1
|
Bos J, Siegler MA, Wezenberg SJ. Activity Control of a Synthetic Transporter by Photodynamic Modulation of Membrane Mobility and Incorporation. J Am Chem Soc 2024; 146:31085-31093. [PMID: 39485737 PMCID: PMC11565646 DOI: 10.1021/jacs.4c10952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Artificial transmembrane transport systems are receiving a great deal of attention for their potential therapeutic application. A major challenge is to switch their activity in response to environmental stimuli, which has been achieved mostly by modulating the binding affinity. We demonstrate here that the activity of a synthetic anion transporter can be controlled through changes in the membrane mobility and incorporation. The transporters─equipped with azobenzene photoswitches─poorly incorporate into the bilayer membrane as their thermally stable (E,E,E)-isomers, but incorporation is triggered by UV irradiation to give the (Z)-containing isomers. The latter isomers, however, are found to have a lower mobility and are therefore the least active transporters. This opposite effect of E-Z isomerization on transport capability offers unique photocontrol as is demonstrated by in situ irradiation studies during the used transport assays. These results help to understand the behavior of artificial transporters in a bilayer and are highly important to future designs, with new modes of biological activity and with the possibility to direct motion, which may be crucial toward achieving active transport.
Collapse
Affiliation(s)
- Jasper
E. Bos
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
Huang Y, Zeng X, Ma X, Lin Z, Sun J, Xiao W, Liu SH, Yin J, Yang GF. A visible light-activated azo-fluorescent switch for imaging-guided and light-controlled release of antimycotics. Nat Commun 2024; 15:8670. [PMID: 39375340 PMCID: PMC11458760 DOI: 10.1038/s41467-024-52855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Azo switches are widely employed as essential components in light-responsive systems. Here, we develop an azo-fluorescent switch that is visible light-responsive and its light-responsive processes can be monitored using fluorescence imaging. Visible light irradiation promotes isomerization, accompanied by changes in fluorescence that enable the process to be monitored through fluorescence imaging. Furthermore, we document that the nanocavity size of liposome encapsulated nanoparticles containing azo changes in the isomerization process and show that this change enables construction of a light-responsive nanoplatform for optically controlled release of antimycotics. Also, natural light activation of nanoparticles of the switch loaded with an antimycotic agent causes death of Rhizoctonia solani. The results show that these nanoparticles can double the holding period in comparison to small molecule antimycotics. The strategy used to design the imaging-guided light-controlled nano-antimycotic release system can be applicable to protocols for controlled delivery of a wide variety of drugs.
Collapse
Affiliation(s)
- Yurou Huang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiaoyan Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiaoxie Ma
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Zibo Lin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jiayue Sun
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Wang Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Sheng Hua Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jun Yin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
3
|
Vesamäki S, Meteling H, Nasare R, Siiskonen A, Patrakka J, Roas-Escalona N, Linder M, Virkki M, Priimagi A. Strategies to control humidity sensitivity of azobenzene isomerisation kinetics in polymer thin films. COMMUNICATIONS MATERIALS 2024; 5:209. [PMID: 39371916 PMCID: PMC11446815 DOI: 10.1038/s43246-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Azobenzenes are versatile photoswitches that garner interest in applications ranging from photobiology to energy storage. Despite their great potential, transforming azobenzene-based discoveries and proof-of-concept demonstrations from the lab to the market is highly challenging. Herein we give an overview of a journey that started from a discovery of hydroxyazobenzene's humidity sensitive isomerisation kinetics, developed into commercialization efforts of azobenzene-containing thin film sensors for optical monitoring of the relative humidity of air, and arrives to the present work aiming for better design of such sensors by understanding the different factors affecting the humidity sensitivity. Our concept is based on thermal isomerisation kinetics of tautomerizable azobenzenes in polymer matrices which, using pre-defined calibration curves, can be converted to relative humidity at known temperature. We present a small library of tautomerizable azobenzenes exhibiting humidity sensitive isomerisation kinetics in hygroscopic polymer films. We also investigate how water absorption properties of the polymer used, and the isomerisation kinetics are linked and how the azobenzene content in the thin film affects both properties. Based on our findings we propose simple strategies for further development of azobenzene-based optical humidity sensors.
Collapse
Affiliation(s)
- Sami Vesamäki
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Henning Meteling
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Roshan Nasare
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Antti Siiskonen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | | | - Markus Linder
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Matti Virkki
- VTT Technical Research Centre of Finland Ltd, Oulu, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Qi Q, Huang S, Liu X, Aprahamian I. 1,2-BF 2 Shift and Photoisomerization Induced Multichromatic Response. J Am Chem Soc 2024; 146:6471-6475. [PMID: 38428039 DOI: 10.1021/jacs.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shiqing Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
Qiu Q, Qi Q, Usuba J, Lee K, Aprahamian I, Han GGD. Visible light activated energy storage in solid-state Azo-BF 2 switches. Chem Sci 2023; 14:11359-11364. [PMID: 37886079 PMCID: PMC10599475 DOI: 10.1039/d3sc03465h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
We present here a group of Azo-BF2 photoswitches that store and release energy in response to visible light irradiation. Unmodified Azo-BF2 switches have a planar structure with a large π-conjugation system, which hinders E-Z isomerization when in a compacted state. To address this challenge, we modified the switches with one or two aliphatic groups, which altered the intermolecular interactions and arrangement of the photochromes in the solid state. The derivative with two substituents exhibited a non-planar configuration that provided particularly large conformational freedom, allowing for efficient isomerization in the solid phase. Our discovery highlights the potential of using double aliphatic functionalization as a promising approach to facilitate solid-state switching of large aromatic photoswitches. This finding opens up new possibilities for exploring various photoswitch candidates for molecular solar thermal energy storage applications.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qingkai Qi
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Karina Lee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
6
|
Petrusevich EF, Głodek M, Antoniak MA, Muzioł T, Plażuk D, Siomra A, Nyk M, Ośmiałowski B, Zaleśny R. Difluoroborate-based bichromophores: Symmetry relaxation and two-photon absorption. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122600. [PMID: 36930837 DOI: 10.1016/j.saa.2023.122600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/15/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Given potential applications of multiphoton absorbers, in the present work we have studied the symmetry-relaxation effects in one- and two-photon absorption spectra in two bichromophore systems based on difluoroborate core linked by biphenylene or bianthracene moieties. We have employed a palette of experimental methods (synthesis, one- and two-photon spectroscopy, X-ray crystallography) and state-of-the-art computational methods to shed light on how symmetry relaxation, a result of twisting of building blocks, affects one- and two-photon absorption of the two studied fluorescent dyes. Electronic-structure calculations revealed that the planarity of central biphenyl moiety, as well as deviations from planarity up to 30-40 deg., ensure maximum values of two-photon transition strengths. Perpendicular arrangement of phenylene units in biphenylene moiety leads to 20% drop in the two-photon transition strengths. More detailed studies demonstrated that equilibrium structures of both compounds in chloroform solution show very different values of two-photon absorption cross sections at absorption band maxima, i.e. 224 GM for and 134 GM for biphenyle and bianthracene linkers, respectively. The latter value is in good agreement with experimental value obtained using Z-scan method. The difference in two-photon absorption cross section between both compounds can be rationalized based on equilibrium geometry differences, i.e. interplanar angle is 35 deg and 91 deg in the case of biphenylene and bianthracene moiety, respectively. It is thus not beneficial to introduce conformationally locked central linker based on bianthracene moiety.
