1
|
Goyal A, Verma S, Singh L, Singh B, Draksharapu A. Prussian blue analogue heterointerface on a pre-oxidized copper foam surface for enhanced anodic oxidation performance. Chem Commun (Camb) 2025; 61:6823-6826. [PMID: 40211886 DOI: 10.1039/d5cc01056j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We developed CoFe-PBA on a pre-oxidized copper foam surface (CoFe-PBA@A-CF) for electrocatalytic benzyl alcohol oxidation. CoFe-PBA@A-CF decreased the cell voltage by 0.17 V in a two-electrode setup after substituting the OER with the BAOR. The pre-oxidation of CF enhanced the surface area and improved charge transfer, boosting the catalytic performance.
Collapse
Affiliation(s)
- Ayusie Goyal
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Shalini Verma
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Labham Singh
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Baghendra Singh
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
2
|
Azeem S, Soriano-López J, Brotons-Alcázar I, Allen C, Torres-Cavanillas R, Sanchis-Gual R, Coronado E. Design of Core@Shell Nanoparticles Based on Gold and Magnetic NiFe Prussian-Blue Analogues Featuring Shape-Dependent Magnetic and Electrochemical Activity. Inorg Chem 2025; 64:6510-6518. [PMID: 40139207 PMCID: PMC11979887 DOI: 10.1021/acs.inorgchem.4c05320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Au@Prussian-Blue analogue (PBA) core@shell nanoparticles (NPs) are highly versatile nanostructures with complementary and shape-dependent properties of interest in the current technologies. However, due to the high reactivity of cyanides toward Au, scarce PBAs have been successfully synthesized in direct contact with Au NPs, leaving the formation of anisotropic Au@PBA NPs as a significant synthetic challenge. Here, we have developed a robust protocol for synthesizing core@shell NPs, composed of a magnetic CsNi[Fe(CN)6] PBA shell grown on individual Au NPs, regardless of the core morphology (spheres, rods, or stars). Specifically, the uniqueness of our protocol lies in the prior Au core functionalization with anchoring molecules that facilitate PBA growth while preventing Au etching and preserving the initial oxidation states of the metals. This has afforded direct growth of ferromagnetic NiIIFeIII PBAs on Au NPs. Moreover, by exploiting the structural mismatch at the Au/PBA interface and the curvature of anisotropic Au templates, we manage to induce a substantial structural strain within the PBA shell. When star-shaped Au nanoparticles are used, a maximum strain of 2.0% is reached. This strain combined with an increased polycrystallinity lead to modifications in the PBA catalytic properties, resulting in a 10-fold improvement in the intrinsic electrocatalytic activity.
Collapse
Affiliation(s)
- Shoaib Azeem
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Joaquín Soriano-López
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Isaac Brotons-Alcázar
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Christopher Allen
- Electron
Physical Science Imaging Centre, Diamond
Light Source, Didcot OX11 0DE, U.K.
| | - Ramón Torres-Cavanillas
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
- Department
of Materials, University of Oxford, 21 Banbury Rd, Oxford OX2 6NN, U.K.
| | - Roger Sanchis-Gual
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Eugenio Coronado
- Instituto
de Ciencia Molecular, Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| |
Collapse
|
3
|
Wang K, Xu Y, Daneshvariesfahlan V, Rafique M, Fu Q, Wei H, Zhang Y, Zhang J, Zhang B, Song B. Insight into the structural reconstruction of alkaline water oxidation electrocatalysts. NANOSCALE 2025; 17:6287-6307. [PMID: 39957262 DOI: 10.1039/d4nr05426a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The oxygen-evolution reaction (OER) is an indispensable component of various energy storage and conversion electrocatalytic systems. However, the slow reaction kinetics have forced the development of advanced, efficient, and inexpensive OER electrocatalysts to break through the bottleneck of its application. Recently, the structural reconstruction of precatalysts has provided a promising avenue to boost the catalytic activity of electrocatalysts. Structural reconstruction implies atomic rearrangement and composition change of the pristine catalytic materials, which is a very complex process. Therefore, it is very crucial to have a deep understanding of the reconstruction chemical process and then modulate the reconstruction by deliberate design of electrochemical conditions and precatalysts. However, a systematic review of the structural reconstruction process, research methods, influencing factors and structure-performance relationship remains elusive, significantly impeding the further developments of efficient electrocatalysts based on structural reconstruction chemistry. This critical review is dedicated to providing a deep insight into the structural reconstruction during alkaline water oxidation, comprehensively summarizing the basic research methods to understand the structural evolution process and various factors affecting the structural reconstruction process, and providing a reference and basis for regulating the dynamic reconstruction. Moreover, the impact of reconstruction on the structure and performance is also covered. Finally, challenges and perspectives for the future study on structural reconstruction are discussed. This review will offer future guidelines for the rational development of state-of-the-art OER electrocatalysts.
Collapse
Affiliation(s)
- Kaixi Wang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Yifei Xu
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | | | - Moniba Rafique
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiang Fu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, China
| | - Yumin Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiheng Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bing Zhang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
| | - Bo Song
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, China.
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences; Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Singh B. Exploring suitability of solid 3D substrates for designing self-supported electrocatalysts for water splitting. Dalton Trans 2024; 53:15390-15402. [PMID: 39221489 DOI: 10.1039/d4dt01842g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The choice of solid 3D substrates to design electrocatalysts significantly impacts the efficiency and effectiveness of self-supported electrocatalysts used in water splitting. These substrates are pivotal in significantly boosting the performance by providing structural support, facilitating electron transport, and increasing the active surface area. This improvement leads to higher catalytic performance and better stability, ultimately optimizing the electrocatalytic process. The interaction between the substrate and the electrocatalyst can also affect the intrinsic properties of the catalyst, further influencing its performance. Therefore, understanding and optimizing the use of solid 3D substrates is vital for advancing water-splitting technologies. This article explores the critical role of solid 3D substrates in enhancing the activity of self-supported materials for water splitting. By examining recent developments and research in this region, we target to showcase a comprehensive understanding of how different 3D substrates influence electrocatalyst properties and performance and to highlight future directions for optimizing these systems in water-splitting applications.
Collapse
Affiliation(s)
- Baghendra Singh
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
5
|
Wang Y, Cui S, Tian Z, Han M, Zhao T, Li W. Ge-Doped Hematite with FeCoNi-B i as Cocatalyst for High-Performing Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400316. [PMID: 38716992 DOI: 10.1002/smll.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Indexed: 10/04/2024]
Abstract
Hematite is a promising photoanode material for photoelectrochemical water-splitting technology. However, the low current density associated with the low conductivity, low charge carrier mobility, and poor oxygen evolution catalytic activity is a challenging issue for the material. In this study, the challenge is addressed by introducing Germanium (Ge) doping, coupled with the use of FeCoNi-Bi as a co-catalyst. Ge doping not only increases the conductivity and charge carrier concentration of the hematite photoanode, but also induces nanopores, thereby expanding its electrochemical reactive surface area to facilitate the oxygen evolution reaction. In the meantime, the FeCoNi-Bi cocatalyst electrodeposited onto the surface of Ge-doped hematite, improves the oxygen evolution reaction performance. As a result, the obtained photoanode achieves a photocurrent density of 2.31 mA cm-2 at 1.23 VRHE, which is three times higher than that of hematite (0.72 mA cm-2). Moreover, a new analytical method is introduced to scrutinize both the positive and negative effects of Ge doping and FeCoNi-Bi cocatalyst on the photoanode performance by decoupling the photoelectrochemical process steps. Overall, this study not only enhances the performance of hematite photoanodes but also guides their rational design and systematic assessment.
