiency (FE) and current density compared to Bi/Bi2O3, further allowing a pair-electrolysis system with 800 mA/cm2 current density and an overall 175% FE for formate production.
Collapse
Affiliation(s)
- Shengtang Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinzhu Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqi Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Electrochemical conversion of furfural to furoic acid: a more stable, efficient and energy-saving system. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Xi XJ, Hu J, Chen HY, Xu JJ. Rapid identification of the short-lived intermediates in alternating-current electrolysis by mass spectrometry. Chem Commun (Camb) 2022; 58:10233-10236. [PMID: 36004520 DOI: 10.1039/d2cc04363g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the rapid mass spectrometric identification of the short-lived intermediates generated under AC electrolysis via combining bipolar electrochemistry with nanoelectrospray ionization in a hybrid ultramicroelectrode/ion emitter. The key reactive intermediates involved in the C-O/O-H cross-metathesis between 4-alkoxy anilines and alcohols were successfully captured and identified for the first time, providing direct evidence for the previously proposed mechanism.
Collapse
Affiliation(s)
- Xiao-Jun Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jun Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
25
|
|
26
|
Zhang M, Shi Y, zhang J. A Convergent Paired Electrolysis Strategy Enables Cross-Coupling of Methylarenes with Imines. Org Chem Front 2022. [DOI: 10.1039/d2qo00085g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we have developed a metal-free convergent paired electrolysis strategy for α-benzyl amine synthesis from readily available imines and methylarenes, taking advantage of both anodic oxidation and cathodic...
Collapse
|
27
|
Zhong J, Ding C, Kim H, McCallum T, Ye K. Alternating current electrolysis: a photoredox catalysis mimic and beyond. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Zou Z, Li H, Huang M, Zhang W, Zhi S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Oxidative Fluoroalkylation of Aryl Iodides. Org Lett 2021; 23:8252-8256. [PMID: 34645266 DOI: 10.1021/acs.orglett.1c02997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work describes a general strategy for metal-catalyzed cross-coupling of fluoroalkyl radicals with aryl halides under electrochemical conditions. The contradiction between anodic oxidation of fluoroalkyl sulfinates and cathodic reduction of low-valent nickel catalysts can be well addressed by paired electrolysis, allowing for direct introduction of fluorinated functionalities into aromatic systems.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Yuxiu Postdoctoral School, Nanjing University, Nanjing 210023, China
| | - Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Kang JC, Li ZH, Chen C, Dong LK, Zhang SY. Paired Electrolysis Enabled Ni-Catalyzed Unconventional Cascade Reductive Thiolation Using Sulfinates. J Org Chem 2021; 86:15326-15334. [PMID: 34633802 DOI: 10.1021/acs.joc.1c01891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we have reported a nickel-catalyzed cascade reductive thiolation of aryl halides with sulfinates driven by paired electrolysis. This protocol uses sulfinates as the sulfur source, and various thioethers could be synthesized under mild conditions. By mechanism exploration, we find that a cascade chemical step is allowed on the electrode interface and could alter the reaction pathway in paired electrolysis, whose findings could help the discovery of novel cascade reactions with unique reactivity.
