1
|
Zhu Z, Ouyang Q, Zhou L, Fan C, Zheng M, Nezamzadeh-Ejhieh A, Yuan H, Peng Y, Liu J. Current status and prospects of detection of breast cancer by MOFs platform. J Mol Struct 2025; 1321:139797. [DOI: 10.1016/j.molstruc.2024.139797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Zheng L, Li J, Hu S, Xu L, Wu Y, Deng B. An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoO ν as a signal amplifier for sensitive detection of heart-type fatty acid binding protein. Mikrochim Acta 2024; 192:46. [PMID: 39739065 DOI: 10.1007/s00604-024-06923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin. Therefore, the measurement of H-FABP is crucial for the early exclusion of AMI. Silver-cysteine nanorod (AgCysNR), which served as the ECL emitter, was produced with a one-step, green, simple, template-free aqueous phase method. The surfaces of AgCysNR displayed many amino and carboxyl groups that were connected to a large number of a secondary H-FABP-specific antibody. Ferrum-doped molybdenum oxide (FeMoOν), with a large specific surface area, was richly decorated with silver nanoparticle (AgNP), which increased the interfacial electron transfer rate of FeMoOν. The AgNP was used as a co-reaction accelerator to promote persulfate to produce more sulfate anion radical and then enhance the ECL intensity of AgCysNR. The linear range of the ECL immunosensor was 10 fg/mL to 100 ng/mL, and the detection limit was 2.3 fg/mL (signal/noise = 3). The sensor was determined to be stable, repeatable, and reproducible, and the method achieved recoveries of 101.0 to 102.6% with relative standard deviations of 1.4 to 2.0%. This immunosensor represents a promising tool for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Lingling Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jing Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lixin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
3
|
Fan X, Zhang G, Li X, Wang Y, Wang Y, Hao S, Liu D. 2D Flower-like CdS@Co/Mo-MOF as Co-Reaction Accelerator of g-C 3N 4-Based Electrochemiluminescence Sensor for Chlorpromazine Hydrochloride. BIOSENSORS 2024; 14:586. [PMID: 39727852 DOI: 10.3390/bios14120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 12/28/2024]
Abstract
In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-C3N4/S2O82- system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the S2O82- into SO4•- and enhancing the cathodic ECL emission of g-C3N4. Moreover, the signal probe which was synthesized by coupling the 2D CdS@Co/Mo-MOF and graphitic carbon nitride (g-C3N4) achieved the generation of SO4•- in situ and reduced energy loss. The results confirmed that the ECL signal was enhanced 6.2-fold and stabilized by CdS@Co/Mo-MOF. Based on the extremely strong quenching effect of chlorpromazine hydrochloride (CPH) on this system, a "signal-off" type sensor was constructed. The sensor demonstrated excellent sensitivity and linear response to CPH concentrations ranging from 1 pmol L-1 to 100 μmol L-1, with a low detection limit of 0.4 pmol L-1 (S/N = 3).
Collapse
Affiliation(s)
- Xiaowei Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China
| | - Guping Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China
| | - Xiaodi Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China
| | - Yao Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China
| | - Defang Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China
| |
Collapse
|
4
|
Yin F, Zhou X, Zhang M, Sun Q, Zhao J, Wu G, Zhang Y, Shen Y. Biocompatible WSe 2@BSA Dots with Merged Catalyst and Coreactant for Efficient Electrochemiluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406374. [PMID: 39285809 DOI: 10.1002/smll.202406374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Electrochemiluminescence (ECL) is a powerful tool for clinical diagnosis due to its exceptional sensitivity. However, the standard tripropylamine (TPrA) coreactant for Ru(bpy)3Cl2, the most widely studied and used ECL system, is highly toxic. Despite extensive research on alternative coreactants, they often fall short in poor efficiency. From a reaction kinetics perspective, accelerating electrooxidation rate of Ru(bpy)3Cl2 is an essential way to compensate the efficiency limitation of coreactants, but is rarely reported. Here, a hybrid electrocatalyst@coreactant dots for the ECL of Ru(bpy)3Cl2 is reported. The as-prepared WSe2@bovine serum albumin (WSe2@BSA) dots is biocompatible, and demonstrate dual functions, i.e., the BSA shell works as a coreactant, meanwhile, the WSe2 core effectively catalyzes Ru(bpy)3Cl2 oxidation. As a result, WSe2@BSA dots exhibit an exceptionally high efficiency comparable to TPrA for the ECL of Ru(bpy)3Cl2. In addition, the procedure for synthesizing WSe2@BSA dots is facile (room temperature, atmospheric conditions), rapid (5 min), and scalable (for millions of bioassays). A biosensor utilizing WSe2@BSA dots shows promise for highly sensitive detecting glypican-3 in clinical liver cancer serum samples, especially for alpha-fetoprotein-negative patients. This work opens a new avenue for developing a highly efficient ECL system for biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Yin
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaohe Zhou
- Medical School, Southeast University, Nanjing, 210009, China
| | - Mingming Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Qian Sun
- Medical School, Southeast University, Nanjing, 210009, China
| | - Jinjin Zhao
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
5
|
Han Z, Ding H, Jiang D. Recent Advances in Luminophores for Enhanced Electrochemiluminescence Analysis. Molecules 2024; 29:4857. [PMID: 39459225 PMCID: PMC11510724 DOI: 10.3390/molecules29204857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Electrochemiluminescence (ECL) detection is widely applied in many fields, including chemical measurement, biological analysis, and clinic tests, due to its high sensitivity. Currently, the fast development of many new electrochemical luminophores is continuously improving the ECL-based detection ability. Besides the enhancement of luminescence emission for a high detection sensitivity, minimizing the effect of co-reactants on ECL detection and achieving multiple analysis in one sample are also the main directions in this field. This review focuses on a summary of recently prepared new luminophores to achieve the three aims mentioned above. Especially, the review is composed by three parts, focusing on the luminophores or materials with high ECL efficiency, self-enhancing properties, and multi-color ECL luminophores. The fabrication of biosensors using these molecules is also reviewed to exhibit the advances in biological applications.
Collapse
Affiliation(s)
| | - Hao Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| |
Collapse
|
6
|
Sornambigai M, Roselin Pavithra AS, Hansda S, Senthil Kumar S. Fabrication of an all-in-one self-enhanced solid-state electrochemiluminescence sensing platform for the selective detection of spermine. Analyst 2024; 149:3555-3563. [PMID: 38780058 DOI: 10.1039/d4an00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The fabrication of an all-in-one solid-state ECL sensing platform is beneficial not only for expediting the miniaturization of sensing devices, but also, more importantly, for enabling point-of-care applications. In the present work, a self-enhanced solid-state ECL sensing platform is fabricated using newly synthesised silica polyethylene nanoparticles (SiO2-PEI NPs) which generate a co-reactant in situ and easily self-assemble with Ru(bpy)32+ and shows selective and sensitive detection of spermine at physiological pH (7.4). Spermine induces the maximum ECL emission intensity compared to other biogenic amines due to the presence of two secondary amines. A possible ECL reaction mechanism has been proposed based on CV and ECL experiments, DFT calculations, and in situ ECL spectrum analysis. The developed solid-state sensor showed a linear increase in ECL intensity with increasing spermine concentration in the range of 10 nM to 100 nM with an LOD of 12.2 nM. Compared to other biogenic amines in previous works, chemically synthesised SiO2-PEI NPs used in the present study act as an effective label- and enzyme-free sensor, and the new method is observed to be simple and cost-effective, to overcome various limitations of solution-phase ECL and to avoid the usage of any noble metals.
Collapse
Affiliation(s)
- Mathavan Sornambigai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 20100, Uttar Pradesh, India
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI) campus, Karaikudi-630003, Tamil Nadu, India.