Collapse
Affiliation(s)
- Elizaveta F Petrusevich
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław, PL-50-370, Poland
| | - Marta Głodek
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń, PL-87-100, Poland
| | - Magda A Antoniak
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław, PL-50-370, Poland
| | - Tadeusz Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń, PL-87-100, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, Łódź, PL-90-403, Poland
| | - Agnieszka Siomra
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław, PL-50-370, Poland
| | - Marcin Nyk
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław, PL-50-370, Poland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń, PL-87-100, Poland.
| | - Robert Zaleśny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław, PL-50-370, Poland.
| |
Collapse
|
7
|
Yu C, Sun Y, Fang X, Li J, Wu Q, Bu W, Guo X, Wang H, Jiao L, Hao E. Aromatic-Ring-Fused BOPPY Fluorophores: Synthesis, Spectral, Redox Properties, and Bioimaging Application. Inorg Chem 2022; 61:16718-16729. [PMID: 36206458 DOI: 10.1021/acs.inorgchem.2c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetracoordinated organoboron dyes exhibiting strong fluorescence in either solution or the solid state are currently receiving much attraction in view of their photovoltaic, optoelectronic, and biological applications. Herein, a series of aromatic-ring-fused BOPPY dyes have been developed by one-pot condensation of formylated isoindoles or indoles and pyridinylhydrazine followed by subsequent borylation coordination. The facile synthesis provides excellent diversity of these unsymmetrical α-benzo- and β-benzothiophene-fused BOPPY dyes with intriguing photophysical properties owing to their rigid and planar structure and extended π-conjugation while containing a reactive site. They display intense green to orange fluorescence in solution and red-to-near-infrared emission in the solid state, with high fluorescence quantum yields up to 92 and 21%, respectively, relatively large Stokes shifts, and excellent photostability. Furthermore, two representative benzo-fused BOPPY probes with morpholine or benzenesulfonamide groups were developed and used to selectively "light up" the subcellular organelles such as lysosomes and endoplasmic reticulum under ultralow concentration, respectively.
Collapse
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China.,Postdoctoral Research Center of Suntex TEXTILE Technology Company, Ltd., Wuhu, 241200Anhui, China
| | - Yingzhu Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Xingbao Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai264005, Shandong, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Weibin Bu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| |
Collapse
|
8
|
Erekath S, Chordiya K, Vidhya KV, Kahaly MU, Kalpathy SK. Self-aggregation, H-bonding, and photoresponse in film and solution states of azobenzene containing polyurea. Phys Chem Chem Phys 2022; 24:23447-23459. [PMID: 36128935 DOI: 10.1039/d2cp01200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We critically understand the hydrogen bonding interactions and electronic transitions occurring in a thin film as well as in solution of a photo-responsive polymer, azo-polyurea (azo-PU). We synthesize azo-PU by covalent attachment of the azobenzene chromophore to the main chain of polyurea. Azo-PU shows reversible photoisomerization between trans and cis states upon light exposure, the occurrence of which is typically analysed using the π-π* and n-π* electronic transition peaks in the UV-visible absorption spectrum. We find that the π-π* and n-π* bands undergo a redshift and blueshift respectively on dissolving azo-PU in DMF solvent, resulting in a single overlapped peak in the spectrum. However, upon UV irradiation, these bands split into two independent transitions that are characteristic of azo-PU solid films. These observations are explained based on the changes in polymer-polymer and polymer-solvent interactions through hydrogen bonding and self-aggregation tendency. The experimental findings are corroborated using DFT simulations which provide useful insights into electronic orbital transitions, electron distribution, and hydrogen bonding interaction through IR vibrational modes.