Collapse
Affiliation(s)
- Jun-Chen Kang
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Li-Kun Dong
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
31
|
Naseri AM, Zarei M, Alizadeh S, Babaee S, Zolfigol MA, Nematollahi D, Arjomandi J, Shi H. Synthesis and application of [Zr-UiO-66-PDC-SO 3H]Cl MOFs to the preparation of dicyanomethylene pyridines via chemical and electrochemical methods. Sci Rep 2021; 11:16817. [PMID: 34413353 PMCID: PMC8377142 DOI: 10.1038/s41598-021-96001-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
A metal-organic framework (MOF) with sulfonic acid tags as a novel mesoporous catalyst was synthesized. The precursor of Zr-UiO-66-PDC was synthesized both via chemical and electrochemical methods. Then, zirconium-based mesoporous metal-organic framework [Zr-UiO-66-PDC-SO3H]Cl was prepared by reaction of Zr-UiO-66-PDC and SO3HCl. The structure of [Zr-UiO-66-PDC-SO3H]Cl was confirmed by FT-IR, PXRD, FE-SEM, TEM, BET, EDX, and Mapping analysis. This mesoporous [Zr-UiO-66-PDC-SO3H]Cl was successfully applied for the synthesis of dicyanomethylene pyridine derivatives via condensation of various aldehyde, 2-aminoprop-1-ene-1,1,3-tricarbonitrile and malononitrile. At the electrochemical section, a green electrochemical method has successfully employed for rapid synthesis of the zirconium-based mesoporous metal-organic framework UiO-66-PDC at room temperature and atmospheric pressure. The synthesized UiO-66-PDC has a uniform cauliflower-like structure with a 13.5 nm mean pore diameter and 1081.6 m2 g-1 surface area. The described catalyst [Zr-UiO-66-PDC-SO3H]Cl was also employed for the convergent paired electrochemical synthesis of dihydropyridine derivatives as an environmentally friendly technique under constant current at 1.0 mA cm-2 in an undivided cell. The proposed method proceeds with moderate to good yields for the model via a cooperative vinylogous anomeric based oxidation.
Collapse
Affiliation(s)
| | - Mahmoud Zarei
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran.
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran.
| | - Saeed Babaee
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran
| | | | - Davood Nematollahi
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran.
| | - Jalal Arjomandi
- Faculty of Chemistry, Bu-Ali-Sina University, 65174-38683, Hamedan, Iran
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
32
|
Liu H, Lee T, Chen Y, Cochran EW, Li W. Paired and Tandem Electrochemical Conversion of 5‐(Hydroxymethyl)furfural Using Membrane‐Electrode Assembly‐Based Electrolytic Systems. ChemElectroChem 2021. [DOI: 10.1002/celc.202100662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hengzhou Liu
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Ting‐Han Lee
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Yifu Chen
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| | - Wenzhen Li
- Department of Chemical and Biological Engineering Iowa State University 618 Bissell Road Ames IA 50011 USA
| |
Collapse
|
33
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Shimakoshi H, Hisaeda Y. Bioinspired Electrolysis for Green Molecular Transformations of Organic Halides Catalyzed by B 12 Complex. CHEM REC 2021; 21:2080-2094. [PMID: 34075694 DOI: 10.1002/tcr.202100077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022]
Abstract
Naturally-occurring B12 -dependent enzymes catalyze various molecular transformations that are of particular interest from the viewpoint of biological chemistry as well as synthetic organic chemistry. Inspired by the unique property of the B12 -dependent enzymes, various catalytic reactions have been developed using its model complex. Among the B12 model complexes, heptamethyl cobyrinate, synthesized from natural vitamin B12 , is highly soluble in various organic solvents and a redox active cobalt complex with an excellent catalysis in electroorganic synthesis. The electrochemical dechlorination of pollutant organic chlorides, such as DDT, was effectively catalyzed by the B12 complex. Modification of the electrode surface by the sol-gel method to immobilize the B12 complex was also developed. The B12 modified electrodes were effective for the dehalogenation of organic halides with high turnover numbers based on the immobilized B12 complex. Electrolysis of an organic halide catalyzed by the B12 complex provided dechlorinated products under anaerobic conditions, while the electrolysis under aerobic conditions afforded oxygen incorporated products, such as an ester and amide along with dechlorination. Benzotrichloride was transformed into ethylbenzoate or N,N-diethylbenzamide in the presence of ethanol or diethylamine, respectively. This amide formation was further expanded to a unique paired electrolysis. Electrochemical reductions of an alkene and alkyne were also catalyzed by the B12 complex. A cobalt-hydrogen complex should be formed as a bioinspired intermediate. Using the B12 complex, light-assisted electrosynthesis was also developed to save the applied energy.