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi-630003, Tamil Nadu, India
| | | | - Shekhar Hansda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 20100, Uttar Pradesh, India
- Corrosion and Material Protection Division, CSIR-CECRI, Karaikudi-630003, Tamil Nadu, India
| | - Shanmugam Senthil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 20100, Uttar Pradesh, India
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI) campus, Karaikudi-630003, Tamil Nadu, India.
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|
7
|
Wang H, Jia Y, Feng T, An B, Ma H, Ren X, Zhang N, Li F, Wei Q. Development of reusable electrochemiluminescence sensing microchip for detection of vomitoxin. Talanta 2024; 273:125942. [PMID: 38513471 DOI: 10.1016/j.talanta.2024.125942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
In this work, a reusable DNA sensing microchip was developed for detection of vomitoxin (deoxynivalenol, DON) in sorghum using Cd-based core-shell CdSe@CdS quantum dots (QDs) as promising electrochemiluminescence (ECL) emitter. The size-adjustable aqueous phase CdSe@CdS QDs were prepared through homogeneous method, exhibiting strong cathodic ECL emission with a central wavelength of 520 nm in S2O82- coreactant. And gold nanoparticles-modified iron cobalt cyanide hydrate (Fe-Co-Au) was introduced as an accelerator to amplify the ECL signal. ECL signal was quenched after the formation of a double-stranded (dsDNA) S1-S2 by generating an electron transfer system between the emitter and ferrocene (Fc), which are modified on the aptamer (ssDNA S1) and its complement sequence (ssDNA S2), respectively. When the target DON is presence, the aptamer ssDNA S1 will bind to the DON and trigger the unbinding of double strands DNA and the release of the ssDNA S2, thus the signal can be generated. This approach offers a feasible method for the detection of DON within the range of 1 ng/mL to 200 ng/mL.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China
| | - Tao Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China
| | - Bing An
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China.
| | - Faying Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Giagu G, Fracassa A, Fiorani A, Villani E, Paolucci F, Valenti G, Zanut A. From theory to practice: understanding the challenges in the implementation of electrogenerated chemiluminescence for analytical applications. Mikrochim Acta 2024; 191:359. [PMID: 38819653 PMCID: PMC11143011 DOI: 10.1007/s00604-024-06413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Electrogenerated chemiluminescence (ECL) stands out as a remarkable phenomenon of light emission at electrodes initiated by electrogenerated species in solution. Characterized by its exceptional sensitivity and minimal background optical signals, ECL finds applications across diverse domains, including biosensing, imaging, and various analytical applications. This review aims to serve as a comprehensive guide to the utilization of ECL in analytical applications. Beginning with a brief exposition on the theory at the basis of ECL generation, we elucidate the diverse systems employed to initiate ECL. Furthermore, we delineate the principal systems utilized for ECL generation in analytical contexts, elucidating both advantages and challenges inherent to their use. Additionally, we provide an overview of different electrode materials and novel ECL-based protocols tailored for analytical purposes, with a specific emphasis on biosensing applications.
Collapse
Affiliation(s)
- Gabriele Giagu
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Alessandro Fracassa
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Elena Villani
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy.
| | - Alessandra Zanut
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padua, 35131, Italy.
| |
Collapse
|
9
|
Meng X, Pang X, Yang J, Zhang X, Dong H. Recent Advances in Electrochemiluminescence Biosensors for MicroRNA Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307701. [PMID: 38152970 DOI: 10.1002/smll.202307701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Electrochemiluminescence (ECL) as an analytical technology with a perfect combination of electrochemistry and spectroscopy has received considerable attention in bioanalysis due to its high sensitivity and broad dynamic range. Given the selectivity of bio-recognition elements and the high sensitivity of the ECL analysis technique, ECL biosensors are powerful platforms for the sensitive detection of biomarkers, achieving the accurate prognosis and diagnosis of diseases. MicroRNAs (miRNAs) are crucial biomarkers involved in a variety of physiological and pathological processes, whose aberrant expression is often related to serious diseases, especially cancers. ECL biosensors can fulfill the highly sensitive and selective requirements for accurate miRNA detection, prompting this review. The ECL mechanisms are initially introduced and subsequently categorize the ECL biosensors for miRNA detection in terms of the quenching agents. Furthermore, the work highlights the signal amplification strategies for enhancing ECL signal to improve the sensitivity of miRNA detection and finally concludes by looking at the challenges and opportunities in ECL biosensors for miRNA detection.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
10
|
Sun R, Xiong S, Zhang W, Huang Y, Zheng J, Shao J, Chi Y. Highly Active Coreactant-Capped and Water-Stable 3D@2D Core-Shell Perovskite Quantum Dots as a Novel and Strong Self-Enhanced Electrochemiluminescence Probe. Anal Chem 2024; 96:5711-5718. [PMID: 38551104 DOI: 10.1021/acs.analchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuyun Xiong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
11
|
Saqib M, Zafar M, Halawa MI, Murtaza S, Kamal GM, Xu G. Nanoscale Luminescence Imaging/Detection of Single Particles: State-of-the-Art and Future Prospects. ACS MEASUREMENT SCIENCE AU 2024; 4:3-24. [PMID: 38404493 PMCID: PMC10885340 DOI: 10.1021/acsmeasuresciau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
Single-particle-level measurements, during the reaction, avoid averaging effects that are inherent limitations of conventional ensemble strategies. It allows revealing structure-activity relationships beyond averaged properties by considering crucial particle-selective descriptors including structure/morphology dynamics, intrinsic heterogeneity, and dynamic fluctuations in reactivity (kinetics, mechanisms). In recent years, numerous luminescence (optical) techniques such as chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence (FL) microscopies have been emerging as dominant tools to achieve such measurements, owing to their diversified spectroscopy principles, noninvasive nature, higher sensitivity, and sufficient spatiotemporal resolution. Correspondingly, state-of-the-art methodologies and tools are being used for probing (real-time, operando, in situ) diverse applications of single particles in sensing, medicine, and catalysis. Herein, we provide a concise and comprehensive perspective on luminescence-based detection and imaging of single particles by putting special emphasis on their basic principles, mechanistic pathways, advances, challenges, and key applications. This Perspective focuses on the development of emission intensities and imaging based individual particle detection. Moreover, several key examples in the areas of sensing, motion, catalysis, energy, materials, and emerging trends in related areas are documented. We finally conclude with the opportunities and remaining challenges to stimulate further developments in this field.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mariam Zafar
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohamed Ibrahim Halawa
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Shahzad Murtaza
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ghulam Mustafa Kamal
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Guobao Xu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Tang X, Jin Z, Zou R, Zhu Y, Yao X, Li M, Song S, Liu S, Zeng T. Sustainable Electrochemical Activation of Self-Generated Persulfate for the Degradation of Endocrine Disruptors: Kinetics, Performances, and Mechanisms. TOXICS 2024; 12:156. [PMID: 38393251 PMCID: PMC10893448 DOI: 10.3390/toxics12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
This study presents an electrolysis system utilizing a novel self-circulation process of sulfate (SO42-) and persulfate (S2O82-) ions based on a boron-doped diamond (BDD) anode and an activated carbon fiber (ACF) cathode, which is designed to enable electrochemical remediation of environmental contaminants with reduced use of chemical reagents and minimized residues. The production of S2O82- and hydrogen peroxide (H2O2) on the BDD anode and ACF cathode, respectively, is identified as the source of active radicals for the contaminant degradation. The initiator, sulfate, is identified by comparing the degradation efficiency in NaSO4 and NaNO3 electrolytes. Quenching experiments and electron paramagnetic resonance (EPR) spectroscopy confirmed that the SO4-· and ·OH generated on the ACF cathode are the main reactive radicals. A comparison of the degradation efficiency and the generated S2O82-/H2O2 of the divided/undivided electrolysis system is used to demonstrate the superiority of the synergistic effect between the BDD anode and ACF cathode. This work provides evidence of the effectiveness of the philosophy of "catalysis in lieu of supplementary chemical agents" and sheds light on the mechanism of the generation and transmission of reactive species in the BDD and ACF electrolysis system, thereby offering new perspectives for the design and optimization of electrolysis systems.