Collapse
Affiliation(s)
- Yueyang Wang
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin, 300350, P. R. China
- School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Shibo Cui
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin, 300350, P. R. China
- School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhenyu Tian
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin, 300350, P. R. China
- School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
| | - Meisheng Han
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tianshou Zhao
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenjia Li
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, P. R. China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
6
|
Kosasang S, Ma N, Impeng S, Bureekaew S, Namiki Y, Tsujimoto M, Saothayanun T, Yamada H, Horike S. Prussian Blue Analogue Glasses for Photoinduced CO 2 Conversion. J Am Chem Soc 2024; 146:17793-17800. [PMID: 38913361 DOI: 10.1021/jacs.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Crystal-to-glass transformation is a powerful approach to modulating the chemical and physical properties of crystals. Here we demonstrate that the glass transformation of cobalt hexacyanoferrate crystals, one of the Prussian blue analogues, increased the concentration of open metal sites and altered the electronic state while maintaining coordination geometries and short-range ordering in the structure. The compositional and structural changes were characterized by X-ray absorption fine structure, energy dispersive X-ray spectroscopy, and X-ray total scattering. The changes contribute to the flat band potential of the glass becoming closer to the redox potential of CO2 reduction. The valence band energy of the glass also shifts, resulting in lower band gap energy. Both the increased open metal sites and the optimal electronic structure upon vitrification enhance photocatalytic activity toward CO2-to-CO conversions (9.9 μmol h-1 CO production) and selectivity (72.4%) in comparison with the crystalline counterpart (3.9 μmol h-1 and 42.8%).
Collapse
Affiliation(s)
- Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nattapol Ma
- Center for Membrane Separations, Adsorption, Catalysis &; Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200 F Box 2454, 3001 Leuven, Belgium
| | - Sarawoot Impeng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sareeya Bureekaew
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Yuji Namiki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Frontier Research Center, POLA Chemical Industries, Inc., Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taya Saothayanun
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Hiroki Yamada
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
7
|
Moss B, Svane KL, Nieto-Castro D, Rao RR, Scott SB, Tseng C, Sachs M, Pennathur A, Liang C, Oldham LI, Mazzolini E, Jurado L, Sankar G, Parry S, Celorrio V, Dawlaty JM, Rossmeisl J, Galán-Mascarós JR, Stephens IEL, Durrant JR. Cooperative Effects Drive Water Oxidation Catalysis in Cobalt Electrocatalysts through the Destabilization of Intermediates. J Am Chem Soc 2024; 146:8915-8927. [PMID: 38517290 PMCID: PMC10995992 DOI: 10.1021/jacs.3c11651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
A barrier to understanding the factors driving catalysis in the oxygen evolution reaction (OER) is understanding multiple overlapping redox transitions in the OER catalysts. The complexity of these transitions obscure the relationship between the coverage of adsorbates and OER kinetics, leading to an experimental challenge in measuring activity descriptors, such as binding energies, as well as adsorbate interactions, which may destabilize intermediates and modulate their binding energies. Herein, we utilize a newly designed optical spectroelectrochemistry system to measure these phenomena in order to contrast the behavior of two electrocatalysts, cobalt oxyhydroxide (CoOOH) and cobalt-iron hexacyanoferrate (cobalt-iron Prussian blue, CoFe-PB). Three distinct optical spectra are observed in each catalyst, corresponding to three separate redox transitions, the last of which we show to be active for the OER using time-resolved spectroscopy and electrochemical mass spectroscopy. By combining predictions from density functional theory with parameters obtained from electroadsorption isotherms, we demonstrate that a destabilization of catalytic intermediates occurs with increasing coverage. In CoOOH, a strong (∼0.34 eV/monolayer) destabilization of a strongly bound catalytic intermediate is observed, leading to a potential offset between the accumulation of the intermediate and measurable O2 evolution. We contrast these data to CoFe-PB, where catalytic intermediate generation and O2 evolution onset coincide due to weaker binding and destabilization (∼0.19 eV/monolayer). By considering a correlation between activation energy and binding strength, we suggest that such adsorbate driven destabilization may account for a significant fraction of the observed OER catalytic activity in both materials. Finally, we disentangle the effects of adsorbate interactions on state coverages and kinetics to show how adsorbate interactions determine the observed Tafel slopes. Crucially, the case of CoFe-PB shows that, even where interactions are weaker, adsorption remains non-Nernstian, which strongly influences the observed Tafel slope.
Collapse
Affiliation(s)
- Benjamin Moss
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | | | - David Nieto-Castro
- Institut
Català d’Investigació Química (ICIQ), Avda. Països Catalans 16, 43007, Tarragona, Spain
| | - Reshma R. Rao
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Soren B. Scott
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Cindy Tseng
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United
States
| | - Michael Sachs
- SLAC
National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Anuj Pennathur
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United
States
| | - Caiwu Liang
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Louise I. Oldham
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Eva Mazzolini
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Lole Jurado
- Institut
Català d’Investigació Química (ICIQ), Avda. Països Catalans 16, 43007, Tarragona, Spain
| | - Gopinathan Sankar
- SLAC
National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Stephen Parry
- Diamond
Light Source, Harwell
Science and Innovation Campus, Fermi Ave., Didcot OX11 0D, United Kingdom
| | - Veronica Celorrio
- Diamond
Light Source, Harwell
Science and Innovation Campus, Fermi Ave., Didcot OX11 0D, United Kingdom
| | - Jahan M. Dawlaty
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United
States
| | - Jan Rossmeisl
- University
of Copenhagen, Universitetsparken
5, 2100 København
Ø, Denmark
| | - J. R. Galán-Mascarós
- Institut
Català d’Investigació Química (ICIQ), Avda. Països Catalans 16, 43007, Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Ifan E. L. Stephens
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - James R. Durrant
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| |
Collapse
|
8
|
Peighambardoust N, Sadigh Akbari S, Lomlu R, Aydemir U, Karadas F. Tunable Photocatalytic Activity of CoFe Prussian Blue Analogue Modified SrTiO 3 Core-Shell Structures for Solar-Driven Water Oxidation. ACS MATERIALS AU 2024; 4:214-223. [PMID: 38496046 PMCID: PMC10941283 DOI: 10.1021/acsmaterialsau.3c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 03/19/2024]
Abstract
This study presents a pioneering semiconductor-catalyst core-shell architecture designed to enhance photocatalytic water oxidation activity significantly. This innovative assembly involves the in situ deposition of CoFe Prussian blue analogue (PBA) particles onto SrTiO3 (STO) and blue SrTiO3 (bSTO) nanocubes, effectively establishing a robust p-n junction, as demonstrated by Mott-Schottky analysis. Of notable significance, the STO/PB core-shell catalyst displayed remarkable photocatalytic performance, achieving an oxygen evolution rate of 129.6 μmol g-1 h-1, with stability over an extended 9-h in the presence of S2O82- as an electron scavenger. Thorough characterization unequivocally verified the precise alignment of the band energies within the STO/PB core-shell assembly. Our research underscores the critical role of tailored semiconductor-catalyst interfaces in advancing the realm of photocatalysis and its broader applications in renewable energy technologies.