Collapse
Affiliation(s)
- Swathi Erekath
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Kalyani Chordiya
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - K V Vidhya
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Mousumi Upadhyay Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - Sreeram K Kalpathy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
9
|
Paolino M, Saletti M, Reale A, Licciardi M, Varvarà P, Marquette A, Léonard J, Bonechi C, Donati A, Giorgi G, Giuliani G, Carlotti B, Ortica F, Latterini L, Gentile M, Paccagnini E, Olivucci M, Cappelli A. Design, Synthesis and Characterization of a Visible-Light-Sensitive Molecular Switch and Its PEGylation Towards a Self-Assembling Molecule. Chemistry 2022; 28:e202201477. [PMID: 35695822 PMCID: PMC9541190 DOI: 10.1002/chem.202201477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/07/2022]
Abstract
HBDI-like chromophores represent a novel set of biomimetic switches mimicking the fluorophore of the green fluorescent protein that are currently studied with the hope to expand the molecular switch/motor toolbox. However, until now members capable of absorbing visible light in their neutral (i. e. non-anionic) form have not been reported. In this contribution we report the preparation of an HBDI-like chromophore based on a 3-phenylbenzofulvene scaffold capable of absorbing blue light and photoisomerizing on the picosecond timescale. More specifically, we show that double-bond photoisomerization occurs in both the E-to-Z and Z-to-E directions and that these can be controlled by irradiating with blue and UV light, respectively. Finally, as a preliminary applicative result, we report the incorporation of the chromophore in an amphiphilic molecule and demonstrate the formation of a visible-light-sensitive nanoaggregated state in water.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| | - Annalisa Reale
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)Università degli Studi di PalermoVia Archirafi 3290123PalermoItaly
| | - Paola Varvarà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)Università degli Studi di PalermoVia Archirafi 3290123PalermoItaly
| | - Arnaud Marquette
- Institut de Physique et Chimie des Matériaux de StrasbourgUniversité de StrasbourgCNRS UMR7504StrasbourgFrance
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de StrasbourgUniversité de StrasbourgCNRS UMR7504StrasbourgFrance
| | - Claudia Bonechi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| | - Alessandro Donati
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| | - Benedetta Carlotti
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaVia Elce di Sotto, 806123PerugiaItaly
| | - Fausto Ortica
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaVia Elce di Sotto, 806123PerugiaItaly
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità di PerugiaVia Elce di Sotto, 806123PerugiaItaly
| | - Mariangela Gentile
- Dipartimento di Scienze della VitaUniversità degli Studi di SienaVia A. Moro53100SienaItaly
| | - Eugenio Paccagnini
- Dipartimento di Scienze della VitaUniversità degli Studi di SienaVia A. Moro53100SienaItaly
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
- Chemistry DepartmentBowling Green State University43403Bowling GreenOHUSA) ok
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022)Università degli Studi di SienaVia A. Moro 253100SienaItaly
| |
Collapse
|
10
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Gao Z, Yan F, Shi L, Han Y, Qiu S, Zhang J, Wang F, Wu S, Tian W. Acylhydrazone-based supramolecular assemblies undergoing a converse sol-to-gel transition on trans → cis photoisomerization. Chem Sci 2022; 13:7892-7899. [PMID: 35865886 PMCID: PMC9258502 DOI: 10.1039/d2sc01657e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Photoisomeric supramolecular assemblies have drawn enormous attention in recent years. Although it is a general rule that photoisomerization from a less to a more distorted isomer causes the destruction of assemblies, this photoisomerization process inducing a converse transition from irregular aggregates to regular assemblies is still a great challenge. Here, we report a converse sol-to-gel transition derived from the planar to nonplanar photoisomer conversion, which is in sharp contrast to the conventional light-induced gel collapse. A well-designed acylhydrazone-linked monomer is exploited as a photoisomer to realize the above-mentioned phase transition. In the monomer, imine is responsible for trans-cis interconversion and amide generates intermolecular hydrogen bonds enabling the photoisomerization-driven self-assembly. The counterintuitive feature of the sol-to-gel transition is ascribed to the partial trans → cis photoisomerization of acylhydrazone causing changes in stacking mode of monomers. Furthermore, the reversible phase transition is applied in the valves formed in situ in microfluidic devices, providing fascinating potential for miniature materials.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Fei Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yifei Han
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Juan Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Si Wu
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
12
|
Cappello D, Buguis FL, Boyle PD, Gilroy JB. Dual Emission, Aggregation, and Redox Properties of Boron Difluoride Hydrazones Functionalized with Triphenylamines. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Cappello
- The University of Western Ontario Department of Chemistry CANADA
| | | | - Paul D. Boyle
- The University of Western Ontario Department of Chemistry CANADA
| | - Joe B. Gilroy
- The University of Western Ontario Department of Chemistry 1151 Richmond St. N. N6A 5B7 London CANADA
| |
Collapse
|
13
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
14
|
Mukundam V, Sa S, Kumari A, Ponduru TT, Das R, Venkatasubbaiah K. Synthesis, photophysical, electrochemical, and non-linear optical properties of triaryl pyrazole based B-N coordinated boron compounds. Chem Asian J 2022; 17:e202200291. [PMID: 35452174 DOI: 10.1002/asia.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Indexed: 11/10/2022]
Abstract
We report here a set of triaryl pyrazole based B-N coordinated boron compounds ( 11 - 17 ) synthesized by electrophilic aromatic borylation strategy. All the pyrazole boron compounds were thoroughly characterized using multinuclear NMR spectroscopy, LCMS, and single crystal X-ray diffraction analysis (for 12 - 17 ). The photoluminescence measurements of 11 - 17 revealed that the emission peak maxima were tuned based on the substitution on Nphenyl. The photophysical and electrochemical properties were further supported by theoretical calculations. Z-scan based investigations at 515 nm pump wavelength showed that B-N coordination led to enhancement of nonlinear absorption (two-photon absorption (TPA)) in these compounds if an electron deficient moiety is attached. It has also been observed that an appropriate choice of moiety allows to optimally maneuver the molecular polarizability of the π-system and consequently, assists in controlling the third-order nonlinear optical response.