Collapse
Affiliation(s)
- Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
| | - Zhiquan Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
| | - Rui Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
| | - Yi Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
| | - Xia Yao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
| | - Mengxuan Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
| | - Shuangliu Liu
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; (X.T.); (Z.J.); (R.Z.); (Y.Z.); (X.Y.); (M.L.); (S.S.)
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312000, China
| |
Collapse
|
13
|
Meng F, Wang Y, Lv X, Feng F, Yang G. Electrochemiluminescent bioassay based on Ru@Zr-BTC-MOFs nanoparticles for determination of let-7a miRNA using the hybridization chain reaction. Mikrochim Acta 2023; 191:23. [PMID: 38091146 DOI: 10.1007/s00604-023-06107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023]
Abstract
Carboxyl-rich tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) ([Ru(dcbpy)3]2+) and 1,3,5-phenyl tricarboxylic acid (H3BTC) were used as the organic ligand to synthesize the metal-organic frameworks by a simple one-pot hydrothermal method with ZrCl4 as metal ion source. Subsequently, the excellent electrochemiluminescence (ECL) luminophore (denoted as Ru@Zr-BTC-MOFs) was obtained. The Ru@Zr-BTC-MOFs displayed outstanding ECL properties, and a sensitive ECL bioassay based on Ru@Zr-BTC-MOFs was designed for the detection of let-7a microRNA (miRNA) using hybrid chain reaction (HCR). Under the optimal experimental conditions, the proposed bioassay exhibited a good linear relationship in the range from 50.0 fM to 5.00 × 102 pM with a detection limit of 3.71 fM. Besides, the proposed sensor exhibited satisfactory performance in real samples. The recovery was 91 ~ 108%, and the relative standard deviation was less than 5.6%. It might have potential clinical applications for detecting miRNA in biomedical research and clinical diagnosis. The schematic diagram of the preparation of Ru@Zr-BTC-MOFs (a) and ECL sensor for detecting let -7a (b).
Collapse
Affiliation(s)
- Fei Meng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yisi Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xinxin Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Gongjun Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
14
|
Yu S, Hu X, Pan J, Lei J, Ju H. Nanoconfined Cathodic Electrochemiluminescence for Self-Sensitized Bioimaging of Membrane Protein. Anal Chem 2023; 95:16593-16599. [PMID: 37902983 DOI: 10.1021/acs.analchem.3c02726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Self-enhanced electrochemiluminescence (ECL) can be achieved via the confinement of coreactants and ECL emitters in a single nanostructure. This strategy has been used for the design of anodic ECL systems with amine compounds as coreactants. In this work, a novel confinement system was proposed by codoping positively charged ECL emitter tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) and negatively charged coreactant peroxydisulfate (S2O82-) in silica nanoparticles. The codoping process could be performed by introducing S2O82- in cationic poly(diallyldimethylammonium chloride) (PDDA) to form PDDA@S2O82- and then encapsulating it and Ru(bpy)32+ in the Triton X-100 vesicle followed by the hydrolysis of tetraethyl ortosilicate, surface modification, and demulsification. The obtained RuSSNs exhibited good homogeneity, excellent monodispersity, acceptable biocompatibility, and 2.9-fold stronger ECL emission than Ru(bpy)32+-doped silica nanoparticles at an equal amount of nanoparticles in the presence of 0.1 M K2S2O8. Thus, an in situ self-sensitized cathodic ECL imaging method was designed for the monitoring of glycoprotein on living cell membranes. This work provides a new way for the modification, enhancement, and application of nano-ECL emitters in biological analysis.
Collapse
Affiliation(s)
- Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiangfu Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
15
|
Sornambigai M, Bouffier L, Sojic N, Kumar SS. Tris(2,2'-bipyridyl)ruthenium (II) complex as a universal reagent for the fabrication of heterogeneous electrochemiluminescence platforms and its recent analytical applications. Anal Bioanal Chem 2023; 415:5875-5898. [PMID: 37507465 DOI: 10.1007/s00216-023-04876-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In recent years, electrochemiluminescence (ECL) has received enormous attention and has emerged as one of the most successful tools in the field of analytical science. Compared with homogeneous ECL, the heterogeneous (or solid-state) ECL has enhanced the rate of the electron transfer kinetics and offers rapid response time, which is highly beneficial in point-of-care and clinical applications. In ECL, the luminophore is the key element, which dictates the overall performance of the ECL-based sensors in various analytical applications. Tris(2,2'-bipyridyl)ruthenium (II) complex, Ru(bpy)32+, is a coordination compound, which is the gold-standard luminophore in ECL. It has played a key role in translating ECL from a "laboratory curiosity" to a commercial analytical instrument for diagnosis. The aim of the present review is to provide the principles of ECL and classical reaction mechanisms-particularly involving the heterogeneous Ru(bpy)32+/co-reactant ECL systems, as well as the fabrication methods and its importance over solution-phase Ru(bpy)32+ ECL. Then, we discussed the emerging technology in solid-state Ru(bpy)32+ ECL-sensing platforms and their recent potential analytical applications such as in immunoassay sensors, DNA sensors, aptasensors, bio-imaging, latent fingerprint detection, point-of-care testing, and detection of non-biomolecules. Finally, we also briefly cover the recent advances in solid-state Ru(bpy)32+ ECL coupled with the hyphenated techniques.
Collapse
Affiliation(s)
- Mathavan Sornambigai
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Laurent Bouffier
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France
| | - Neso Sojic
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France.
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, Karaikudi, Tamil Nadu, 630003, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Hua Y, Ren X, Ma H, Wu D, Song X, Wang H, Yang L, Fan D, Wei Q. Facile preparation of poly-(styrene-co-maleic anhydride) encapsulated Iridium(III) complexes as highly efficient electrochemiluminescence indicators for sensitive immunoassay of CYFRA 21-1. Anal Chim Acta 2023; 1274:341512. [PMID: 37455067 DOI: 10.1016/j.aca.2023.341512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Exploring facile strategy for developing highly efficient emitters using water-insoluble luminophores has become a vital topic in electrochemiluminescence (ECL) immunoassay. In this work, an ECL-active and water-dispersive iridium(III) complex-based polymer dots (IrPdots) was fabricated by encapsulating water-insoluble tris[1-phenylisoquinolinato-C2, N] iridium(III) complexes [Ir(piq)3] into poly-(styrene-co-maleic anhydride) (PSMA) matrix by a controllable nanoprecipitation process. The obtained IrPdots generated strong ECL signals in the presence of tri-n-propylamine (TPrA) and were used to label detection antibody (Ab2) to act as ECL probes to indicate the signal changes when analyzing target antigen. To construct a sandwich immunosensor, Pd nanoparticles (NPs) decorated MoS2/Ti3C2Tx MXene nanocomposites (MoS2/Ti3C2Tx MXene/Pd) were fabricated as substrates to bind capture antibody (Ab1), which could further amplify ECL signals via a coreaction-accelerating pathway to improve the detection sensitivity. When the cytokeratin 19 fragment 21-1 (CYFRA 21-1) was chosen as model analyte, the developed immunosensor displayed a good linear relationship ranging from 0.1 pg/mL to 50 ng/mL with a low detection limit of 95 fg/mL (S/N = 3) was achieved as well. This research proposed a facile and effective method of fabricating IrPdots as ECL probes for immunoassay using water-insoluble iridium complexes, which expanded the application scope of those water-insoluble luminophores for aqueous bioanalysis.