Collapse
Affiliation(s)
- Naeimeh
Sadat Peighambardoust
- Koç
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul - 34450, Türkiye
| | - Sina Sadigh Akbari
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara - 06800, Türkiye
| | - Rana Lomlu
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara - 06800, Türkiye
| | - Umut Aydemir
- Koç
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul - 34450, Türkiye
- Department
of Chemistry, Koç University, Sariyer, Istanbul - 34450, Türkiye
| | - Ferdi Karadas
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara - 06800, Türkiye
| |
Collapse
|
9
|
Wang A, Du M, Ni J, Liu D, Pan Y, Liang X, Liu D, Ma J, Wang J, Wang W. Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field. Nat Commun 2023; 14:6733. [PMID: 37872207 PMCID: PMC10593843 DOI: 10.1038/s41467-023-42542-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
The regulation of heterogeneous material properties to enhance the peroxymonosulfate (PMS) activation to degrade emerging organic pollutants remains a challenge. To solve this problem, we synthesize S-scheme heterojunction PBA/MoS2@chitosan hydrogel to achieve photoexcitation synergistic PMS activation. The constructed heterojunction photoexcited carriers undergo redox conversion with PMS through S-scheme transfer pathway driven by the directional interface electric field. Multiple synergistic pathways greatly enhance the reactive oxygen species generation, leading to a significant increase in doxycycline degradation rate. Meanwhile, the 3D polymer chain spatial structure of chitosan hydrogel is conducive to rapid PMS capture and electron transport in advanced oxidation process, reducing the use of transition metal activator and limiting the leaching of metal ions. There is reason to believe that the synergistic activation of PMS by S-scheme heterojunction regulated by photoexcitation will provide a new perspective for future material design and research on enhancing heterologous catalysis oxidation process.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Meng Du
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jiaxin Ni
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yunhao Pan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiongying Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland.
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
10
|
Salazar-Avalos S, Soliz A, Cáceres L, Conejeros S, Brito I, Galvez E, Galleguillos Madrid FM. Metal Recovery from Natural Saline Brines with an Electrochemical Ion Pumping Method Using Hexacyanoferrate Materials as Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2557. [PMID: 37764586 PMCID: PMC10537048 DOI: 10.3390/nano13182557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 09/29/2023]
Abstract
The electrochemical ion pumping device is a promising alternative for the development of the industry of recovering metals from natural sources-such as seawater, geothermal water, well brine, or reverse osmosis brine-using electrochemical systems, which is considered a non-evaporative process. This technology is potentially used for metals like Li, Cu, Ca, Mg, Na, K, Sr, and others that are mostly obtained from natural brine sources through a combination of pumping, solar evaporation, and solvent extraction steps. As the future demand for metals for the electronic industry increases, new forms of marine mining processing alternatives are being implemented. Unfortunately, both land and marine mining, such as off-shore and deep sea types, have great potential for severe environmental disruption. In this context, a green alternative is the mixing entropy battery, which is a promising technique whereby the ions are captured from a saline natural source and released into a recovery solution with low ionic force using intercalation materials such as Prussian Blue Analogue (PBA) to store cations inside its crystal structure. This new technique, called "electrochemical ion pumping", has been proposed for water desalination, lithium concentration, and blue energy recovery using the difference in salt concentration. The raw material for this technology is a saline solution containing ions of interest, such as seawater, natural brines, or industrial waste. In particular, six main ions of interest-Na+, K+, Mg2+, Ca2+, Cl-, and SO42--are found in seawater, and they constitute 99.5% of the world's total dissolved salts. This manuscript provides relevant information about this new non-evaporative process for recovering metals from aqueous salty solutions using hexacianometals such as CuHCF, NiHCF, and CoHCF as electrodes, among others, for selective ion removal.
Collapse
Affiliation(s)
- Sebastian Salazar-Avalos
- Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1240000, Chile;
| | - Alvaro Soliz
- Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Av. Copayapu 485, Copiapó 1530000, Chile;
| | - Luis Cáceres
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1271155, Chile;
| | - Sergio Conejeros
- Departamento de Química, Universidad Católica del Norte, Av. Angamos 610, Antofagasta 1270709, Chile;
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1240000, Chile;
| | - Edelmira Galvez
- Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte, Av. Angamos 610, Antofagasta 1270709, Chile;
| | - Felipe M. Galleguillos Madrid
- Centro de Desarrollo Energético de Antofagasta, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Antofagasta 1240000, Chile;
| |
Collapse
|
11
|
Mukherjee P, Sathiyan K, Bar-Ziv R, Zidki T. Chemically Etched Prussian Blue Analog-WS 2 Composite as a Precatalyst for Enhanced Electrocatalytic Water Oxidation in Alkaline Media. Inorg Chem 2023; 62:14484-14493. [PMID: 37610830 PMCID: PMC10481376 DOI: 10.1021/acs.inorgchem.3c02537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 08/25/2023]
Abstract
The electrochemical water-splitting reaction is a promising source of ecofriendly hydrogen fuel. However, the oxygen evolution reaction (OER) at the anode impedes the overall process due to its four-electron oxidation steps. To address this issue, we developed a highly efficient and cost-effective electrocatalyst by transforming Co-Fe Prussian blue analog nanocubes into hollow nanocages using dimethylformamide as a mild etchant and then anchoring tungsten disulfide (WS2) nanoflowers onto the cages to boost OER efficiency. The resulting hybrid catalyst-derived oxide demonstrated a low overpotential of 290 mV at a current density of 10 mA cm-2 with a Tafel slope of 75 mV dec-1 in 1.0 M KOH and a high faradaic efficiency of 89.4%. These results were achieved through the abundant electrocatalytically active sites, enhanced surface permeability, and high electronic conductivity provided by WS2 nanoflowers and the porous three-dimensional (3D) architecture of the nanocages. Our research work uniquely combines surface etching of Co-Fe PBA with WS2 growth to create a promising OER electrocatalyst. This study provides a potential solution to the challenge of the OER in electrochemical water-splitting, contributing to UN SDG 7: Affordable and clean energy.
Collapse
Affiliation(s)
- Poulami Mukherjee
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| | - Krishnamoorthy Sathiyan
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| | - Ronen Bar-Ziv
- Department
of Chemistry, Nuclear Research Centre, Negev, Beer-Sheva 84190, Israel
| | - Tomer Zidki
- Department
of Chemical Sciences and the Centers for Radical Reactions and Material
Research, Ariel University, Ariel 4077625, Israel
| |
Collapse
|
12
|
Tootoonchian P, Kwiczak-Yiğitbaşı J, Turab Ali Khan M, Chalil Oglou R, Holló G, Karadas F, Lagzi I, Baytekin B. A Dormant Reagent Reaction-Diffusion Method for the Generation of Co-Fe Prussian Blue Analogue Periodic Precipitate Particle Libraries. Chemistry 2023; 29:e202301261. [PMID: 37098116 DOI: 10.1002/chem.202301261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 04/27/2023]
Abstract
Liesegang patterns that develop as a result of reaction-diffusion can simultaneously form products with slightly different sizes spatially separated in a single medium. We show here a reaction-diffusion method using a dormant reagent (citrate) for developing Liesegang patterns of cobalt hexacyanoferrate Prussian Blue analog (PBA) particle libraries. This method slows the precipitation reaction and produces different-sized particles in a gel medium at different locations. The gel-embedded particles are still catalytically active. Finally, the applicability of the new method to other PBAs and 2D systems is presented. The method proves promising for obtaining similar inorganic framework libraries with catalytic abilities.