Collapse
Affiliation(s)
- Vanga Mukundam
- National Institute of Science Education and Research, School of Chemical Sciences, INDIA
| | - Shreenibasa Sa
- National Institute of Science Education and Research, School of Chemical Sciences, INDIA
| | - Anupa Kumari
- National Institute of Science Education and Research, School of Physical Sciences, INDIA
| | - Tharun Teja Ponduru
- National Institute of Science Education and Research, School of Chemical Sciences, INDIA
| | - Ritwick Das
- National Institute of Science Education and Research, School of Physical Sciences, INDIA
| | - Krishnan Venkatasubbaiah
- National Institute of Science Education and Research, School of Chemical Sciences, NISER, 752050, Bhubaneswar, INDIA
| |
Collapse
|
15
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
16
|
Shen ZN, Xu YX, Wang CY, Qiao B. Fine‐tuning the Thermal Relaxation Dynamics of Indigo‐based Photoswitches Using Selective Non‐covalent Interactions without Chemical Modification. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhen-Nan Shen
- ShanghaiTech University School of Physical Science and Technology shanghai,pudongShanghai 231567 Shanghai CHINA
| | - Yu-Xuan Xu
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Chen-Yu Wang
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Bo Qiao
- ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia Road 201210 Shanghai CHINA
| |
Collapse
|
17
|
Adrion DM, Lopez SA. Cross-conjugation controls the stabilities and photophysical properties of heteroazoarene photoswitches. Org Biomol Chem 2022; 20:5989-5998. [PMID: 35014651 DOI: 10.1039/d1ob02026a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Azoarene photoswitches are versatile molecules that interconvert from their E-isomer to their Z-isomer with light. Azobenzene is a prototypical photoswitch but its derivatives can be poorly suited for in vivo applications such as photopharmacology due to undesired photochemical reactions promoted by ultraviolet light and the relatively short half-life (t1/2) of the Z-isomer (2 days). Experimental and computational studies suggest that these properties (λmax of the E isomer and t1/2 of the Z-isomer) are inversely related. We identified isomeric azobisthiophenes and azobisfurans from a high-throughput screening study of 1540 azoarenes as photoswitch candidates with improved λmax and t1/2 values relative to azobenzene. We used density functional theory to predict the activation free energies and vertical excitation energies of the E- and Z-isomers of 2,2- and 3,3-substituted azobisthiophenes and azobisfurans. The half-lives depend on whether the heterocycles are π-conjugated or cross-conjugated with the diazo π-bond. The 2,2-substituted azoarenes both have t1/2 values on the scale of 1 hour, while the 3,3-analogues have computed half-lives of 40 and 230 years (thiophene and furan, respectively). The 2,2-substituted heteroazoarenes have significantly higher λmax absorptions than their 3,3-substituted analogues: 76 nm for azofuran and 77 nm for azothiophene.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
18
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
19
|
Chen H, Chen W, Lin Y, Xie Y, Liu SH, Yin J. Visible and near-infrared light activated azo dyes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Singh VD, Dwivedi BK, Kumar Y, Pandey DS. Artificial light-harvesting systems (LHSs) based on boron-difluoride (BF 2) hydrazone complexes (BODIHYs). NEW J CHEM 2021. [DOI: 10.1039/d0nj04547k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrazone based BF2–complexes (BODIHYs; B1–B2) have been synthesized and their photophysical and aggregation behavior have been established. These BODIHYs have been showed light harvesting properties in presence of RhB as acceptor.
Collapse
Affiliation(s)
- Vishwa Deepak Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | | | - Yogesh Kumar
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | - Daya Shankar Pandey
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| |
Collapse
|
21
|
Hao T, Yang Y, Liang W, Fan C, Wang X, Wu W, Chen X, Fu H, Chen H, Yang C. Trace mild acid-catalysed Z → E isomerization of norbornene-fused stilbene derivatives: intelligent chiral molecular photoswitches with controllable self-recovery. Chem Sci 2020; 12:2614-2622. [PMID: 34164029 PMCID: PMC8179340 DOI: 10.1039/d0sc05213b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Stilbene derivatives have long been known to undergo "acid-catalyzed" Z → E isomerization, where a strong mineral acid at high concentration is practically necessary. Such severe reaction conditions often cause undesired by-reactions and limit their potential application. Herein, we present a trace mild acid-catalyzed Z → E isomerization found with stilbene derivatives fused with a norbornene moiety. By-reactions, such as the migration of the C[double bond, length as m-dash]C double bond and electrophilic addition reactions, were completely inhibited because of the ring strain caused by the fused norbornene component. Direct photolysis of the E isomers at selected wavelengths led to the E → Z photoisomerization of these stilbene derivatives and thus constituted a unique class of molecular switches orthogonally controllable by light and acid. The catalytic amount of acid could be readily removed, and the Z → E isomerization could be controlled by turning on/off the irradiation of a photoacid, which allowed repeated isomerization in a non-invasive manner. Moreover, the Z isomer produced by photoisomerization could spontaneously self-recover to the E isomer in the presence of a catalytic amount of acid. The kinetics of Z → E isomerization were adjustable by manipulating catalytic factors and, therefore, unprecedented molecular photoswitches with adjustable self-recovery were realized.
Collapse
Affiliation(s)
- Taotao Hao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yongsheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University Taiyuan 030006 China
| | - Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xin Wang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
22
|
Cappello D, Watson AER, Gilroy JB. A Boron Difluoride Hydrazone (BODIHY) Polymer Exhibits Aggregation-Induced Emission. Macromol Rapid Commun 2020; 42:e2000553. [PMID: 33274808 DOI: 10.1002/marc.202000553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Indexed: 11/08/2022]
Abstract
Polymers that exhibit aggregation-induced emission (AIE) find use, for example, as cell-imaging agents and as fluorometric sensors due to their unique optical properties. However, the structural diversity of AIE-active polymers has not necessarily advanced at the same rate as their applications. In this work, ring-opening metathesis polymerization is used to synthesize the first example of a polymer (Mn = 61,600 g mol-1 , Đ = 1.32) containing boron difluoride hydrazone (BODIHY) heterocycles in its repeating unit. The BODIHY monomer and polymer described absorb and emit in the visible region in solution (λabs = 428 and 429 nm, λem = 528 and 526 nm) and as thin films (λabs = 443 and 440 nm, λem = 535 and 534 nm). Monomer (ΦFilm = 10%) and polymer (ΦFilm = 6%) exhibit enhanced emission as thin films compared to solution (ΦSoln ≤ 1%) as well as AIE upon the addition of water to DMF solutions as a result of restriction of intramolecular motion. Enhancement factors for the monomer and polymer are determined to be 58 and 15, respectively. The title BODIHY polymer exhibited an earlier onset of AIE and enhanced sensitivity to solution viscosity when compared to the parent monomer.
Collapse
Affiliation(s)
- Daniela Cappello
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Alexander E R Watson
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
23
|
Sharafi M, McKay KT, Ivancic M, McCarthy DR, Dudkina N, Murphy KE, Rajappan SC, Campbell JP, Shen Y, Badireddy AR, Li J, Schneebeli ST. Size-selective Catalytic Polymer Acylation with a Molecular Tetrahedron. Chem 2020; 6:1469-1494. [PMID: 32728651 PMCID: PMC7388586 DOI: 10.1016/j.chempr.2020.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Selective catalysis at the molecular level represents a cornerstone of chemical synthesis. However, it still remains an open question how to elevate tunable catalysis to larger length scales to functionalize whole polymer chains in a selective manner. We now report a hydrazone-linked tetrahedron with wide openings, which acts as a catalyst to size-selectively functionalize polydisperse polymer mixtures. Our experimental and computational evidence supports a dual role of the hydrazone-linked tetrahedron. To accelerate functionalization of the polymer substrates, the tetrahedron (i) unfolds the polymer substrates and/or breaks the polymer aggregates as well as (ii) enables target sites (amino groups) on the polymers to coordinate with catalytic units (triglyme) attached to the tetrahedron. With the tetrahedron as the catalyst, we find that the reactivity of the shorter polymers increases selectively. Our findings enable the possibility to engineer hydrolytically stable molecular polyhedra as organocatalysts for size-selective polymer modification.