Collapse
Affiliation(s)
- Yunhui Hua
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xianzhen Song
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
Qi H, Wang Z, Li H, Li F. Directionally In Situ Self-Assembled Iridium(III)-Polyimine Complex-Encapsulated Metal-Organic Framework Two-Dimensional Nanosheet Electrode To Boost Electrochemiluminescence Sensing. Anal Chem 2023; 95:12024-12031. [PMID: 37526583 DOI: 10.1021/acs.analchem.3c01882] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Manufacturing electrochemiluminescence (ECL) electrodes to detect analytes with high performance in the aqueous phase for water-insoluble metal complexes is a great challenge. Here, a directional self-assembling avenue for in situ fabricating iridium(III)-polyimine complex-encapsulated metal-organic framework (MOF) two-dimensional electrode Hf-MOF/Ir2PD/APS/ITO is developed. The electrode displayed bright red ECL emission with high stability in the aqueous phase and specific adsorption toward ssDNA against dsDNA and mNs. That is to say, a "high-performance and multifunctional ECL electrode" is presented and explored for sensitive detection of acetamiprid (Ace) with a limit of detection of 0.0025 nM, where Ace-aptamer recognition-switched Exonuclease III-mediated digestion to make large numbers of Fc-labeled ssDNA transform into Fc-mNs. Furthermore, the proposed method was triumphantly employed to monitor the change in the residual concentration of Ace in pakchoi. This work breaks through the bottleneck of metal complex-based ECL emission in organic solvents and provides a novel strategy to develop high-performance ECL sensors.
Collapse
Affiliation(s)
- Hongjie Qi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhixin Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002 Hebei, PR China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| |
Collapse
|
18
|
Luo Z, Xu W, Wu Z, Jiao L, Luo X, Xi M, Su R, Hu L, Gu W, Zhu C. Iron Single-Atom Catalyst-Enabled Peroxydisulfate Activation Enhances Cathodic Electrochemiluminescence of Tris(bipyridine)ruthenium(II). Anal Chem 2023. [PMID: 37421333 DOI: 10.1021/acs.analchem.3c01822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
The tris(bipyridine)ruthenium(II) (Ru(bpy)32+)-tripropylamine anodic electrochemiluminescence (ECL) system has been widely applied in commercial bioanalysis. However, the presence of amine compounds in the biological environment results in unavoidable anodic interference signals, which hinder further extensive use of the system. In contrast, the cathodic Ru(bpy)32+ ECL system can overcome these limitations. The Ru(bpy)32+/peroxydisulfate (S2O82-, PDS) ECL system has been extensively employed due to its ability to produce a sulfate radical anion (SO4•-) with strong oxidation ability, which enhances the ECL signal. However, the symmetrical molecular structure of PDS makes it challenging to be activated and causes low luminescence efficiency. To address this issue, we propose an efficient Ru(bpy)32+-based ternary ECL system that uses the iron-nitrogen-carbon single-atom catalyst (Fe-N-C SAC) as an advanced accelerator. Fe-N-C SAC can efficiently activate PDS into reactive oxygen species at a lower voltage, which significantly boosts the cathodic ECL emission of Ru(bpy)32+. Benefiting from the outstanding catalytic activity of Fe-N-C SAC, we successfully established an ECL biosensor that detects alkaline phosphatase activity with high sensitivity, demonstrating the feasibility of practical application.
Collapse
Affiliation(s)
- Zhen Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhichao Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xin Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mengzhen Xi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
19
|
Jiang L, Jing M, Yin B, Du W, Wang X, Liu Y, Chen S, Zhu M. Bright near-infrared circularly polarized electrochemiluminescence from Au 9Ag 4 nanoclusters. Chem Sci 2023; 14:7304-7309. [PMID: 37416707 PMCID: PMC10321486 DOI: 10.1039/d3sc01329d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Metal nanoclusters are excellent electrochemiluminescent luminophores owing to their rich electrochemical and optical properties. However, the optical activity of their electrochemiluminescence (ECL) is unknown. Herein, we achieved, for the first time, the integration of optical activity and ECL, i.e., circularly polarized electrochemiluminescence (CPECL), in a pair of chiral Au9Ag4 metal nanocluster enantiomers. Chiral ligand induction and alloying were employed to endow the racemic nanoclusters with chirality and photoelectrochemical reactivity. S-Au9Ag4 and R-Au9Ag4 exhibited chirality and bright-red emission (quantum yield = 4.2%) in the ground and excited states. The enantiomers showed mirror-imaged CPECL signals at 805 nm owing to their highly intense and stable ECL emission in the presence of tripropylamine as a co-reactant. The ECL dissymmetry factor of the enantiomers at 805 nm was calculated to be ±3 × 10-3, which is comparable with that obtained from their photoluminescence. The obtained nanocluster CPECL platform shows the discrimination of chiral 2-chloropropionic acid. The integration of optical activity and ECL in metal nanoclusters provides the opportunity to achieve enantiomer discrimination and local chirality detection with high sensitivity and contrast.
Collapse
Affiliation(s)
- Lirong Jiang
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Mengmeng Jing
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Bing Yin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Wenjun Du
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Xiaojian Wang
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Ying Liu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
| |
Collapse
|
20
|
Qin L, Huang T, Cui H, Cheng M, Wei G, Liao F, Xiong W, Jiang H, Zhang J, Fan H. A fluorescence-electrochemiluminescence dual-mode sensor based on a "switch" system for highly selective and sensitive K-ras gene detection. Biosens Bioelectron 2023; 235:115385. [PMID: 37229843 DOI: 10.1016/j.bios.2023.115385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Herein, an fluorescence (FL)-electrochemiluminescence (ECL) dual-mode biosensor is constructed based on the dual-signal "turn-on" strategy of functionalized metal-organic frameworks nanosheets (RuMOFNSs)-tetraferrocene for K-ras gene detection, and the mechanism of bursting through front-line orbital theory is explained for the first time. Amino-functionalized tetraferrocene-labeled probe DNA molecules are linked to RuMOFNSs by covalent amide bonds, acting as FL and ECL intensity switches. The target DNA, complementary to the probe DNA, triggers cyclic amplification of the target by nucleic acid exonuclease III (Exo III), repelling tetraferrocene reporter groups away from RuMOFNSs and inhibiting the electron transfer process and photoinduced electron transfer (PET) effect. These phenomena induce a double turn-on of FL and ECL signals with a high signal-to-noise ratio. The developed FL-ECL dual-mode sensing platform provides sensitive detection of the K-ras gene with detection limits of 0.01 fM (the detection range is 1 fM to 1 nM) and 0.003 fM (the detection range is 0.01 fM to 10 pM), respectively. In addition, the proposed dual-mode sensor can be easily extended to detect other disease-related biomarkers by changing the specific target and probe base sequences, depicting potential applications in bioanalysis and early disease diagnosis.