Collapse
Affiliation(s)
| | | | | | | | - Gábor Holló
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Ferdi Karadas
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
- UNAM, Bilkent University, Ankara, 06800, Turkey
| | - István Lagzi
- ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
| | - Bilge Baytekin
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey
- UNAM, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
13
|
Díez-García MI, Montaña-Mora G, Botifoll M, Cabot A, Arbiol J, Qamar M, Morante JR. Cobalt-Iron Oxyhydroxide Obtained from the Metal Phosphide: A Highly Effective Electrocatalyst for the Oxygen Evolution Reaction at High Current Densities. ACS APPLIED ENERGY MATERIALS 2023; 6:5690-5699. [PMID: 37323204 PMCID: PMC10266373 DOI: 10.1021/acsaem.3c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023]
Abstract
The development of high current density anodes for the oxygen evolution reaction (OER) is fundamental to manufacturing practical and reliable electrochemical cells. In this work, we have developed a bimetallic electrocatalyst based on cobalt-iron oxyhydroxide that shows outstanding performance for water oxidation. Such a catalyst is obtained from cobalt-iron phosphide nanorods that serve as sacrificial structures for the formation of a bimetallic oxyhydroxide through phosphorous loss concomitantly to oxygen/hydroxide incorporation. CoFeP nanorods are synthesized using a scalable method using triphenyl phosphite as a phosphorous precursor. They are deposited without the use of binders on nickel foam to enable fast electron transport, a highly effective surface area, and a high density of active sites. The morphological and chemical transformation of the CoFeP nanoparticles is analyzed and compared with the monometallic cobalt phosphide in alkaline media and under anodic potentials. The resulting bimetallic electrode presents a Tafel slope as low as 42 mV dec-1 and low overpotentials for OER. For the first time, an anion exchange membrane electrolysis device with an integrated CoFeP-based anode was tested at a high current density of 1 A cm-2, demonstrating excellent stability and Faradaic efficiency near 100%. This work opens up a way for using metal phosphide-based anodes for practical fuel electrosynthesis devices.
Collapse
Affiliation(s)
- María Isabel Díez-García
- Catalonia
Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià
del Besòs, 08930 Barcelona, Spain
| | - Guillem Montaña-Mora
- Catalonia
Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià
del Besòs, 08930 Barcelona, Spain
| | - Marc Botifoll
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
| | - Andreu Cabot
- Catalonia
Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià
del Besòs, 08930 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia 08010, Spain
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia 08010, Spain
| | - Mohammad Qamar
- Interdisciplinary
Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
| | - Joan Ramon Morante
- Catalonia
Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià
del Besòs, 08930 Barcelona, Spain
| |
Collapse
|
14
|
Liu J, Du W, Guo S, Pan J, Hu J, Xu X. Iron-Locked Hydr(oxy)oxide Catalysts via Ion-Compensatory Reconstruction Boost Large-Current-Density Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300717. [PMID: 37026683 PMCID: PMC10238203 DOI: 10.1002/advs.202300717] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Indexed: 06/04/2023]
Abstract
Nickel-iron based hydr(oxy)oxides have been well recognized as one of the best oxygen-evolving catalysts in alkaline water electrolysis. A crucial problem, however, is that iron leakage during prolonged operation would lead to the oxygen evolution reaction (OER) deactivation over time, especially under large current densities. Here, the NiFe-based Prussian blue analogue (PBA) is designed as a structure-flexible precursor for navigating an electrochemical self-reconstruction (ECSR) with Fe cation compensation to fabricate a highly active hydr(oxy)oxide (NiFeOx Hy ) catalyst stabilized with NiFe synergic active sites. The generated NiFeOx Hy catalyst exhibits the low overpotentials of 302 and 313 mV required to afford large current densities of 500 and 1000 mA cm-2 , respectively. Moreover, its robust stability over 500 h at 500 mA cm-2 stands out among the NiFe-based OER catalysts reported previously. Various in/ex situ studies indicate that the Fe fixation by dynamic reconstruction process can reinforce the Fe-activated effect on the OER amenable to the industrial-level large current conditions against the Fe leakage. This work opens up a feasible strategy to design highly active and durable catalysts via thermodynamically self-adaptive reconstruction engineering.
Collapse
Affiliation(s)
- Jiao Liu
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Wei Du
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Siying Guo
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Jing Pan
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Jingguo Hu
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| | - Xiaoyong Xu
- College of Physics Science and TechnologyYangzhou UniversityYangzhou225002China
| |
Collapse
|
15
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
16
|
Sanchis-Gual R, Coronado-Puchau M, Mallah T, Coronado E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Fa D, Yuan J, Feng G, Lei S, Hu W. Regulating the Synergistic Effect in Bimetallic Two-Dimensional Polymer Oxygen Evolution Reaction Catalysts by Adjusting the Coupling Strength Between Metal Centers. Angew Chem Int Ed Engl 2023; 62:e202300532. [PMID: 36737406 DOI: 10.1002/anie.202300532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Bimetallic electrocatalysts with its superior performance has a broad application prospect in oxygen evolution reaction (OER), but the fundamental understanding of the mechanism of synergistic effect is still limited since there lacks a practical way to decouple the influence factors on the intrinsic activity of active sites from others. Herein, a series of bimetallic Co-Ni two-dimensional polymer (2DP) model OER catalysts with well-defined architecture, monolayer characteristic, were designed and synthesized to explore the influence of the coupling strength between metal centers on OER performance. The coupling strength was regulated by adjusting the spacing between metal centers or the conjugation degree of bridge skeleton. Among the examined 2DPs, CoTAPP-Ni-MF-2DP, which has the strongest coupling strength between metal centers exhibited the best OER performance. These model systems can help to explore the precise structure-performance relationships, which is important for the rational catalyst design at the atomic/molecular levels.
Collapse
Affiliation(s)
- Dejuan Fa
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangyan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
18
|
Tabe H, Seki Y, Yamane M, Nakazono T, Yamada Y. Synergistic Effect of Fe II and Mn II Ions in Cyano-Bridged Heterometallic Coordination Polymers on Catalytic Selectivity of Benzene Oxygenation to Phenol. J Phys Chem Lett 2023; 14:158-163. [PMID: 36579843 DOI: 10.1021/acs.jpclett.2c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A cyano-bridged heterometallic coordination polymer with partial deficiencies of CN- ligands, [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)], forms open metal sites both on MnII and FeII ions by liberation of monodentate ligands such as NH3 and H2O. [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] exhibits high catalytic activity and selectivity of benzene oxygenation to phenol in the presence of m-chloroperoxybenzoic acid as an oxidant. The postcatalytic spectroscopy of [MnII(H2O)8/3]3/2[FeII(CN)5(NH3)] and catalysis comparison with a physical mixture of [MnII(H2O)3]2[FeII(CN)6] and [Fe(H2O)3/2]4/3[Fe(CN)6], which has open metal sites on both MnII and Fe ions separately, indicated that the high activity resulted from high oxidation ability and phenol adsorption ability of FeII and MnII ions, respectively.