Collapse
Affiliation(s)
- Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Kyle T McKay
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Monika Ivancic
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Dillon R McCarthy
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Natavan Dudkina
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Kyle E Murphy
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Sinu C Rajappan
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Joseph P Campbell
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Yuxiang Shen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
| | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, USA
- Lead Contact
| |
Collapse
|
24
|
Cappello D, Maar RR, Staroverov VN, Gilroy JB. Optoelectronic Properties of Carbon‐Bound Boron Difluoride Hydrazone Dimers. Chemistry 2020; 26:5522-5529. [DOI: 10.1002/chem.202000533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Daniela Cappello
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Ryan R. Maar
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
25
|
Li Y, Feng Z, Li Y, Jin W, Peng Q, Zhang P, He J, Li K. Metal ions-triggered photo-induced fluorescence change in rhodamine B-based photo-responsive complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118069. [PMID: 31958605 DOI: 10.1016/j.saa.2020.118069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Photo-responsive materials with tunable properties by multiple stimuli have been widely used as molecular machines, molecular logic gates, optical data storages, etc. In this work, we report a rhodamine B-based photo-responsive system, whose properties could be facilely modulated by metal ions (Zn(II), Ni(II) and Hg(II)). These metal ions endow the complexes (L-Zn, L-Ni and L-Hg) with similar photochromic property but distinctly different photo-induced fluorescence change. Upon UV light irradiation, the spirolactam ring in rhodamine B moiety turned from a close form to an open form, along with enlarged conjugated structure with intense absorbance. Interestingly, fluorescence "turn off", "no change" and "turn on" responses were induced by Zn(II), Ni(II) and Hg(II) respectively upon UV light irradiation. Taking advantage of the prominently different characteristics caused by metal ions, different logic gates were designed by simply varying the inputs of metal ions and UV light. This work provided a new strategy for developing multifunctional photo-responsive materials, which were further beneficial for constructing photo-controlled logic gates with tunable performance.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Zining Feng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Yajing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Wenhui Jin
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Qiuchen Peng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Panke Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Juan He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, PR China
| | - Kai Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China.
| |
Collapse
|
26
|
Mallo N, Tron A, Andréasson J, Harper JB, Jacob LSD, McClenaghan ND, Jonusauskas G, Beves JE. Hydrogen‐Bonding Donor‐Acceptor Stenhouse Adducts. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900295] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Neil Mallo
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Arnaud Tron
- Univ. Bordeaux/CNRS 351 cours de la Libération 33405 Talence Cedex France
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Li Z, Chen H, Li B, Xie Y, Gong X, Liu X, Li H, Zhao Y. Photoresponsive Luminescent Polymeric Hydrogels for Reversible Information Encryption and Decryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901529. [PMID: 31728289 PMCID: PMC6839628 DOI: 10.1002/advs.201901529] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/21/2019] [Indexed: 05/04/2023]
Abstract
Conventional luminescent information is usually visible under either ambient or UV light, hampering their potential application in smart confidential information protection. In order to address this challenge, herein, light-triggered luminescence ON-OFF switchable hybrid hydrogels are successfully constructed through in situ copolymerization of acrylamide, lanthanide complex, and diarylethene photochromic unit. The open-close behavior of the diarylethene ring in the polymer could be controlled by UV and visible light irradiation, where the close form of the ring features fluorescence resonance energy transfer with the lanthanide complex. The hydrogel-based blocks with tunable emission colors are then employed to construct 3D information codes, which can be read out under a 254 nm UV lamp. The exposure to 300 nm UV light leads to the luminescence quenching of the hydrogels, thus erasing the encoded information. Under visible light (>450 nm) irradiation, the luminescence is recovered to make the confidential information readable again. Thus, by simply alternating the exposure to UV and visible lights, the luminescence signals could become invisible and visible reversibly, allowing for reversible multiple information encryption and decryption.
Collapse
Affiliation(s)
- Zhiqiang Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Hongzhong Chen
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Bin Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Yanmiao Xie
- College of ComputerNankai UniversityNo. 38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiaoli Gong
- College of ComputerNankai UniversityNo. 38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiao Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Huanrong Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
28
|
Singh N, Kumar P, Kumar R, Aazam ES, Riaz U. Development of a near infrared novel bioimaging agent via co-oligomerization of Congo red with aniline and o-phenylenediamine: experimental and theoretical studies. RSC Adv 2019; 9:36479-36491. [PMID: 35540595 PMCID: PMC9075138 DOI: 10.1039/c9ra05814a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023] Open
Abstract
With a view to study the effect of insertion of a multifunctional dye moiety on the photo physical properties of conducting polymers, the present paper reports for the first time the homopolymerization and co-oligomerization of Congo red (CR) dye with aniline and o-phenylenediamine. The co-oligomerization was established by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR), and ultraviolet-visible (UV-vis) spectroscopy while the morphology was examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The theoretical as well as experimental data of 1H-NMR as well as IR studies confirmed the co-oligomer formation while ultraviolet-visible spectroscopy studies revealed a dynamic change in the optical properties upon variation of co-oligomer composition. X-ray diffraction studies established a crystalline morphology of oligomers. Live cell confocal imaging studies revealed that the co-oligomers could be effectively used in NIR imaging.