Collapse
Affiliation(s)
- Longshua Qin
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Ting Huang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Hanfeng Cui
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Mengqing Cheng
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Guobing Wei
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Fusheng Liao
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Wei Xiong
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Hedong Jiang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China
| | - Jing Zhang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China.
| | - Hao Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi, 330004, China.
| |
Collapse
|
21
|
Kuang C, Zeng G, Zhou Y, Wu Y, Li D, Wang Y, Li C. Integrating anodic sulfate activation with cathodic H 2O 2 production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants. WATER RESEARCH 2023; 229:119464. [PMID: 36509034 DOI: 10.1016/j.watres.2022.119464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Conventional electrocatalytic degradation of pollutants involves either cathodic reduction or anodic oxidation process, which caused the low energy utilization efficiency. In this study, we successfully couple the anodic activation of sulfates with the cathodic H2O2 production/activation to boost the generation of sulfate radical (SO4·-) and hydroxyl radical (·OH) for the efficient degradation of emerging contaminants. The electrocatalysis reactor is composed of a modified-graphite-felt (GF) cathode, in-situ prepared by the carbonization of polyaniline (PANI) electrodeposited on a GF substrate, and a boron-doped diamond (BDD) anode. In the presence of sulfates, the electrocatalysis system shows superior activities towards the degradation of pharmaceutical and personal care products (PPCPs), with the optimal performance of completely degrading the representative pollutant carbamazepine (CBZ, 0.2 mg L-1) within 150 s. Radicals quenching experiments indicated that ·OH and SO4·- act as the main reactive oxygen species for CBZ decomposition. Results from the electron paramagnetic resonance (EPR) and chronoamperometry studies verified that the sulfate ions were oxidized to SO4·-radicals at the anode, while the dissolve oxygen molecules were reduced to H2O2 molecules which were further activated to produce ·OH radicals at the cathode. It was also found that during the catalytic reactions SO4·-radicals could spontaneously convert into peroxydisulfate (PDS) which were subsequently reduced back to SO4·-at the cathodes. The quasi-steady-state concentrations of ·OH and SO4·-were estimated to be 0.51×10-12 M and 0.56×10-12 M, respectively. This study provides insight into the synergistic generation of ·OH/SO4·- from the integrated electrochemical anode oxidation of sulfate and cathode reduction of dissolved oxygen, which indicates a potential practical approach to efficiently degrade the emerging organic water contaminants.
Collapse
Affiliation(s)
- Chaozhi Kuang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guoshen Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaoyao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Dexuan Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingfei Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanhao Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Shen Y, Gao X, Lu HJ, Nie C, Wang J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
24
|
Zhu C, Wang K, Luo J, Tian B, Sun J, Liu X, Zhu W, Zou Z. Solid superacid SO42−-S2O82−/SnO2-Nd2O3-catalyzed esterification of α-aromatic amino acids. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
25
|
Shao H, Dong H, Liu Y, Zhou G, Guan X. Chemiluminescence quenching capacity as a surrogate for total organic carbon in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129765. [PMID: 35985213 DOI: 10.1016/j.jhazmat.2022.129765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Total organic carbon (TOC) is a valuable indicator to evaluate the degree of organic pollution in wastewater. Real-time analysis of TOC in wastewater can allow the wastewater treatment plants to manage the treatment process efficiently, avoid violations of the discharge regulations, and eliminate overtreatment. However, traditional methods for TOC determination are time-consuming. Benefitting from the rapid generation of SO4•- in the iron(II)-activated peroxymonosulfate (Fe(II)/PMS) system and the high reactivity of SO4•- towards naproxen as a chemiluminescence (CL) probe, a surrogate for TOC based on the determination of CL quenching capacity (CLQC) of organics in the Fe(II)/PMS-naproxen system was developed. According to the derived equation by considering both non-fluorescent and fluorescent quenching, the CLQC of organics in the Fe(II)/PMS-naproxen system was highly dependent on their TOC, making it to be a potential surrogate for TOC. The interferences of ubiquitous inorganic ions in wastewater on the determination of CLQC were leveled by adjusting electrical conductivity and adding mercury ions. Finally, the feasibility of CLQC as a surrogate for TOC in two real wastewaters containing different concentrations of inorganic anions was confirmed. This work can provide a TOC value within several seconds by determining the CLQC of wastewater with Fe(II)/PMS-naproxen system.
Collapse
Affiliation(s)
- Huixin Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gongming Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
26
|
Sakanoue K, Fiorani A, Santo CI, Irkham, Valenti G, Paolucci F, Einaga Y. Boron-Doped Diamond Electrode Outperforms the State-of-the-Art Electrochemiluminescence from Microbeads Immunoassay. ACS Sens 2022; 7:1145-1155. [PMID: 35298151 DOI: 10.1021/acssensors.2c00156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemiluminescence (ECL) is a powerful transduction technique where light emission from a molecular species is triggered by an electrochemical reaction. Application to biosensors has led to a wide range of electroanalytical methods with particular impact on clinical analysis for diagnostic and therapeutic monitoring. Therefore, the quest for increasing the sensitivity while maintaining reproducible and easy procedures has brought investigations and innovations in (i) electrode materials, (ii) luminophores, and (iii) reagents. Particularly, the ECL signal is strongly affected by the electrode material and its surface modification during the ECL experiments. Here, we exploit boron-doped diamond (BDD) as an electrode material in microbead-based ECL immunoassay to be compared with the approach used in commercial instrumentation. We conducted a careful characterization of ECL signals from a tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+)/tri-n-propylamine (TPrA) system, both homogeneous (i.e., free diffusing Ru(bpy)32+) and heterogeneous (i.e., Ru(bpy)32+ bound on microbeads). We investigated the methods to promote TPrA oxidation, which led to the enhancement of ECL intensity, and the results revealed that the BDD surface properties greatly affect the ECL emission, so it does the addition of neutral, cationic, or anionic surfactants. Our results from homogeneous and heterogeneous microbead-based ECL show opposite outcomes, which have practical consequences in ECL optimization. In conclusion, by using Ru(bpy)32+-labeled immunoglobulins bound on microbeads, the ECL resulted in an increase of 70% and a double signal-to-noise ratio compared to platinum electrodes, which are actually used in commercial instrumentation for clinical analysis. This research infers that microbead-based ECL immunoassays with a higher sensitivity can be realized by BDD.
Collapse
Affiliation(s)
- Kohei Sakanoue
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Claudio Ignazio Santo
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Irkham
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
27
|
Luo W, Ye Z, Song D, Ma P. A sensitive electrochemiluminescent sensor chip based on ssDNA-Ru (II) complex and aptamer for the determination of thrombin. LUMINESCENCE 2022; 37:980-986. [PMID: 35411721 DOI: 10.1002/bio.4248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
In this work, an electrochemiluminescence (ECL) sensor chip for sensitive detection of thrombin (TB) was prepared using a screen-printed electrode (SPE) as a working electrode and an aptamer as a specific recognition moiety. To produce an ECL sensor chip, a layer of pL-Cys was immobilized on the surface of SPE by the cyclic voltammetry scanning method, a layer of AuNPs was assembled through an Au-S bond and hairpin DNA was further immobilized on the electrode surface. Ru (bpy)2 (mcpbpy)2+ , as a luminescent reagent, was covalently bound to ssDNA to prepare a luminescent probe ssDNA-Ru. The probe hybridized with TB aptamer to form a capture probe. In the presence of TB, the TB aptamer in the capture probe bound to TB, causing the release of ssDNA-Ru that could bind to hairpin DNA on the electrode surface. Ru (II) complex as a luminescent reagent was assembled onto the electrode, and pL-Cys was used as a co-reactant to. enhance the ECL efficiency. The ECL signal of the sensor chip generated based on the above principles had a linear relationship with log TB concentration at a range of 10 fM-1 nM, and the detection limit was 0.2 fM. Finally, TB detection by this method was verified using real blood samples. This work provides a new method using an aptamer as a foundation and SPE as a material for the detection of biological substances.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China.,School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| |
Collapse
|
28
|
EINAGA Y. Application of Boron-doped Diamond Electrodes: Focusing on the Electrochemical Reduction of Carbon Dioxide. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Tao XL, Pan MC, Yang X, Yuan R, Zhuo Y. CDs assembled metal-organic framework: Exogenous coreactant-free biosensing platform with pore confinement-enhanced electrochemiluminescence. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Lin H, Bai H, Yang Z, Shen Q, Li M, Huang Y, Lv F, Wang S. Conjugated Polymers for Biomedical Applications. Chem Commun (Camb) 2022; 58:7232-7244. [DOI: 10.1039/d2cc02177c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conjugated polymers (CPs) are a series of organic semiconductor materials with large π-conjugated backbones and delocalized electronic structures. Due to their specific photophysical properties and photoelectric effects, plenty of CPs...