Collapse
Affiliation(s)
- Hiroyasu Tabe
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study (IAS), Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Seki
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mari Yamane
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
19
|
Heterogeneous electro-Fenton catalysis with novel bimetallic CoFeC electrode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Lin M, Luo Y, Zhang T, Shen X, Zhuang Z, Yu Y. Trade-Off of Metal Sites in Fe-Ni Bimetal Metal-Organic Frameworks for Efficient CO 2 Photoreduction with Nearly 100% CO Selectivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52868-52876. [PMID: 36395169 DOI: 10.1021/acsami.2c15114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This work disclosed the trade-off effect of two metal sites, which display distinct, key functionalities in naturally occurring and artificial catalysts for developing an advanced CO2 reduction system. To exploit the metal-organic frameworks (MOFs) as advanced catalysts, we prepared a series of Prussian blue analogues (FeNix PBAs) of tunable Ni/Fe molar ratio without changing the oxidation state of Fe and Ni for use as a photocatalyst in the CO2 reduction reaction (CRR). The FeNi0.66 PBA gives a superior CO yield rate (14.28 mmol·g-1·h-1) with nearly 100% CO selectivity, but the PBA would be basically CRR-inactive without either Ni or Fe. Experimental and calculation studies demonstrate that Fe and Ni display distinct functionalities. Specifically, Fe is an efficient mediator that boosts the electron transfer both from the photosensitizer to FeNix PBA and from FeNix PBA to CO2, and Ni serves as the active site for CO2 adsorption and reduction. Intriguingly, when there is already sufficient Ni in the catalyst, further increase of the Ni content gives marginal gains in the CO2 adsorption affinity that cannot offset the weakened electron transfer due to the Ni excess. The findings can help advance the design of bimetallic MOF catalysts that mimic naturally occurring bimetallic catalysts.
Collapse
Affiliation(s)
- Mingxiong Lin
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou350108, China
| | - Yifei Luo
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou350108, China
| | - Tingshi Zhang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou350108, China
| | - Xiaoxin Shen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou350108, China
| |
Collapse
|
21
|
Binder-Free Fabrication of Prussian Blue Analogues Based Electrocatalyst for Enhanced Electrocatalytic Water Oxidation. Molecules 2022; 27:molecules27196396. [PMID: 36234933 PMCID: PMC9571080 DOI: 10.3390/molecules27196396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Developing a cost-effective, efficient, and stable oxygen evolution reaction (OER) catalyst is of great importance for sustainable energy conversion and storage. In this study, we report a facile one-step fabrication of cationic surfactant-assisted Prussian blue analogues (PBAs) Mx[Fe(CN)5CH3C6H4NH2]∙yC19H34NBr abbreviated as SF[Fe-Tol-M] (where SF = N-tridecyl-3-methylpyridinium bromide and M = Mn, Co and Ni) as efficient heterogeneous OER electrocatalysts. The electrocatalysts have been characterized by Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy (XPS). In the presence of cationic surfactant (SF), PBAs-based electrodes showed enhanced redox current, high surface area and robust stability compared to the recently reported PBAs. SF[Fe-Tol-Co] hybrid catalyst shows superior electrochemical OER activity with a much lower over-potential (610 mV) to attain the current density of 10 mA cm−2 with the Tafel slope value of 103 mV·dec−1 than that for SF[Fe-Tol-Ni] and SF[Fe-Tol-Mn]. Moreover, the electrochemical impedance spectroscopy (EIS) unveiled that SF[Fe-Tol-Co] exhibits smaller charge transfer resistance, which results in a faster kinetics towards OER. Furthermore, SF[Fe-Tol-Co] offered excellent stability for continues oxygen production over extended reaction time. This work provides a surface assisted facile electrode fabrication approach for developing binder-free OER electrocatalysts for efficient water oxidation.
Collapse
|
22
|
Meng X, Xu S, Zhang C, Feng P, Li R, Guan H, Ding Y. Prussian Blue Type Cocatalysts for Enhancing the Photocatalytic Water Oxidation Performance of BiVO
4. Chemistry 2022; 28:e202201407. [DOI: 10.1002/chem.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Shiming Xu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Chenchen Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Pengfei Feng
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Rui Li
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
| | - Hongxia Guan
- School of Science and Technology Georgia Gwinnett College Lawrenceville GA, 30043 USA
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Advanced Catalysis of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou Gansu 730000 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou Gansu 730000 P. R. China
| |
Collapse
|
23
|
Meng X, Wang S, Zhang C, Dong C, Li R, Li B, Wang Q, Ding Y. Boosting Hydrogen Evolution Performance of a CdS-Based Photocatalyst: In Situ Transition from Type I to Type II Heterojunction during Photocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01877] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shuyan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chenchen Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Congzhao Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Rui Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Bonan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|
24
|
Hegner FS, Galán-Mascarós JR, López N. Lowering the Water Oxidation Overpotential by Spin-Crossover in Cobalt Hexacyanoferrate. J Phys Chem Lett 2022; 13:4104-4110. [PMID: 35502905 DOI: 10.1021/acs.jpclett.2c00614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oxygen evolution reaction (OER) is limited by the inherent linear scaling relationships of its reaction intermediates. Manipulating the spin configuration of the water oxidation intermediates allows us to overcome these constraints. Cobalt hexacyanoferrate (CoFe-PB) is an efficient and robust water oxidation catalyst and further known as a magnetic switch. Its versatile electronic structure renders it a potential candidate for magnetic tuning of the OER. Herein, we used first-principles density functional theory calculations to describe the OER on two different CoFe-PB model systems and evaluated the possibility for spin-crossover (SCO) of their resting states. We show that SCO during OER can significantly lower the overpotential by 0.7 V, leading to an overpotential of around 0.3 V, which is in agreement with the experimentally measured value. Applying an external potential >1.5 V vs SHE, the SCO-assisted pathway becomes largely favored and most likely the predominant reaction pathway.