Collapse
Affiliation(s)
- Neetika Singh
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Prabhat Kumar
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University NewDelhi 110067 India
| | - Raj Kumar
- School of Life Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Elham S Aazam
- Chemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 23622 Saudia Arabia
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
29
|
Zhang Z, He Y, Zhou Y, Yu C, Han L, Li T. Pyrazolylazophenyl Ether‐Based Photoswitches: Facile Synthesis, (Near‐)Quantitative Photoconversion, Long Thermal Half‐Life, Easy Functionalization, and Versatile Applications in Light‐Responsive Systems. Chemistry 2019; 25:13402-13410. [DOI: 10.1002/chem.201902897] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Zhao‐Yang Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yixin He
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ying Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu Han
- School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
30
|
Shao B, Qian H, Li Q, Aprahamian I. Structure Property Analysis of the Solution and Solid-State Properties of Bistable Photochromic Hydrazones. J Am Chem Soc 2019; 141:8364-8371. [DOI: 10.1021/jacs.9b03932] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Hai Qian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Quan Li
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
31
|
Cappello D, Therien DAB, Staroverov VN, Lagugné-Labarthet F, Gilroy JB. Optoelectronic, Aggregation, and Redox Properties of Double-Rotor Boron Difluoride Hydrazone Dyes. Chemistry 2019; 25:5994-6006. [PMID: 30821860 DOI: 10.1002/chem.201900383] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Indexed: 01/11/2023]
Abstract
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax =427-464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL =525-578 nm) with quantum yields of up to 18 % and lifetimes of 1.1-1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1 =0.62-1.02 V vs. Fc/Fc+ ) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.
Collapse
Affiliation(s)
- Daniela Cappello
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Denis A B Therien
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - François Lagugné-Labarthet
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
32
|
Berson J, Moosmann M, Walheim S, Schimmel T. Mechanically Induced Switching of Molecular Layers. NANO LETTERS 2019; 19:816-822. [PMID: 30694068 DOI: 10.1021/acs.nanolett.8b03987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Within the field of switchable surfaces, azobenzenes are an extensively studied group of molecules, known for reversibly changing conformation upon illumination with light of different wavelengths. Relying on the ability of the molecules to change properties and structure as a response to external stimuli, they have been incorporated in various devices, such as molecular switches and motors. In contrast to the well-documented switching by light irradiation, we report the discovery of mechanically triggered switching of self-assembled azobenzene monolayers, resulting in changes of surface wettability, adhesion, and friction. This mechanically induced cis-trans isomerization is triggered either locally and selectively by AFM or macroscopically by particle impact. The process is optically reversible, enabling consecutive switching cycles. Collective switching behavior was also observed, propagating from the original point of impact in a domino-like manner. Finally, local force application facilitated nondestructive and erasable nanopatterning, the cis-trans nanolithography.
Collapse
Affiliation(s)
- Jonathan Berson
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Markus Moosmann
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Stefan Walheim
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Thomas Schimmel
- Institute of Nanotechnology and Institute of Applied Physics , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| |
Collapse
|
33
|
Du G, Lou L, Guan S, Peng Y, Qiao H, Liu P, Wu D. Controllable and large-scale supramolecular vesicle aggregation: orthogonal light-responsive host–guest and metal–ligand interactions. J Mater Chem B 2019. [DOI: 10.1039/c9tb00693a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
On the basis of the host–guest molecular recognition interaction between β-cyclodextrin and azobenzene, two kinds of supramolecular self-assemblies (Py-CD⊃Azo-C and Py-CD⊃Azo-C3) were constructed.
Collapse
Affiliation(s)
- Guangyan Du
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou City 310014
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Lingyun Lou
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Shuwen Guan
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Yuanyuan Peng
- College of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Hongwei Qiao
- Shandong Tengxi New Materials Co., Ltd
- Taian City 271000
- P. R. China
| | - Pingli Liu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
- Southwest Petroleum University
- Chengdu City 610500
- P. R. China
| | - Dan Wu
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou City 310014
- P. R. China
| |
Collapse
|
34
|
Liu C, Shen H, Wang S, Cao X, Xu H, Xia Y, Bai T, Liu Y, Peng L, Li C, Guo Z, Li Z. Spermine increases bactericidal activity of silver-nanoparticles against clinical methicillin-resistant Staphylococcus aureus. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Wu H, Chen Y, Zhang L, Anamimoghadam O, Shen D, Liu Z, Cai K, Pezzato C, Stern CL, Liu Y, Stoddart JF. A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. J Am Chem Soc 2018; 141:1280-1289. [DOI: 10.1021/jacs.8b10526] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huang Wu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ommid Anamimoghadam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
36
|
Mallo N, Foley ED, Iranmanesh H, Kennedy ADW, Luis ET, Ho J, Harper JB, Beves JE. Structure-function relationships of donor-acceptor Stenhouse adduct photochromic switches. Chem Sci 2018; 9:8242-8252. [PMID: 30542573 PMCID: PMC6240811 DOI: 10.1039/c8sc03218a] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The first in-depth, systematic study of the photoswitching properties of Donor-Acceptor Stenhouse Adducts (DASAs) is reported. Barbituric acid derived DASAs functionalised with 14 different amines ranging from dimethylamine to 4-methoxy-N-methylaniline were structurally characterised in solution using 1H and 13C NMR spectroscopy and, in eight cases, in the solid state by single crystal X-ray diffraction. The distribution of coloured and colourless isomers in the dark, their photostationary states under irradiation, apparent thermal half-lives, and fatigue resistance are systematically compared. A simple kinetic model is used to characterise photoswitching behaviour and reveals that minor structural modifications can significantly improve the photoswitching properties of DASA photochromes. These modifications result in excellent photoswitching properties for '1st generation' DASAs in chloroform, including exceptional fatigue resistance, opening the door for these photochromic molecules to find widespread applications.
Collapse
Affiliation(s)
- Neil Mallo
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Eric D Foley
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Hasti Iranmanesh
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Aaron D W Kennedy
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Ena T Luis
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Junming Ho
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Jason B Harper
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| | - Jonathon E Beves
- School of Chemistry , UNSW Sydney , High St, Kensington , Sydney , NSW , Australia .
