1
|
Hu S, Zhang J, Shi M, Zhang P. Natural melanin: from biological functions to biofunctionalized nanoparticles in advanced biomedicine. BIOMATERIALS ADVANCES 2025; 176:214368. [PMID: 40472781 DOI: 10.1016/j.bioadv.2025.214368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/04/2025] [Accepted: 06/01/2025] [Indexed: 06/16/2025]
Abstract
Melanin nanoparticles (MNPs) are multifunctional, bioinspired nanomaterials that have become a versatile platform for biomedical and technological applications due to their unique physicochemical properties. MNPs, derived from natural or synthetic melanin precursors, are distinguished by their ease of synthesis, low toxicity, and excellent biocompatibility, making them highly promising for applications in stimuli-responsive drug delivery, high-resolution medical imaging, real-time tumor theranostics, and targeted photothermal therapy. This review offers an in-depth overview of recent progress in the sources, synthesis methods, characterization techniques, and diverse applications of MNPs. Their inherent antioxidant properties, effectiveness in stimuli-responsive drug delivery, high photothermal conversion efficiency, and strong biocompatibility highlight their potential as promising agents for cancer treatment, targeted nanomedicine, and real-time diagnostic imaging. Furthermore, the ability of MNPs to integrate both therapeutic and diagnostic functions (theranostics) offers a promising solution to key challenges in precision medicine. This review emphasizes the growing importance of sustainable, low-toxicity nanomaterials, especially in growing global health challenges such as drug-resistant cancers and neurodegenerative diseases. By combining insights from materials science, nanotechnology, and biomedicine, this work highlights the transformative potential of MNPs while addressing key challenges and outlining future research directions.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Life Science College, Luoyang Normal University, Luoyang, China.
| | - Jingwen Zhang
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Pei Zhang
- Life Science College, Luoyang Normal University, Luoyang, China.
| |
Collapse
|
2
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Pota G, Di Natale C, Puzone A, Cascone A, La Manna S, Licciardi F, Vitiello G, Panzetta V, Netti PA, Luciani G, Marasco D. Hybrid Se/melanin-like nanoparticles as ROS quenchers and inhibitors of amyloid aggregation. Int J Biol Macromol 2025; 312:144175. [PMID: 40379188 DOI: 10.1016/j.ijbiomac.2025.144175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Hybrid selenium/melanin-like nanoparticles offer different therapeutic strategies against amyloid aggregation. In this study, novel Se-based nanostructures are synthesized, characterized, and preliminarily employed as modulators of amyloid aggregation. In detail, two types of Se NPs are tested: one containing only Se(0), named Se NPs, and the second hybrid Se/melanin structures, indicated as SeMel NPs. Advanced biophysical and spectroscopic analyses elucidate the structures of NPs and the mechanistic underpinnings of the inhibition of aggregation of two protein fragments employed as amyloid models, Aβ21-40 and NPM1264-277. Both NPs are investigated for their antioxidant and superoxide dismutase (SOD)-like activity, as well as for their colloidal stability through dynamic light scattering (DLS) and ζ-potential measurements. ThT and SEM experiments demonstrate their ability to suppress amyloid aggregation, while far-UV circular dichroism (CD) spectroscopy indicates secondary structure alterations upon nanoparticle interaction, revealing a shift from β-sheet-rich conformations towards α-helical intermediates. Finally, SeMel NPs demonstrate cytocompatibility with SH-SY5Y cells and an effective mitigation of the cytotoxic effects of the amyloid models. These findings position hybrid Se-melanin NPs as promising agents for targeted amyloid therapeutics.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Interuniversity Research Center on Bioactive Peptides (CIRPEB) "Carlo Pedone", Via Mezzocannone 8, 80134 Naples, Italy.
| | - Concetta Di Natale
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Antonia Puzone
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Antonella Cascone
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Interuniversity Research Center on Bioactive Peptides (CIRPEB) "Carlo Pedone", Via Mezzocannone 8, 80134 Naples, Italy
| | - Federica Licciardi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy; Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Italian Institute of Technology, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Italian Institute of Technology, 80125 Naples, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Interuniversity Research Center on Bioactive Peptides (CIRPEB) "Carlo Pedone", Via Mezzocannone 8, 80134 Naples, Italy.