Collapse
Affiliation(s)
- Franziska Simone Hegner
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Technical University of Munich (TUM), 85748 Garching, Germany
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
25
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. "Plug and Play" Photosensitizer-Catalyst Dyads for Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21131-21140. [PMID: 35482427 PMCID: PMC9100495 DOI: 10.1021/acsami.2c01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
We present a simple and easy-to-scale synthetic method to plug common organic photosensitizers into a cyanide-based network structure for the development of photosensitizer-water oxidation catalyst (PS-WOC) dyad assemblies for the photocatalytic water oxidation process. Three photosensitizers, one of which absorbs red light similar to P680 in photosystem II, were utilized to harvest different regions of the solar spectrum. Photosensitizers are covalently coordinated to CoFe Prussian blue structures to prepare PS-WOC dyads. All dyads exhibit steady water oxidation catalytic activities throughout a 6 h photocatalytic experiment. Our results demonstrate that the covalent coordination between the PS and WOC group not only enhances the photocatalytic activity but also improves the robustness of the organic PS group. The photocatalytic activity of "plug and play" dyads relies on several structural and electronic parameters, including the position of the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the PS with respect to the HOMO level of the catalytic site, the intensity and wavelength of the absorption band of the PS, and the number of catalytic sites.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
| | | | - Ekmel Ozbay
- NANOTAM—Nanotechnology
Research Center, Bilkent University, 06800 Ankara, Turkey
- Department
of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
- Department
of Physics, Faculty of Science Bilkent University, 06800 Ankara, Turkey
| | - Ferdi Karadas
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Turkey
| |
Collapse
|
26
|
Kobayashi A, Otsuka H, Yoshida M, Kato M. Fabrication of Ru-dye-sensitized Photoanodes Composed of a Prussian White-Prussian Blue Heterojunction toward Water Oxidation. CHEM LETT 2022. [DOI: 10.1246/cl.220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Atsushi Kobayashi
- Department of Chemistry Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Otsuka
- Department of Chemistry Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
27
|
He B, Zhang Q, Pan Z, Li L, Li C, Ling Y, Wang Z, Chen M, Wang Z, Yao Y, Li Q, Sun L, Wang J, Wei L. Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem Rev 2022; 122:10087-10125. [PMID: 35446541 PMCID: PMC9185689 DOI: 10.1021/acs.chemrev.1c00978] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Metal–organic
frameworks (MOFs) have recently emerged as
ideal electrode materials and precursors for electrochemical energy
storage and conversion (EESC) owing to their large specific surface
areas, highly tunable porosities, abundant active sites, and diversified
choices of metal nodes and organic linkers. Both MOF-based and MOF-derived
materials in powder form have been widely investigated in relation
to their synthesis methods, structure and morphology controls, and
performance advantages in targeted applications. However, to engage
them for energy applications, both binders and additives would be
required to form postprocessed electrodes, fundamentally eliminating
some of the active sites and thus degrading the superior effects of
the MOF-based/derived materials. The advancement of freestanding electrodes
provides a new promising platform for MOF-based/derived materials
in EESC thanks to their apparent merits, including fast electron/charge
transmission and seamless contact between active materials and current
collectors. Benefiting from the synergistic effect of freestanding
structures and MOF-based/derived materials, outstanding electrochemical
performance in EESC can be achieved, stimulating the increasing enthusiasm
in recent years. This review provides a timely and comprehensive overview
on the structural features and fabrication techniques of freestanding
MOF-based/derived electrodes. Then, the latest advances in freestanding
MOF-based/derived electrodes are summarized from electrochemical energy
storage devices to electrocatalysis. Finally, insights into the currently
faced challenges and further perspectives on these feasible solutions
of freestanding MOF-based/derived electrodes for EESC are discussed,
aiming at providing a new set of guidance to promote their further
development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chaowei Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mengxiao Chen
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yagang Yao
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore.,Institute of Materials Research and Engineering, A*Star, Singapore 138634, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
28
|
Lai C, Li H, Sheng Y, Zhou M, Wang W, Gong M, Wang K, Jiang K. 3D Spatial Combination of CN Vacancy-Mediated NiFe-PBA with N-Doped Carbon Nanofibers Network Toward Free-Standing Bifunctional Electrode for Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105925. [PMID: 35191617 PMCID: PMC9008428 DOI: 10.1002/advs.202105925] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Indexed: 06/01/2023]
Abstract
Constructing flexible free-standing electrodes with efficient bifunctional performance is significant for improving the performance of flexible Zinc-air batteries. Herein, a flexible free-standing bifunctional electrode (N2 -NiFe-PBA/NCF/CC-60) is constructed by the 3D spatial combination of CN vacancy-mediated NiFe Prussian Blue Analogue (NiFe-PBA) and N-doped carbon nanofibers (NCF) rooted on carbon cloth (CC). The in situ formed CN vacancies by N2 -plasma activation tune the local coordination environment and electronic structure of Ni-Fe active sites in NiFe-PBA, thus improving the oxygen evolution reaction (OER) catalytic intrinsic activity, and restraining the loss of Fe element during OER process. The combination of NiFe-PBA and NCF presents a 3D interworking network structure, which exhibits a large specific surface and excellent electrical conductivity, thus guaranteeing sufficient, stable, and efficient oxygen reduction reaction (ORR)/OER active sites. Therefore, the N2 -NiFe-PBA/NCF/CC-60 electrode delivers high-efficiency OER activity with a low overpotential (270 mV at 50 mA cm-2 ) and excellent ORR performance with a positive potential of 0.89 V at 5 mA cm-2 . The N2 -NiFe-PBA/NCF/CC-60 based Zn-air batteries display outstanding discharge/charge stability for 2000 cycles. Meanwhile, the corresponding flexible Zn-air batteries with satisfactory mechanical properties exhibit a low voltage gap of 0.52 V at 1.0 mA cm-2 .
Collapse
Affiliation(s)
- Chenglong Lai
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Haomiao Li
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- Engineering Research Center of Power Safety and EfficiencyMinistry of EducationWuhanHubei430074China
| | - Yi Sheng
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Min Zhou
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- Engineering Research Center of Power Safety and EfficiencyMinistry of EducationWuhanHubei430074China
| | - Wei Wang
- School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
- Engineering Research Center of Power Safety and EfficiencyMinistry of EducationWuhanHubei430074China
| | - Mingxing Gong
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430078China
| | - Kangli Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- Engineering Research Center of Power Safety and EfficiencyMinistry of EducationWuhanHubei430074China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologySchool of Electrical and Electronic EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanHubei430074China
| |
Collapse
|
29
|
Cobalt hexacyanoferrate as an effective cocatalyst boosting water oxidation on oxynitride TaON photocatalyst under visible light. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Zhang Y, Kuai C, Hu A, Ma L, Tan S, Hwang I, Mu L, Rahman MM, Sun CJ, Li L, Hu E, Lin F. Mechanistic Insights into the Interplay between Ion Intercalation and Water Electrolysis in Aqueous Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12130-12139. [PMID: 35230797 DOI: 10.1021/acsami.1c19684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving electrolyte stability to suppress water electrolysis represents a basic principle for designing aqueous batteries. Herein, we investigate counterintuitive roles that water electrolysis plays in regulating intercalation chemistry. Using the NaxFe[Fe(CN)6]∥NaTi2(PO4)3 (x < 1) aqueous battery as a platform, we report that high-voltage overcharging can serve as an electrochemical activation approach to achieving concurrent Na-ion intercalation and an electrolytic oxygen evolution reaction. When the cell capacity is intrinsically limited by deficient cyclable Na ions, the electrolytic water oxidation on the cathode allows for extra Na-ion intercalation from the electrolyte to the NaTi2(PO4)3 anode, leading to a major increase in cyclable Na ions and specific capacity. The parasitic oxygen generation and potential transition-metal dissolution, as proved by our synchrotron and imaging tools, can be significantly mitigated with a simple reassembling approach, which enables stable electrochemical performance and sheds light on manipulating ion intercalation and water electrolysis for battery fast charging and recycling.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24073, United States
| | - Chunguang Kuai
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24073, United States
| | - Anyang Hu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24073, United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sha Tan
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Inhui Hwang
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Linqin Mu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24073, United States
| | | | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Luxi Li
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Feng Lin
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24073, United States
| |
Collapse
|
31
|
Hu W, Zheng M, Duan H, Zhu W, Wei Y, Zhang Y, Pan K, Pang H. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Li A, Kong S, Guo C, Ooka H, Adachi K, Hashizume D, Jiang Q, Han H, Xiao J, Nakamura R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat Catal 2022. [DOI: 10.1038/s41929-021-00732-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Abstract
Hydrogen production from water electrolysis is one of the most promising approaches for the production of green H2, a fundamental asset for the decarbonization of the energy cycle and industrial processes. Seawater is the most abundant water source on Earth, and it should be the feedstock for these new technologies. However, commercial electrolyzers still need ultrapure water. The debate over the advantages and disadvantages of direct sea water electrolysis when compared with the implementation of a distillation/purification process before the electrolysis stage is building in the relevant research. However, this debate will remain open for some time, essentially because there are no seawater electrolyser technologies with which to compare the modular approach. In this study, we attempted to build and validate an autonomous sea water electrolyzer able to produce high-purity green hydrogen (>90%) from seawater. We were able to solve most of the problems that natural seawater electrolyses imposes (high corrosion, impurities, etc.), with decisions based on simplicity and sustainability, and those issues that are yet to be overcome were rationally discussed in view of future electrolyzer designs. Even though the performance we achieved may still be far from industrial standards, our results demonstrate that direct seawater electrolysis with a solar-to-hydrogen efficiency of ≈7% can be achieved with common, low-cost materials and affordable fabrication methods.