Collapse
Affiliation(s)
- Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Kyushu University, Nishi-ku Motooka 744, Fukuoka, 819-0395, Japan
| |
Collapse
|
35
|
Bharath G, Banat F. High-Grade Biofuel Synthesis from Paired Electrohydrogenation and Electrooxidation of Furfural Using Symmetric Ru/Reduced Graphene Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24643-24653. [PMID: 34008951 PMCID: PMC8289174 DOI: 10.1021/acsami.1c02231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical hydrogenation is a challenging technoeconomic process for sustainable liquid fuel production from biomass-derived compounds. In general, half-cell hydrogenation is paired with water oxidation to generate the low economic value of O2 at the anode. Herein, a new strategy for the rational design of Ru/reduced graphene oxide (Ru/RGO) nanocomposites through a cost-effective and straightforward microwave irradiation technique is reported for the first time. The Ru nanoparticles with an average size of 3.5 nm are well anchored into the RGO frameworks with attractive nanostructures to enhance the furfural's paired electrohydrogenation (ECH) and electrooxidation (ECO) process to achieve high-grade biofuel. Furfural is used as a reactant with the paired electrolyzer to produce furfuryl alcohol and 2-methylfuran at the cathode side. Simultaneously, 2-furic acid and 5-hydroxyfuroic acid along with plenty of H+ and e- are generated at the anode side. Most impressively, the paired electrolyzer induces an extraordinary ECH and ECO of furfural, with the desired production of 2-methylfuran (yield = 91% and faradic efficiency (FE) of 95%) at XFF = 97%, outperforming the ECH half-cell reaction. The mechanisms of the half-cell reaction and paired cell reaction are discussed. Exquisite control of the reaction parameters, optimized strategies, and the yield of individual products are demonstrated. These results show that the Ru/RuO nanocomposite is a potential candidate for biofuel production in industrial sectors.
Collapse
|
36
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tiandi Wu
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
37
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021; 60:12883-12890. [PMID: 33768678 DOI: 10.1002/anie.202100193] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non-electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined.
Collapse
Affiliation(s)
- Tiandi Wu
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| |
Collapse
|
38
|
Cembellín S, Batanero B. Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. CHEM REC 2021; 21:2453-2471. [PMID: 33955158 DOI: 10.1002/tcr.202100128] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The adoption of new measures that preserve our environment, on which our survival depends, is a necessity. Electro-organic processes are sustainable per se, by producing the activation of a substrate by electron transfer at normal pressure and room temperature. In the recent years, a highly crescent number of works on organic electrosynthesis are available. Novel strategies at the electrode are being developed enabling the construction of a great variety of complex organic molecules. However, the possibility of being scaled-up is mandatory in terms of sustainability. Thus, some electrochemical methodologies have demonstrated to report the best results in reducing pollution and saving energy. In this personal account, these methods have been compiled, being organized as follows: • Direct discharge electrosynthesis • Paired electrochemical reactions. and • Organic transformations utilizing electrocatalysis (in absence of heavy metals). Selected protocols are herein presented and discussed with representative recent examples. Final perspectives and reflections are also considered.
Collapse
Affiliation(s)
- Sara Cembellín
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain
| | - Belén Batanero
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR) University of Alcala
| |
Collapse
|
39
|
Marken F, Cresswell AJ, Bull SD. Recent Advances in Paired Electrosynthesis. CHEM REC 2021; 21:2585-2600. [PMID: 33834595 DOI: 10.1002/tcr.202100047] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Indexed: 11/08/2022]
Abstract
Progress in electroorganic synthesis is linked to innovation of new synthetic reactions with impact on medicinal chemistry and drug discovery and to the desire to minimise waste and to provide energy-efficient chemical transformations for future industrial processes. Paired electrosynthetic processes that combine the use of both anode and cathode (convergent or divergent) with minimal (or without) intentionally added electrolyte or need for additional reagents are of growing interest. In this overview, recent progress in developing paired electrolytic reactions is surveyed. The discussion focuses on electrosynthesis technology with proven synthetic value for the preparation of small molecules. Reactor types are contrasted and the concept of translating light-energy driven photoredox reactions into paired electrolytic reactions is highlighted as a newly emerging trend.