| |
Collapse
|
37
|
Zhou J, Liu L, Pan Y, Zhu Q, Lu Y, Wei J, Luo K, Fu Y, Zhong C, Peng Y, Song Z. Asymmetric Difluoroboron Quinazolinone‐Pyridine Dyes with Large Stokes Shift: High Emission Efficiencies Both in Solution and in the Solid State. Chemistry 2018; 24:17897-17901. [DOI: 10.1002/chem.201803428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Jia Zhou
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Lu Liu
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Ying Pan
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Qiaoyu Zhu
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Yajie Lu
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Jiacheng Wei
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Kang Luo
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Yang Fu
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Cheng Zhong
- College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 P. R. China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| | - Zhibin Song
- Key Laboratory of Functional Small Organic MoleculesMinistry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P.R. China
| |
Collapse
|
38
|
Shao B, Baroncini M, Qian H, Bussotti L, Di Donato M, Credi A, Aprahamian I. Solution and Solid-State Emission Toggling of a Photochromic Hydrazone. J Am Chem Soc 2018; 140:12323-12327. [PMID: 30251843 PMCID: PMC6693799 DOI: 10.1021/jacs.8b07108] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/19/2022]
Abstract
The proliferation of light-activated switches in recent years has enabled their use in a broad range of applications encompassing an array of research fields and disciplines. All current systems, however, have limitations (e.g., from complicated synthesis to incompatibility in biologically relevant media and lack of switching in the solid-state) that can stifle their real-life application. Here we report on a system that packs most, if not all, the desired, targeted and sought-after traits from photochromic compounds (bistability, switching in various media ranging from serum to solid-state, while exhibiting ON/OFF fluorescence emission switching, and two-photon assisted near-infrared light toggling) in an easily accessible structure.
Collapse
Affiliation(s)
- Baihao Shao
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Massimo Baroncini
- Center
for Light Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 50, 40127 Bologna, Italy
| | - Hai Qian
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Laura Bussotti
- LENS
− European Laboratory for Non-linear Spectroscopy, via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- INO
− Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze, Italy
| | - Mariangela Di Donato
- LENS
− European Laboratory for Non-linear Spectroscopy, via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- INO
− Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze, Italy
| | - Alberto Credi
- Center
for Light Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 50, 40127 Bologna, Italy
| | - Ivan Aprahamian
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
39
|
Abstract
In this paper we elaborate on recently developed molecular switch architectures and how these new systems can help with the realization of new functions and advancement of artificial molecular machines. Progress in chemically and photoinduced switches and motors is summarized and contextualized such that the reader may gain an appreciation for the novel tools that have come about in the past decade. Many of these systems offer distinct advantages over commonly employed switches, including improved fidelity, addressability, and robustness. Thus, this paper serves as a jumping-off point for researchers seeking new switching motifs for specific applications, or ones that address the limitations of presently available systems.
Collapse
Affiliation(s)
- Jared D Harris
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| | - Mark J Moran
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
40
|
Li Q, Qian H, Shao B, Hughes RP, Aprahamian I. Building Strain with Large Macrocycles and Using It To Tune the Thermal Half-Lives of Hydrazone Photochromes. J Am Chem Soc 2018; 140:11829-11835. [DOI: 10.1021/jacs.8b07612] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Quan Li
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Hai Qian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Russell P. Hughes
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
41
|
Saha K, Chandrasekaran V, Heber O, Iron MA, Rappaport ML, Zajfman D. Ultraslow isomerization in photoexcited gas-phase carbon cluster [Formula: see text]. Nat Commun 2018; 9:912. [PMID: 29500438 PMCID: PMC5834543 DOI: 10.1038/s41467-018-03197-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/26/2018] [Indexed: 01/29/2023] Open
Abstract
Isomerization and carbon chemistry in the gas phase are key processes in many scientific studies. Here we report on the isomerization process from linear [Formula: see text] to its monocyclic isomer. [Formula: see text] ions were trapped in an electrostatic ion beam trap and then excited with a laser pulse of precise energy. The neutral products formed upon photoexcitation were measured as a function of time after the laser pulse. It was found using a statistical model that, although the system is excited above its isomerization barrier energy, the actual isomerization from linear to monocyclic conformation takes place on a very long time scale of up to hundreds of microseconds. This finding may indicate a general phenomenon that can affect the interstellar medium chemistry of large molecule formation as well as other gas phase processes.
Collapse
Affiliation(s)
- K. Saha
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - V. Chandrasekaran
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 7610001 Israel
- Present Address: Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014 India
| | - O. Heber
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - M. A. Iron
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - M. L. Rappaport
- Department of Physics Core Facilities, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - D. Zajfman
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 7610001 Israel
| |
Collapse
|
42
|
Lv X, Li T, Wu Q, Yu C, Jiao L, Hao E. Polybrominated BOPHY Dyes: Synthesis, Reactivity, and Properties. J Org Chem 2018; 83:1134-1145. [DOI: 10.1021/acs.joc.7b02415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaokang Lv
- The Key Laboratory of Functional Molecular
Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials (State Key Laboratory Cultivation Base), School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Tingting Li
- The Key Laboratory of Functional Molecular
Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials (State Key Laboratory Cultivation Base), School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular
Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials (State Key Laboratory Cultivation Base), School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular
Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials (State Key Laboratory Cultivation Base), School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular
Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials (State Key Laboratory Cultivation Base), School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular
Solids, Ministry of Education, Anhui Laboratory of Molecule-Based
Materials (State Key Laboratory Cultivation Base), School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
43
|
Shi YG, Wang JW, Li H, Hu GF, Li X, Mellerup SK, Wang N, Peng T, Wang S. A simple multi-responsive system based on aldehyde functionalized amino-boranes. Chem Sci 2018; 9:1902-1911. [PMID: 29675236 PMCID: PMC5890792 DOI: 10.1039/c7sc03617e] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
An aldehyde functionalized amino-borane has been found to respond to multiple external stimuli such as temperature, pressure and solvents, producing distinct patterns and colours.
A simple aldehyde functionalized amino-triarylborane donor–acceptor system (BO-1) was found to display distinct responses toward multiple external stimuli including solvent, temperature and pressure, with emission colours changing from blue to red. The operating mechanism most likely involves reversible switching between closed and open structures based on an intramolecular B ← O bond. Imbedded donor–acceptor charge transfer transitions played a key role in the multi-coloured fluorescent response of this new boron system to external stimuli. Multi-coloured and erasable fluorescent images on solid substrates based BO-1's “turn-on” response toward solvents, particularly water, are demonstrated.