| |
Collapse
|
4
|
Wan G, Gu L, Chen Y, Wang Y, Sun Y, Li Z, Ma W, Bao X, Wang R. Nanobiotechnologies for stroke treatment. Nanomedicine (Lond) 2025:1-21. [PMID: 40327588 DOI: 10.1080/17435889.2025.2501514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Stroke has brought about a poor quality of life for patients and a substantial societal burden with high morbidity and mortality. Thus, the efficient stroke treatment has always been the hot topic in the research of medicine. In the past decades, nanobiotechnologies, including natural exosomes and artificial nanomaterials, have been a focus of attention for stroke treatment due to their inherent advantages, such as facile blood - brain barrier traversal and high drug encapsulation efficiency. Recently, thanks to the rapid development of nanobiotechnologies, more and more efforts have been made to study the therapeutic effects of exosomes and artificial nanomaterials as well as relevant mechanisms in stroke treatment. Herein, from recent studies and articles, the application of natural exosomes and artificial nanomaterials in stroke treatment are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingui Gu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yiqing Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenwei Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
6
|
Gong G, Wan W, Zhang X, Chen X, Yin J. Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury. Mol Biotechnol 2025; 67:1765-1783. [PMID: 38852121 DOI: 10.1007/s12033-024-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/10/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is fatal to patients, leading to cardiomyocyte death and myocardial remodeling. Reactive oxygen species (ROS) and oxidative stress play important roles in MIRI. There is a complex crosstalk between ROS and regulatory cell deaths (RCD) in cardiomyocytes, such as apoptosis, pyroptosis, autophagy, and ferroptosis. ROS is a double-edged sword. A reasonable level of ROS maintains the normal physiological activity of myocardial cells. However, during myocardial ischemia-reperfusion, excessive ROS generation accelerates myocardial damage through a variety of biological pathways. ROS regulates cardiomyocyte RCD through various molecular mechanisms. Targeting the removal of excess ROS has been considered an effective way to reverse myocardial damage. Many studies have applied antioxidant drugs or new advanced materials to reduce ROS levels to alleviate MIRI. Although the road from laboratory to clinic has been difficult, many scholars still persevere. This article reviews the molecular mechanisms of ROS inhibition to regulate cardiomyocyte RCD, with a view to providing new insights into prevention and treatment strategies for MIRI.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xinghu Zhang
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xiangxuan Chen
- Department of Cardiology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Jiangsu Medical Vocational College, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Nanjing Medical University Kangda College, Nanjing, 211100, China.
| |
Collapse
|
7
|
Sun R, Liu R, Tian Y, Li Y, Fan B, Li S. Removing Barriers to Tumor 'Oxygenation': Depleting Glutathione Nanozymes in Cancer Therapy. Int J Nanomedicine 2025; 20:5613-5643. [PMID: 40331231 PMCID: PMC12051984 DOI: 10.2147/ijn.s515734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
Nanozymes are nanomaterials capable of mimicking natural enzyme catalysis in the complex biological environment of the human body. Due to their good stability and strong catalytic properties, nanozymes are widely used in various fields of biomedicine. Among them, nanozymes that trigger intracellular reactive oxygen species (ROS) levels for cancer therapy have gained significant attention. However, the 'explosion' of ROS in tumor cells was prevented by the high levels of glutathione (GSH) in the tumor microenvironment (TME). GSH, a prominent endogenous antioxidant, increases the resistance of tumor cells to oxidative stress by scavenging ROS. Certain nanozymes can deplete intracellular GSH levels by mimicking GSH oxidase (GSHOx), GSH peroxidase (GPx) or by interfering with the reduction of oxidized glutathione (GSSG). On the one hand, elevated the level of intracellular ROS and induced lipid peroxidation reaction leading to ferroptosis. On the other hand, it creates favorable conditions for the treatment of tumors with photodynamic therapy (PDT), sonodynamic therapy (SDT), chemodynamical therapy (CDT) and targeted therapy. In this paper, we present a comprehensive analysis of GSH-depleting nanozymes reported in recent years, including classification, mechanism, responsiveness to TME and their roles in cancer therapy, and look forward to future applications and developments.