Collapse
|
31
|
Shellaiah M, Sun KW. Diamond-Based Electrodes for Detection of Metal Ions and Anions. NANOMATERIALS 2021; 12:nano12010064. [PMID: 35010014 PMCID: PMC8746347 DOI: 10.3390/nano12010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Diamond electrodes have long been a well-known candidate in electrochemical analyte detection. Nano- and micro-level modifications on the diamond electrodes can lead to diverse analytical applications. Doping of crystalline diamond allows the fabrication of suitable electrodes towards specific analyte monitoring. In particular, boron-doped diamond (BDD) electrodes have been reported for metal ions, anions, biomolecules, drugs, beverage hazards, pesticides, organic molecules, dyes, growth stimulant, etc., with exceptional performance in discriminations. Therefore, numerous reviews on the diamond electrode-based sensory utilities towards the specified analyte quantifications were published by many researchers. However, reviews on the nanodiamond-based electrodes for metal ions and anions are still not readily available nowadays. To advance the development of diamond electrodes towards the detection of diverse metal ions and anions, it is essential to provide clear and focused information on the diamond electrode synthesis, structure, and electrical properties. This review provides indispensable information on the diamond-based electrodes towards the determination of metal ions and anions.
Collapse
|
32
|
Sun Y, Qin Y, Zhang J, Ren Q. Electrochemiluminescent determination of prostate-specific antigen using Au@(MoS 2/GO/o-MWNTs) nanohybrids as co-reaction accelerator and hyperbranched hybridization chain reaction for signal amplification. Mikrochim Acta 2021; 188:300. [PMID: 34409505 DOI: 10.1007/s00604-021-04957-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional flowerlike Au@(MoS2/GO/o-MWNTs) nanohybrids (abbreviated as AMGMs) were synthesized and then introduced into an electrochemiluminescence (ECL) system as a new co-reaction accelerator for the ultrasensitive prostate-specific antigen (PSA). The AMGMs not only served as a substrate with good conductivity and a large specific surface area for loading abundant primary antibodies but also acted as an effective co-reaction accelerator; the co-reaction accelerator could interact with a co-reactant rather than the luminophore to boost the generation of free radical intermediates, thereby producing abundant excited states of luminophores to amplify the ECL signal response. Additionally, an anticipated signal amplification strategy based on the hybridization chain reaction (HCR) was developed by gathering a large amount of a DNA initiator on gold nanoparticles. These gathered DNA initiators could generate multiple DNA concatemers and attach more signal molecules, which resulted in outstanding exponential signal amplification. Consequently, the ECL immunosensor demonstrated high sensitivity, with a linear range from 0.1 pg mL-1 to 50 ng mL-1 and a detection limit of 0.028 pg mL-1. In addition, the immunosensor displayed excellent stability and selectivity. It was evaluated by analyzing human serum sample. The recovery obtained was 98.80-112.00% and the RSD was 1.73-3.12%, indicating the immunosensor could be applied to the simultaneous detection of PSA in human serum samples. Graphical abstract.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Medical Laboratory Science, Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Yan Qin
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Jun Zhang
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| | - Qunxiang Ren
- Department of Chemistry, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
33
|
Electrochemiluminescence biosensor for microRNA determination based on AgNCs@MoS 2 composite with (AuNPs-Semicarbazide)@Cu-MOF as coreaction accelerator. Mikrochim Acta 2021; 188:68. [PMID: 33547602 DOI: 10.1007/s00604-020-04678-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
A novel electrochemiluminescence (ECL) biosensor was fabricated for miRNA-162a detection by using silver nanoclusters/molybdenum disulfide (AgNCs@MoS2) as an ECL material, peroxodisulfate (S2O82-) as a co-reactant, and semicarbazide (Sem) as a co-reaction accelerator. Firstly, hairpin probe Ha modified on AgNCs@MoS2/GCE was unfolded based on its hybridization with target microRNA. Then, the unfolded Ha can further be hybridized with another hairpin DNA of Hb on (AuNPs-semicarbazide)@Cu-MOF, resulting in the release of target microRNA, which further causes a cyclic hybridization. This creates more (AuNPs-semicarbazide)@Cu-MOF on the electrode surface, achieving cyclic hybridization signal amplification. Strikingly, due to the presence of Sem, accelerating the reduction of S2O82- and resulting in the generation of more oxidant intermediates of SO42-, the amount of excited states of Agincreases to further amplify the ECL signal. The biosensor exhibited high sensitivity with a low LOD of 1.067 fM, indicating that the introduction of co-reaction accelerators can provide an effective method for signal amplification. The applicability of this method was assessed by investigating the effect of Pb(II) ion on miRNA-162a expression level in maize seedling leaves. A novel electrochemiluminescence biosensor was fabricated for miRNA-162a detection by using silver nanoclusters/molybdenum disulfide as an ECL material, peroxodisulfate as a co-reactant, and semicarbazide as a co-reaction accelerator.
Collapse
|
34
|
An electrochemiluminescence sensor for 17β-estradiol detection based on resonance energy transfer in α-FeOOH@CdS/Ag NCs. Talanta 2021; 221:121479. [PMID: 33076091 DOI: 10.1016/j.talanta.2020.121479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023]
Abstract
An electrochemiluminescence (ECL) resonance energy transfer system is constructed for 17β-estradiol (E2) detection using α-FeOOH@CdS nanospheres as the ECL-active substrates and Ag NCs as an efficient quencher. CdS QDs loaded onto three-dimensional (3D) urchin-like α-FeOOH nanospheres (α-FeOOH@CdS nanospheres) exhibited excellent ECL responses, which is attributed to dual-amplification of α-FeOOH frameworks. The 3D hierarchical structure of the α-FeOOH nanospheres provided abundant sites for loading ECL-active species, thus significantly improving the ECL performance of substrates; While Fe3+ presented on surface of α-FeOOH nanospheres could be reduced to Fe2+ in negative potentials, after which might activate persulfate in a Fenton-like process, resulting in more sulfate free radicals for more effective ECL responses via electron transfer reactions. Additionally, Ag nanoclusters (Ag NCs) stabilized by single stranded oligonucleotide were introduced as quenching probes for CdS QDs owing to the well-matched donor-acceptor spectrum for efficient energy transfer, which makes them appropriate for detection of E2. The proposed strategy displayed a desirable dynamic range from 0.01 to 10 pg mL-1 with a limit of detection of 0.003 pg mL-1. The proposed strategy based on the ECL-RET strategy offered an ideal way for E2 detection, and also revealed an alternative platform for detection of other small molecules.