Collapse
Affiliation(s)
- Yong-Gang Shi
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Jun-Wei Wang
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Haijun Li
- Department of Chemistry , Queen's University , Kingston , Ontario , K7L 3N6 , Canada .
| | - Guo-Fei Hu
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Xue Li
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Soren K Mellerup
- Department of Chemistry , Queen's University , Kingston , Ontario , K7L 3N6 , Canada .
| | - Nan Wang
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Tai Peng
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China .
| | - Suning Wang
- Key Laboratory of Cluster Science , Ministry of Education , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing , 102488 , People's Republic of China . .,Department of Chemistry , Queen's University , Kingston , Ontario , K7L 3N6 , Canada .
| |
Collapse
|
44
|
Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules. Proc Natl Acad Sci U S A 2017; 114:11850-11855. [PMID: 29078355 DOI: 10.1073/pnas.1711184114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemists have created molecular machines and switches with specific mechanical responses that were typically demonstrated in solution, where mechanically relevant motion is dissipated in the Brownian storm. The next challenge consists of designing specific mechanisms through which the action of individual molecules is transmitted to a supramolecular architecture, with a sense of directionality. Cellular microtubules are capable of meeting such a challenge. While their capacity to generate pushing forces by ratcheting growth is well known, conversely these versatile machines can also pull microscopic objects apart through a burst of their rigid tubular structure. One essential feature of this disassembling mechanism is the accumulation of strain in the tubules, which develops when tubulin dimers change shape, triggered by a hydrolysis event. We envision a strategy toward supramolecular machines generating directional pulling forces by harnessing the mechanically purposeful motion of molecular switches in supramolecular tubules. Here, we report on wholly synthetic, water-soluble, and chiral tubules that incorporate photoswitchable building blocks in their supramolecular architecture. Under illumination, these tubules display a nonlinear operation mode, by which light is transformed into units of strain by the shape changes of individual switches, until a threshold is reached and the tubules unleash the strain energy. The operation of this wholly synthetic and stripped-down system compares to the conformational wave by which cellular microtubules disassemble. Additionally, atomistic simulations provide molecular insight into how strain accumulates to induce destabilization. Our findings pave the way toward supramolecular machines that would photogenerate pulling forces, at the nanoscale and beyond.
Collapse
|
45
|
Cvrtila I, Fanlo-Virgós H, Schaeffer G, Monreal Santiago G, Otto S. Redox Control over Acyl Hydrazone Photoswitches. J Am Chem Soc 2017; 139:12459-12465. [PMID: 28749147 PMCID: PMC5599877 DOI: 10.1021/jacs.7b03724] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 11/28/2022]
Abstract
Photoisomerization provides a clean and efficient way of reversibly altering physical properties of chemical systems and injecting energy into them. These effects have been applied in development of systems such as photoresponsive materials, molecular motors, and photoactivated drugs. Typically, switching from more to less stable isomer(s) is performed by irradiation with UV or visible light, while the reverse process proceeds thermally or by irradiation using another wavelength. In this work we developed a method of rapid and tunable Z→E isomerization of C═N bond in acyl hydrazones, using aromatic thiols as nucleophilic catalysts. As thiols can be oxidized into catalytically inactive disulfides, the isomerization rates can be controlled via the oxidation state of the catalyst, which, together with the UV irradiation, provides orthogonal means to control the E/Z state of the system. As a proof of this concept, we have applied this method to control the diversity of acyl hydrazone based dynamic combinatorial libraries.
Collapse
Affiliation(s)
- Ivica Cvrtila
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hugo Fanlo-Virgós
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry,
Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
46
|
Zweig JE, Newhouse TR. Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches. J Am Chem Soc 2017; 139:10956-10959. [PMID: 28749144 DOI: 10.1021/jacs.7b04448] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new class of bidirectionally quantitative photoswitches based on the hemithioindigo (HTI) scaffold is reported. Incorporation of a pyrrole hydrogen-bond donor leads to a bathochromic shift allowing for quantitative bidirectional isomerization. Additionally, extending conjugation from the electron-rich pyrrole results in quantitative visible-light photoswitches, as well as photoswitches that isomerize with red and near-infrared light. The presence of the hydrogen bond leading to the observed redshift is supported by computational and spectroscopic evidence.
Collapse
Affiliation(s)
- Joshua E Zweig
- Department of Chemistry, Yale University , 275 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University , 275 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
47
|
Qian H, Shao B, Aprahamian I. Visible-light fluorescence photomodulation in azo-BF2 switches. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Wang L, Neal T, Chen S, Badjić JD. Multivalent and Photoresponsive Assembly of Dual-Cavity Baskets in Water. Chemistry 2017; 23:8829-8833. [PMID: 28608593 DOI: 10.1002/chem.201701996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 01/21/2023]
Abstract
Large unilamellar vesicles [1]n , composed of bolaamphiphilic baskets 1, were found to complex photoresponsive guest 3 and divalent 4 to, respectively, give stable vesicular assemblies [12 -3]n and [12 -43 ]n . With the assistance of 1 H NMR spectroscopy, electron microscopy, and dynamic light scattering, it was deduced that [12 -3]n vesicles comprise ternary [12 -3] organized into a curved membrane in which a pair of baskets entraps a laterally positioned dicationic 3. In the case of [12 -43 ]n vesicles, however, the spectroscopic results suggest that three guest molecules 4 insert vertically between four baskets 1 to give pentanary [12 -43 ] packed into the membrane of [12 -43 ]n . Importantly, nanostructured [12 -3]n and [12 -43 ]n retain rhodamine B (RhB) in their reservoir (fluorescence microscopy) and can be switched from one into another using UV light, with a disproportionate release of RhB dye. The reported complexes, organized into photoresponsive capsular materials, are rather unprecedented, demonstrating the potential of multivalency for creating functional structures of great interest in the areas of catalysis and delivery.
Collapse
Affiliation(s)
- Lu Wang
- Institute for Advanced Studies, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei, 430072, P. R. China.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43228, USA
| | - Taylor Neal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43228, USA
| | - Shigui Chen
- Institute for Advanced Studies, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei, 430072, P. R. China.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43228, USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43228, USA
| |
Collapse
|
49
|
Qian H, Pramanik S, Aprahamian I. Photochromic Hydrazone Switches with Extremely Long Thermal Half-Lives. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b04993] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hai Qian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Susnata Pramanik
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
50
|
Abstract
This feature article surveys the various ways by which a structurally simple hydrazone can be used in accessing different functional materials, mainly photo/chemically activated switches, fluorophores and sensors.
Collapse
|