Collapse
|
34
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Selective Glucose Sensing under Physiological pH with Flexible and Binder‐Free Prussian Blue Coated Carbon Cloth Electrodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202101355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramadan Chalil Oglou
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | | | - Ekmel Ozbay
- NANOTAM – Nanotechnology Research Center, Department of Electrical and Electronics Engineering Department of Physics Bilkent University Ankara 06800 Turkey
| | - Ferdi Karadas
- Department of Chemistry Bilkent University Ankara 06800 Turkey
- Institute of Material Science and Nanotechnology, UNAM – National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| |
Collapse
|
36
|
Xu B, Chen Z, Zhang G, Wang Y. On-Demand Atomic Hydrogen Provision by Exposing Electron-Rich Cobalt Sites in an Open-Framework Structure toward Superior Electrocatalytic Nitrate Conversion to Dinitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:614-623. [PMID: 34914357 DOI: 10.1021/acs.est.1c06091] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic nitrate (NO3-) reduction to N2 via atomic hydrogen (H*) is a promising approach for advanced water treatment. However, the reduction rate and N2 selectivity are hindered by slow mass transfer and H* provision-utilization mismatch, respectively. Herein, we report an open-framework cathode bearing electron-rich Co sites with extraordinary H* provision performance, which was validated by electron spin resonance (ESR) and cyclic voltammetry (CV) tests. Benefiting from its abundant channels, NO3- has a greater opportunity to be efficiently transferred to the vicinity of the Co active sites. Owing to the enhanced mass transfer and on-demand H* provision, the nitrate removal efficiency and N2 selectivity of the proposed cathode were 100 and 97.89%, respectively, superior to those of noble metal-based electrodes. In addition, in situ differential electrochemical mass spectrometry (DEMS) indicated that ultrafast *NO2- to *NO reduction and highly selective *NO to *N2O or *N transformation played crucial roles during the NO3- reduction process. Moreover, the proposed electrochemical system can achieve remarkable N2 selectivity without the additional Cl- supply, thus avoiding the formation of chlorinated byproducts, which are usually observed in conventional electrochemical nitrate reduction processes. Environmentally, energy conservation and negligible byproduct release ensure its practicability for use in nitrate remediation.
Collapse
Affiliation(s)
- Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhixuan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
37
|
Huang J, Shan Q, Fang Y, Zhao N, Feng X. Shape-controlled Mn–Fe PBA derived micromotors for organic pollutant removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj01022d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new strategy is employed to prepare Mn–Fe PBA derived oxide micromotors with excellent motion performances through co-precipitation and heat treatment, which can be used for organic pollutant degradation with recycling and reusing advantages.
Collapse
Affiliation(s)
- Jing Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qi Shan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanan Fang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ning Zhao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
38
|
Xie Y, Lin R, Chen B. Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104234. [PMID: 34825524 PMCID: PMC8728855 DOI: 10.1002/advs.202104234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Cyanide is the simplest ligand with strong basicity to construct open frameworks including some of the oldest compounds reported in the history of coordination chemistry. Cyanide can form numerous cyanometallates with different transition metal ions showing diverse geometries. Rational design of robust extended networks is enabled by the strong bonding nature and high directionality of cyanide ligand. By virtue of a combination of cyanometallates and/or organic linkers, multifunctional framework materials can be targeted and readily synthesized for various applications, ranging from molecular adsorptions/separations to energy conversion and storage, and spin-crossover materials. External guest- and stimuli-responsive behaviors in cyanide-based materials are also highlighted for the development of the next-generation smart materials. In this review, an overview of the recent progress of cyanide-based multifunctional materials is presented to demonstrate the great potential of cyanide ligands in the development of modern coordination chemistry and material science.
Collapse
Affiliation(s)
- Yi Xie
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| | - Rui‐Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Banglin Chen
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| |
Collapse
|
39
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Anal Chim Acta 2021; 1188:339188. [PMID: 34794574 DOI: 10.1016/j.aca.2021.339188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
A CoFe Prussian blue analogue (CoFe PB) modified FTO electrode, prepared via a facile electrodeposition method, is investigated as a non-enzymatic glucose sensor under neutral conditions. The electrode exhibits a linear detection of glucose in the 0.1-8.2 mmol/L range with a detection limit of 67 μM, a sensitivity of 18.69 μA/mM.cm2, and a fast response time of less than 7 s under neutral conditions. Its stability is confirmed with both electrochemical experiments and characterization studies performed on the pristine and post-mortem electrode. We also conducted a comprehensive electrochemical analysis to elucidate the identity of the active site and the glucose oxidation mechanism on the Prussian blue surface.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | | | - Ekmel Ozbay
- NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey; Department of Physics, Faculty of Science Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
40
|
Meng X, Yang J, Zhang C, Fu Y, Li K, Sun M, Wang X, Dong C, Ma B, Ding Y. Light-Driven CO2 Reduction over Prussian Blue Analogues as Heterogeneous Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04415] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junyi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chenchen Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yufang Fu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Minghao Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xingguo Wang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100029, P. R. China
| | - Congzhao Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baochun Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
41
|
Chen M, Hu Y, Liang K, Zhao Z, Luo Y, Luo S, Ma J. Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution. NANOSCALE 2021; 13:18763-18772. [PMID: 34747966 DOI: 10.1039/d1nr04540g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Finding an efficient, stable and cheap oxygen evolution reaction (OER) catalyst is very important for renewable energy conversion systems. There are relatively few related research reports due to the thermodynamic instability of transition metal sulfides (TMSs) at the oxidation potential and these are usually focused on single metal sulfides or bimetal sulfides. Metal sulfide mixture systems are rarely studied. The fabrication of a TMS/TMS interface is a feasible method to improve the kinetics of the OER. Here, we constructed TMS hybrid electrocatalysts with multiple phase interfaces for the oxygen evolution reaction, named S-CoFe/CNTs. The results show that the S-CoFe/CNT catalyst exhibits a low overpotential of 258 mV to achieve a current density of 10 mA cm-2, and has high activity in the OER process. Meanwhile, the catalyst also shows a low Tafel slope (69 mV dec-1) and good stability. This can be attributed to the synergistic catalysis of the multiphase interface in the catalyst and the rapid electron transfer pathway brought by CNTs. The new strategy for the synthesis of catalysts containing the TMS/TMS interface provides a new idea and method for the development of efficient and practical water splitting catalysts.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yiping Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Kun Liang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Ziming Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yutong Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Sha Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
42
|
Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63833-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Liu X, Guo R, Huang W, Zhu J, Wen B, Mai L. Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100629. [PMID: 34288417 DOI: 10.1002/smll.202100629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Indexed: 06/13/2023]
Abstract
Coordination compounds including mainstream metal-organic frameworks and Prussian blue analogues receive extensive researches when they directly serve as electrocatalysts. Their reconstruction phenomena, that are closely associated with actual contributions and intrinsic catalytic mechanisms, are expected to be well summarized. Here, the recent advances in understanding reconstruction chemistry of coordination compounds are reviewed, including their main classifications and structural properties, reconstruction phenomena in electrocatalysis (e.g., oxygen/hydrogen evolution reaction, CO2 reduction), influence factors of reconstruction parameters (e.g., reconstruction rate and reconstruction degree), and reconstruction-performance correlation. It is outlined that the reconstruction processes are influenced by electronic structure of coordination compounds, pH and temperature of testing solution, and applied potentials. The characterization techniques reflecting the evolution information before and after catalysis are also introduced for reconstruction-related mechanistic study. Finally, some challenges and outlooks on reconstruction investigations of coordination compounds are proposed, and the necessity of studying and understanding of these themes under actual working conditions of devices is highlighted.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruiting Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenzhong Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Wen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
44
|
Keßler S, Reinalter ER, Schmidt J, Cölfen H. Environmentally Benign Formation of Nickel Hexacyanoferrate-Derived Mesoframes for Heterogeneous Catalysis. NANOMATERIALS 2021; 11:nano11102756. [PMID: 34685196 PMCID: PMC8537782 DOI: 10.3390/nano11102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022]
Abstract
The tetramethylammonium hydroxide (TMAH)-controlled alkaline etching of nickel hexacyanoferrate (NiHCF) mesocrystals is explored. The alkaline etching enables the formation of hollow framework structures with an increased surface area, the exposure of active Ni and Fe sites and the retention of morphology. The ambient reaction conditions enable the establishment of a sustainable production. Our work reveals novel perspectives on the eco-friendly synthesis of hollow and colloidal superstructures for the efficient degradation of the organic contaminants rhodamine-B and bisphenol-A. In the case of peroxomonosulfate (PMS)-mediated bisphenol-A degradation, the rate constant of the etched mesoframes was 10,000 times higher indicating their significant catalytic activity.