Collapse
|
35
|
Li YX, Li J, Cai WR, Xin WL, Marks RS, Zeng HB, Cosnier S, Zhang X, Shan D. Postsynthesis Ligand Exchange Induced Porphyrin Hybrid Crystalloid Reconstruction for Self-Enhanced Electrochemiluminescence. Anal Chem 2020; 92:15270-15274. [PMID: 33185420 DOI: 10.1021/acs.analchem.0c03391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In traditional coreactant electrochemiluminescence (ECL), the efficiency of the coreactant catalyzed into an active intermediate is one of the dominant factors restricting the luminous intensity. In this work, Co-2-MI-ZnTCPP is designed as a composite material integrating coreaction accelerator (Co-N) and luminophore. Through the catalytic effect of Co-N structures on hydrogen peroxide, the in situ generation and accumulation of active intermediates are achieved, which will react with porphyrin anion radical, thereby bringing out self-enhanced ECL. By adjusting the scanning potential range, the ECL mechanism is thoroughly studied and the contribution of each potential window to the luminescence is obtained. This work provides inspiration for the design of integrated ECL emitters with a coreaction accelerator and luminophore, providing a new way for the construction of a self-enhanced ECL emitter.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junji Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wen-Rong Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wen-Li Xin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105
| | - Hai-Bo Zeng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Xueji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
36
|
Sun MF, Liu JL, Zhou Y, Zhang JQ, Chai YQ, Li ZH, Yuan R. High-Efficient Electrochemiluminescence of BCNO Quantum Dot-Equipped Boron Active Sites with Unexpected Catalysis for Ultrasensitive Detection of MicroRNA. Anal Chem 2020; 92:14723-14729. [DOI: 10.1021/acs.analchem.0c03289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Man-Fei Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Jia-Qi Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Zhao-Hui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
37
|
Raju CV, Sornambigai M, Kumar SS. Unraveling the reaction mechanism of co-reactant free in-situ cathodic solid state ECL of Ru(bpy)32+ molecule immobilized on Nafion coated nanoporous gold electrode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Zhang J, Kerr E, Usman KAS, Doeven EH, Francis PS, Henderson LC, Razal JM. Cathodic electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(ii) and peroxydisulfate at pure Ti 3C 2T x MXene electrodes. Chem Commun (Camb) 2020; 56:10022-10025. [PMID: 32728680 DOI: 10.1039/d0cc02993a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrate the first use of pure films of two-dimensional (2D) transition metal carbides and nitrides (Ti3C2Tx MXene) as an electrode material for electrogenerated chemiluminescence (ECL). The Ti3C2Tx MXene electrodes exhibited excellent electrochemical stability in the cathodic scan range and produced bright reductive-oxidation ECL using peroxydisulfate as a co-reactant with the tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3]2+) luminophore.
Collapse
Affiliation(s)
- Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO 3-x Dots with Remarkably Low Toxicity and Uncompromised Activity as Co-reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020; 59:16747-16754. [PMID: 32524717 DOI: 10.1002/anie.202007451] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 01/26/2023]
Abstract
The exceptional nature of WO3-x dots has inspired widespread interest, but it is still a significant challenge to synthesize high-quality WO3-x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand-free WO3-x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow-up chemical conversion. Surprisingly, the WO3-x dots emerged as co-reactants for the electrochemiluminescence (ECL) of Ru(bpy)3 2+ with a comparable ECL efficiency to the well-known Ru(bpy)3 2+ /tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3-x dots were ca. 300-fold less toxic. The potency of WO3-x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.
Collapse
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
40
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO
3−
x
Dots with Remarkably Low Toxicity and Uncompromised Activity as Co‐reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| |
Collapse
|
41
|
Peng K, Liu S, Lv F, Fu X, Hussain S, Zhao H, Liu L, Wang S. Wireless Charging Electrochemiluminescence System for Ionic Channel Manipulation in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24655-24661. [PMID: 32391678 DOI: 10.1021/acsami.0c07476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optogenetics holds great potential for precisely altering living cell behavior with the aid of light because of its high temporospatial resolution. However, the light-dependent manner severely limits its applications in deep tissues, particularly to those in the visible region. Here, we propose a wireless charging electrochemiluminescence (ECL) system, featured with long-time delayed luminescence, to remotely activate the light-gated ion channel (channelrhodopsin-2, ChR2) on the living cell membrane, followed by the intracellular influx of Ca2+ ions. Upon wireless charging ECL illumination, the influx of Ca2+ into the living cells triggers strong ion indicator fluorescence, suggesting the successful remote control on ChR2. As such, the wireless charging ECL strategy exhibits great potential to wireless control of optogenetics in deep tissues by implanting a device in vivo.
Collapse
Affiliation(s)
- Ke Peng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shanshan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Sameer Hussain
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100910, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 2020; 164:112332. [PMID: 32553355 DOI: 10.1016/j.bios.2020.112332] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) as porous materials have attracted much attention in various fields such as gas storage, catalysis, separation, and nanomedical engineering. However, their applications in electrochemiluminescence (ECL) biosensing are limited due to the poor conductivity, lack of modification sites, low stability and specificity, and weak biocompatibility. Integrating the functional materials into MOF structures endows MOF composites with improved conductivity and stability and facilitates the design of ECL sensors with multifunctional MOFs, which are potentially advantageous over their individual components. This review summarizes the strategies for designing ECL-active MOF composites including using luminophore as a ligand, in situ encapsulation of luminophore within the framework, and post-synthetic modification. As-prepared MOF composites can serve as innovative emitters, luminophore carriers, electrode modification materials and co-reaction accelerators in ECL biosensors. The sensing applications of ECl-active MOF composites in the past five years are highlighted including immunoassays, genosensors, and small molecule detection. Finally, the prospects and challenges associated with MOF composites and their related materials for ECL biosensing are tentatively proposed.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530008, China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
45
|
Wang Z, Wang N, Gao H, Quan Y, Ju H, Cheng Y. Amplified electrochemiluminescence signals promoted by the AIE-active moiety of D-A type polymer dots for biosensing. Analyst 2020; 145:233-239. [PMID: 31746824 DOI: 10.1039/c9an01992h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-component conjugated polymers of a strong donor-acceptor (D-A) type could be synthesized by Pd-catalyzed Suzuki coupling polymerization reaction of 1,2-bis(4-bromophenyl)-1,2-diphenylethene (M-1) with 9-octyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (M-2) and 4,6-bis((E)-4-bromostyryl)-2,2-difluoro-5-phenyl-2H-1l3,3,2l4-dioxaborinine (M-3). Among them, P-1 and P-2 with high TPE ratios at 0.95 and 0.9 showed obvious aggregation-induced emission (AIE) behavior; in contrast P-3 with a low TPE ratio at 0.8 showed an aggregation-caused quenching (ACQ) phenomenon. In particular, the three resulting polymer dots (P-1 to P-3 Pdots) exhibited a 200 mV lower electrochemiluminescence (ECL) potential due to their strong D-A electronic structure. Most importantly, the ECL signals of Pdots could be enhanced as high as 3 times by increasing their AIE-active TPE moiety ratios from 0.8 (P-3) to 0.95 (P-1) via the band gap emission process. Herein, P-1 Pdots with the strongest ECL signal were successfully used as ECL biosensors for the detection of catechol, epinephrine and dopamine with detection limits of 1, 7 and 3 nM, respectively. This work provides a new strategy for developing highly sensitive ECL biosensors by the smart structure design of the AIE-active Pdots.
Collapse
Affiliation(s)
- Ziyu Wang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | |
Collapse
|
46
|
Li Z, Qin W, Liang G. A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. NANOSCALE 2020; 12:8828-8835. [PMID: 32253405 DOI: 10.1039/d0nr01025a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bright and metal-free mass-amplifying electrochemiluminescence film (MAEF) performing in aqueous media was reported for the first time. Systematic studies demonstrated that the film substrates have a remarkable influence on the electrochemiluminescence (ECL) performance. Gold substrates promote ECL reactions and the subsequent radiative decay process simultaneously, affording an unconventional 507-fold ECL enhancement. Such a gold-enhanced MAEF is opposite to ECL systems previously reported, in which the use of gold electrodes normally results in decreased ECL intensity due to passivation of the gold surface by oxide formation. More importantly, the ECL intensity of the MAEF is linearly amplified through facilely regulating luminogen loading. Morphological analysis reveals that the film consists of grass-like nanowires with a diameter of 57 nm, which facilitate electrical communication between the luminogen, electrode, and supporting electrolyte, giving rise to the mass-amplifying ECL. The bright ECL of the solid film in aqueous media can be readily observed by the naked eye, entirely different from visible ECL systems reported in which ruthenium complexes dissolved/dispersed in solution are used as the luminogens. The film is further utilized to detect dopamine (DA), an important biomolecule related to nervous diseases, in aqueous media, with a low detection limit of 3.3 × 10-16 M. Furthermore, a facile method based on grayscale analysis of ECL images (GAEI) of the film was developed for visual and ultrasensitive DA detection in aqueous media.