Collapse
Affiliation(s)
- Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, BA27AY, Bath, UK
| | | | - Steven D Bull
- Department of Chemistry, University of Bath, Claverton Down, BA27AY, Bath, UK
| |
Collapse
|
40
|
Zhang W, Hong N, Song L, Fu N. Reaching the Full Potential of Electroorganic Synthesis by Paired Electrolysis. CHEM REC 2021; 21:2574-2584. [PMID: 33835697 DOI: 10.1002/tcr.202100025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Electroorganic synthesis has recently become a rapidly blossoming research area within the organic synthesis community. It should be noted that electrochemical reaction is always a balanced reaction system with two half-cell reactions-oxidation and reduction. Most electrochemical strategies, however, typically focus on one of the two sides for the desired transformations. Paired electrolysis has two desirable half reactions running simultaneously, thus maximizing the overall margin of atom and energy economy. Meanwhile, the spatial separation between oxidation and reduction is the essential feature of electrochemistry, offering unique opportunities for the development of redox-neutral reactions that would otherwise be challenging to accomplish in a conventional reaction flask setting. This review discusses the most recent illustrative examples of paired electrolysis with special emphasis on sequential and convergent processes.
Collapse
Affiliation(s)
- Wenzhao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianmin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Song
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
41
|
Luo Z, Imamura K, Shiota Y, Yoshizawa K, Hisaeda Y, Shimakoshi H. One-Pot Synthesis of Tertiary Amides from Organic Trichlorides through Oxygen Atom Incorporation from Air by Convergent Paired Electrolysis. J Org Chem 2021; 86:5983-5990. [DOI: 10.1021/acs.joc.1c00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhongli Luo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Kenji Imamura
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Nishi-ku, Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
42
|
He M, Wu Y, Yao Y, Mo Z, Pan Y, Tang H. Paired Electrosynthesis of Aromatic Azo Compounds from Aryl Diazonium Salts with Pyrroles or Indoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mu‐Xue He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yu‐Zheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yan Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
43
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Zeng JS, Manthiram K. Redox Reservoirs: Enabling More Modular Electrochemical Synthesis. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Sharma S, Roy A, Shaw K, Bisai A, Paul A. Electrochemical Synthesis of Dimeric 2-Oxindole Sharing Vicinal Quaternary Centers Employing Proton-Coupled Electron Transfer. J Org Chem 2020; 85:14926-14936. [DOI: 10.1021/acs.joc.0c01621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
46
|
|
47
|
Liu J, Lu L, Wood D, Lin S. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS CENTRAL SCIENCE 2020; 6:1317-1340. [PMID: 32875074 PMCID: PMC7453421 DOI: 10.1021/acscentsci.0c00549] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 05/04/2023]
Abstract
As the breadth of radical chemistry grows, new means to promote and regulate single-electron redox activities play increasingly important roles in driving modern synthetic innovation. In this regard, photochemistry and electrochemistry-both considered as niche fields for decades-have seen an explosive renewal of interest in recent years and gradually have become a cornerstone of organic chemistry. In this Outlook article, we examine the current state-of-the-art in the areas of electrochemistry and photochemistry, as well as the nascent area of electrophotochemistry. These techniques employ external stimuli to activate organic molecules and imbue privileged control of reaction progress and selectivity that is challenging to traditional chemical methods. Thus, they provide alternative entries to known and new reactive intermediates and enable distinct synthetic strategies that were previously unimaginable. Of the many hallmarks, electro- and photochemistry are often classified as "green" technologies, promoting organic reactions under mild conditions without the necessity for potent and wasteful oxidants and reductants. This Outlook reviews the most recent growth of these fields with special emphasis on conceptual advances that have given rise to enhanced accessibility to the tools of the modern chemical trade.