Collapse
Affiliation(s)
- Sascha Keßler
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany; (S.K.); (E.R.R.)
| | - Elrike R. Reinalter
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany; (S.K.); (E.R.R.)
| | - Johannes Schmidt
- Department of Chemistry, Technical University of Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany;
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany; (S.K.); (E.R.R.)
- Correspondence:
| |
Collapse
|
45
|
Hegner FS, Garcés-Pineda FA, González-Cobos J, Rodríguez-García B, Torréns M, Palomares E, López N, Galán-Mascarós JR. Understanding the Catalytic Selectivity of Cobalt Hexacyanoferrate toward Oxygen Evolution in Seawater Electrolysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Franziska S. Hegner
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Felipe A. Garcés-Pineda
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Jesús González-Cobos
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Barbara Rodríguez-García
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Mabel Torréns
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Emilio Palomares
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - José-Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
Zhang C, Chen J, Zhang J, Luo Y, Chen Y, Xue Y, Yan Y, Jiao Y, Wang G, Wang R. The activation of inert NiFe Prussian Blue analogues to boost oxygen evolution reaction activity. J Colloid Interface Sci 2021; 607:967-977. [PMID: 34598033 DOI: 10.1016/j.jcis.2021.09.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/21/2023]
Abstract
The inert sites of Prussian Blue Analogue (PBA) seriously affected its electrocatalytic activity and application, how to activate inert sites in PBA to fulfill effective oxygen evolution reduction (OER) is a major challenge. Herein, Mo substituted Fe sites and S doped in inert PBA were designed and synthesized by hydrothermal method to enhance structural stability and OER activity. PBA-SMo/NF shows the optimum activity with a low overpotential of 252 and 294 mV for harvesting current density 20 and 100 mA cm-2, respectively, and exhibits excellent durability under high current density. Theoretical calculation of H2O adsorption energy and Bader charges reveals that Mo sites in PBA-SMo possess favourable H2O adsorption kinetics. More important, Gibbs free energy diagram and DOS show PBA-SMo have lower energy barriers for OER and better conductivity. This work provides a kind of guidance for the design and optimization of PBA for broad applications.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yihan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yali Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Yan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Jiao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China.
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, China.
| |
Collapse
|
47
|
Sanchis-Gual R, Otero TF, Coronado-Puchau M, Coronado E. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles. NANOSCALE 2021; 13:12676-12686. [PMID: 34477618 DOI: 10.1039/d1nr02928b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prussian blue analogues (PBAs) have been proven as excellent Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) in acidic, neutral and alkaline media. Further improvements can be achieved by increasing their electrical conductivity, but scarce attention has been paid to quantify the electroactive sites of the electrocatalyst when this enhancement occurs. In this work, we have studied how the chemical design influences the specific density of electroactive sites in different Au-PBA nanostructures. Thus, we have first obtained and fully characterized a variety of monodisperse core@shell hybrid nanoparticles of Au@PBA (PBA of NiIIFeII and CoIIFeII) with different shell sizes. Their catalytic activity is evaluated by studying the OER, which is compared to pristine PBAs and other Au-PBA heterostructures. By using the coulovoltammetric technique, we have demonstrated that the introduction of 5-10% of Au in weight in the core@shell leads to an increase in the electroactive mass and thus, to a higher density of active sites capable of taking part in the OER. This increase leads to a significant decrease in the onset potential (up to 100 mV) and an increase (up to 420%) in the current density recorded at an overpotential of 350 mV. However, the Tafel slope remains unchanged, suggesting that Au reduces the limiting potential of the catalyst with no variation in the reaction kinetics. These improvements are not observed in other Au-PBA nanostructures mainly due to a lower contact between both compounds and the Au oxidation. Hence, an Au core activates the PBA shell and increases the conductivity of the resulting hybrid, while the PBA shell prevents Au oxidation. The strong synergistic effect existing in the core@shell structure evidences the importance of the chemical design for preparing PBA-based nanostructures exhibiting better electrocatalytic performances and higher electrochemical stabilities.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | | | | | | |
Collapse
|
48
|
Liu X, Meng J, Zhu J, Huang M, Wen B, Guo R, Mai L. Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007344. [PMID: 34050565 DOI: 10.1002/adma.202007344] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/09/2021] [Indexed: 05/14/2023]
Abstract
Reconstruction induced by external environment (such as applied voltage bias and test electrolytes) changes catalyst component and catalytic behaviors. Investigations of complete reconstruction in energy conversion recently receive intensive attention, which promote the targeted design of top-performance materials with maximum component utilization and good stability. However, the advantages of complete reconstruction, its design strategies, and extensive applications have not achieved the profound understandings and summaries it deserves. Here, this review systematically summarizes several important advances in complete reconstruction for the first time, which includes 1) fundamental understandings of complete reconstruction, the characteristics and advantages of completely reconstructed catalysts, and their design principles, 2) types of reconstruction-involved precatalysts for oxygen evolution reaction catalysis in wide pH solution, and origins of limited reconstruction degree as well as design strategies/principles toward complete reconstruction, 3) complete reconstruction for novel material synthesis and other electrocatalysis fields, and 4) advanced in situ/operando or multiangle/level characterization techniques to capture the dynamic reconstruction processes and real catalytic contributors. Finally, the existing major challenges and unexplored/unsolved issues on studying the reconstruction chemistry are summarized, and an outlook for the further development of complete reconstruction is briefly proposed. This review will arouse the attention on complete reconstruction materials and their applications in diverse fields.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Wen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruiting Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
49
|
Sanchis-Gual R, Seijas-Da Silva A, Coronado-Puchau M, Otero TF, Abellán G, Coronado E. Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Sun W, Wei Z, Qi J, Kang L, Li J, Xie J, Tang B, Xie Y. Rapid and Scalable Synthesis of Prussian Blue Analogue Nanocubes for Electrocatalytic Water Oxidation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wenbin Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan Shandong 250014 China
| | - Zimeng Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan Shandong 250014 China
| | - Jindi Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan Shandong 250014 China
| | - Luyao Kang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan Shandong 250014 China
| | - Jiechen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan Shandong 250014 China
| | - Junfeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan Shandong 250014 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science Shandong Normal University Jinan Shandong 250014 China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellent in Nanoscale University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|