Collapse
Affiliation(s)
- Zihua Li
- PCFM and GDHPPC labs, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | | | | |
Collapse
|
47
|
Voci S, Duwald R, Grass S, Hayne DJ, Bouffier L, Francis PS, Lacour J, Sojic N. Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. Chem Sci 2020; 11:4508-4515. [PMID: 34122909 PMCID: PMC8159437 DOI: 10.1039/d0sc00853b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Controlling electrochemiluminescence (ECL) color(s) is crucial for many applications ranging from multiplexed bioassays to ECL microscopy. This can only be achieved through the fundamental understanding of high-energy electron-transfer processes in complex and competitive reaction schemes. Recently, this field has generated huge interest, but the effective implementation of multicolor ECL is constrained by the limited number of ECL-active organometallic dyes. Herein, the first self-enhanced organic ECL dye, a chiral red-emitting cationic diaza [4]helicene connected to a dimethylamino moiety by a short linker, is reported. This molecular system integrates bifunctional ECL features (i.e. luminophore and coreactant) and each function may be operated either separately or simultaneously. This unique level of control is enabled by integrating but decoupling both molecular functions in a single molecule. Through this dual molecular reactivity, concomitant multicolor ECL emission from red to blue with tunable intensity is readily obtained in aqueous media. This is done through competitive electron-transfer processes between the helicene and a ruthenium or iridium dye. The reported approach provides a general methodology to extend to other coreactant/luminophore systems, opening enticing perspectives for spectrally distinct detection of several analytes, and original analytical and imaging strategies.
Collapse
Affiliation(s)
- Silvia Voci
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Romain Duwald
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Stéphane Grass
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - David J Hayne
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Laurent Bouffier
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| | - Paul S Francis
- Deakin University, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment Waurn Ponds Victoria 3216 Australia
| | - Jérôme Lacour
- University of Geneva, Department of Organic Chemistry Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 33607 Pessac France
| |
Collapse
|
48
|
Xu J, Yokota Y, Wong RA, Kim Y, Einaga Y. Unusual Electrochemical Properties of Low-Doped Boron-Doped Diamond Electrodes Containing sp 2 Carbon. J Am Chem Soc 2020; 142:2310-2316. [PMID: 31927922 DOI: 10.1021/jacs.9b11183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unexpected phenomena displayed by low-boron-doped diamond (BDD) electrodes are disclosed in the present work. Generally, the presence of sp2 nondiamond carbon impurities in BDD electrodes causes undesirable electrochemical properties, such as a reduced potential window and increased background current, etc. However, we found that the potential window and redox reaction in normally doped (1%) BDD and low-doped (0.1%) BDD exhibited opposite tendencies depending on the extent of sp2 carbon. Moreover, we found that contrary to the usual expectations, low-doped BDD containing sp2 carbon hinders electron transfer, whereas in line with expectations, normally doped BDD containing sp2 exhibits enhanced electron transfer. Surface analyses by X-ray/ultraviolet photoelectron spectroscopy (XPS/UPS) and electrochemical methods are utilized to explain these unusual phenomena. This work indicates that the electrochemical properties of low-doped BDD containing sp2 might be due partially to the high level of surface oxygen, the large work function, the low carrier density, and the existence of different types of sp2 carbon.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| | - Yasuyuki Yokota
- Surface and Interface Science Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Raymond A Wong
- Surface and Interface Science Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yasuaki Einaga
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan.,ACCEL , JST , 3-14-1 Hiyoshi , Yokohama , Kanagawa 223-8522 , Japan
| |
Collapse
|
49
|
Irkham, Fiorani A, Valenti G, Kamoshida N, Paolucci F, Einaga Y. Electrogenerated Chemiluminescence by in Situ Production of Coreactant Hydrogen Peroxide in Carbonate Aqueous Solution at a Boron-Doped Diamond Electrode. J Am Chem Soc 2020; 142:1518-1525. [PMID: 31922404 DOI: 10.1021/jacs.9b11842] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An electrogenerated chemiluminescence (ECL) system by in situ coreactant production, where Ru(bpy)32+ emission is generated at a boron-doped diamond (BDD) electrode, is presented. The system takes advantage of the unique properties of BDD to promote oxidation of carbonate (CO32-) into peroxydicarbonate (C2O62-), which further reacts with water to form hydrogen peroxide (H2O2), which acts as a coreactant for Ru(bpy)32+ ECL. Investigation of the mechanism reveals that ECL emission is triggered by the reduction of H2O2 to hydroxyl radicals (OH•), which later react with the reduced Ru(bpy)3+ molecules to form excited states, followed by light emission. The ECL signal was found to increase with the concentration of CO32-; therefore, with the concentration of electrogenerated H2O2, although at the same time, higher concentrations of H2O2 can quench the ECL emission, resulting in a decrease in intensity. The carbonate concentration, pH, and oxidation parameters, such as potential and time, were optimized to find the best emission conditions.
Collapse
Affiliation(s)
- Irkham
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| | - Andrea Fiorani
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi, 2 , Bologna 40126 , Italy
| | - Naoki Kamoshida
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi, 2 , Bologna 40126 , Italy
| | - Yasuaki Einaga
- Department of Chemistry , Keio University , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan.,JST-ACCEL , 3-14-1 Hiyoshi , Yokohama 223-8522 , Japan
| |
Collapse
|
50
|
Lei YM, Zhuo Y, Guo ML, Chai YQ, Yuan R. Pore Confinement-Enhanced Electrochemiluminescence on SnO 2 Nanocrystal Xerogel with NO 3- As Co-Reactant and Its Application in Facile and Sensitive Bioanalysis. Anal Chem 2020; 92:2839-2846. [PMID: 31872752 DOI: 10.1021/acs.analchem.9b05367] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, 10-fold electrochemiluminescence (ECL) enhancement from a porous SnO2 nanocrystal (SnO2 NC) xerogel (vs discrete SnO2 NCs) was first observed with NO3- as a novel coreactant. This new booster phenomenon caused by pore characteristic was defined as "pore confinement-induced ECL enhancement", which originated from two possible reasons: First, the SnO2 NC xerogel with hierarchically porous structure could not only localize massive luminophore near the electrode surface, more importantly, but could accelerate the electrochemical and chemiluminescence reaction efficiency because the pore channels of xerogel could promote the mass transport and electron transfer in the confined spaces. Second, the NO3- could be in situ reduced easily to the active nitrogen species by means of the pore confinement effect, which could be served as a new coreactant for nanocrystal-based ECL amplification with the excellent stability and good biocompatibility. As a proof of concept, a facile and sensitive sensing platform for SO32- detection has been successfully constructed upon effectively quenching of SO32- toward the SnO2 NC xerogel/NO3- ECL system. The key feature about this work presented a grand avenue to achieve the strong ECL signal, especially from weak emitters, which gave a fresh impetus to the construction of new-generation of surface-confined ECL platform with potential applications in ECL imaging and sensing.
Collapse
Affiliation(s)
- Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Mu-Lin Guo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|