Collapse
Affiliation(s)
| | | | | | - Song Lin
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New
York 14853, United States
| |
Collapse
|
48
|
Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N, Akinwande AI, Buchwald SL, Jensen KF. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions. Science 2020; 368:1352-1357. [DOI: 10.1126/science.aba3823] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yiming Mo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhaohong Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Girish Rughoobur
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Prashant Patil
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil Gershenfeld
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Akintunde I. Akinwande
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Affiliation(s)
- Peili Zhang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT‐KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology Dalian Liaoning 116024 China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT‐KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology Dalian Liaoning 116024 China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology 10044 Stockholm Sweden
| |
Collapse
|
50
|
Siu JC, Fu N, Lin S. Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery. Acc Chem Res 2020; 53:547-560. [PMID: 32077681 PMCID: PMC7245362 DOI: 10.1021/acs.accounts.9b00529] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemistry has been used as a tool to drive chemical reactions for over two centuries. With the help of an electrode and a power source, chemists are bestowed with an imaginary reagent whose potential can be precisely dialed in. The theoretically infinite redox range renders electrochemistry capable of oxidizing or reducing some of the most tenacious compounds (e.g., F- to F2 and Li+ to Li0). Meanwhile, a granular level of control over the electrode potential allows for the chemoselective differentiation of functional groups with minute differences in potential. These features make electrochemistry an attractive technique for the discovery of new modes of reactivity and transformations that are not readily accessible with chemical reagents alone. Furthermore, the use of an electrical current in place of chemical redox agents improves the cost-efficiency of chemical processes and reduces byproduct generation. Therefore, electrochemistry represents an attractive approach to meet the prevailing trends in organic synthesis and has seen increasingly broad use in the synthetic community over the past several years.While electrochemical oxidation or reduction can provide access to reactive intermediates, redox-active molecular catalysts (i.e., electrocatalysts) can also enable the generation of these intermediates at reduced potentials with improved chemoselectivity. Moreover, electrocatalysts can impart control over the chemo-, regio-, and stereoselectivities of the chemical processes that take place after electron transfer at electrode surfaces. Thus, electrocatalysis has the potential to significantly broaden the scope of organic electrochemistry and enable a wide range of new transformations. Our initial foray into electrocatalytic synthesis led to the development of two generations of alkene diazidation reactions, using transition-metal and organic catalysis, respectively. In these reactions, the electrocatalysts play two critical roles; they promote the single-electron oxidation of N3- at a reduced potential and complex with the resultant transient N3• to form persistent reactive intermediates. The catalysts facilitate the sequential addition of 2 equiv of azide across the alkene substrates, leading to a diverse array of synthetically useful vicinally diaminated products.We further applied this electrocatalytic radical mechanism to the heterodifunctionalization of alkenes. Anodically coupled electrolysis enables the simultaneous anodic generation of two distinct radical intermediates, and the appropriate choice of catalyst allowed the subsequent alkene addition to occur in a chemo- and regioselective fashion. Using this strategy, a variety of difunctionalization reactions, including halotrifluoromethylation, haloalkylation, and azidophosphinoylation, were successfully developed. Importantly, we also demonstrated enantioselective electrocatalysis in the context of Cu-promoted cyanofunctionalization reactions by employing a chiral bisoxazoline ligand. Finally, by introducing a second electrocatalyst that mediates oxidatively induced hydrogen atom transfer, we expanded scope of electrocatalysis to hydrofunctionalization reactions, achieving hydrocyanation of conjugated alkenes in high enantioselectivity. These developments showcase the generality of our electrocatalytic strategy in the context of alkene functionalization reactions. We anticipate that electrocatalysis will play an increasingly important role in the ongoing renaissance of synthetic organic electrochemistry.
Collapse
Affiliation(s)
- Juno C. Siu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | | | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|