Collapse
Affiliation(s)
- Ruilong Sun
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
- Gansu Provincial Key Laboratory of Stem Cells and Gene Drugs, Lanzhou, People’s Republic of China
| | - Ruitang Liu
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongzheng Tian
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Yunfei Li
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Bo Fan
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| | - Songkai Li
- Spine Surgery, The 940th Hospital of the Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, People’s Republic of China
| |
Collapse
|
8
|
Park KC, Choi J, Choi S, Lee G, An HJ, Yun H, Lee S. Therapeutic potential of Polydopamine-Coated selenium nanoparticles in Osteoarthritis treatment. Int J Pharm 2025; 675:125568. [PMID: 40204040 DOI: 10.1016/j.ijpharm.2025.125568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Osteoarthritis (OA) affects millions globally, with its prevalence expected to rise due to an aging population. Selenium nanoparticles (SeNPs) have shown therapeutic potential, and polydopamine (PDA) coatings on nanoparticles offered additional benefits, including enhanced biocompatibility, antioxidant properties, and anti-inflammatory effects. However, while SeNPs and PDA have demonstrated efficacy in several disease models, their role in OA remains underexplored. This study aimed to evaluate the therapeutic effects of PDA-coated SeNPs in the treatment of OA. We developed PDA-coated SeNPs (PDA-SeNP) to improve Reactive Oxygen Species (ROS) control and evaluated their anti-inflammatory and cartilage-regenerative effects in both in vitro and in vivo models of OA. Transmission electron microscopy confirmed that the sizes of PDA-SeNPs was 203 ± 11 nm, with PDA coatings of approximately 12 ± 2 nm on the SeNPs. In vitro, treatment with PDA-SeNPs significantly enhanced the expression of cartilage-regeneration markers while reducing inflammatory marker levels in chondrocytes. For the in vivo analysis, OA was induced by injecting monoiodoacetate into the knee joints of rats. Four weeks after treatment with phosphate-buffered saline (PBS, n = 6), SeNPs (n = 6), or PDA-SeNPs (n = 6), the incapacitance test demonstrated improved weight-bearing capacity in the SeNP and PDA-SeNP groups compared to the PBS control. Gross morphological assessment and histological analysis revealed that PDA-SeNPs mitigated cartilage damage more effectively than SeNPs alone. These findings suggest that PDA-SeNPs promote cartilage repair, enhance extracellular matrix synthesis, and reduce knee pain in OA, establishing them as promising candidates for future OA treatment.
Collapse
Affiliation(s)
- Kyung-Chae Park
- Health Promotion Center, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do Zip code: 13488, Republic of Korea
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, South Korea
| | - Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do Zip code: 13488, Republic of Korea
| | - Gyurim Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do Zip code: 13488, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do Zip code: 13488, Republic of Korea
| | - Hyerin Yun
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi 16499, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do Zip code: 13488, Republic of Korea.
| |
Collapse
|
9
|
Li H, Jin X, Chu B, Zhang K, Qin X, Pan S, Zhao Y, Shi H, Zhang J, Wang H, Wen Z, He Y, Sun X. Inflammation Targeting and Responsive Multifunctional Drug-Delivery Nanoplatforms for Combined Therapy of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500113. [PMID: 40277325 DOI: 10.1002/smll.202500113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation, joint swelling, pain, and progressive joint destruction. Methotrexate (MTX) is the standard first-line treatment for RA, but its clinical application is hindered by poor water solubility and non-specific delivery. In this work, a multifunctional drug-delivery nanoplatform that targets both macrophages and tumor necrosis factor α (TNFα) is developed to enhance the therapeutic efficacy of MTX in RA. The nanoplatform consists of folic acid (FA, for macrophage targeting) and a TNFα-specific Aptamer (TNFα-Apt), facilitating a dual-targeting strategy that significantly improves the accumulation of MTX at the sites of RA lesions (≈3.5-fold). Moreover, the manganese dioxide (MnO₂) and polydopamine (PDA) coatings on the nanoplatform effectively scavenge reactive oxygen species (ROS), generate oxygen, and promote the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2 macrophages. This shift in macrophage polarization restores the expression of key inflammatory cytokines, improving the local inflammatory microenvironment. Ultimately, the nanoplatform significantly ameliorates the inflammation and joint damage in a collagen-induced arthritis (CIA) model, suggesting that this multi-target combination therapy holds considerable potential for the treatment of RA in vivo.
Collapse
Affiliation(s)
- Hongyang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Xiangbowen Jin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xuan Qin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Sheng Pan
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, Suzhou, 215000, China
| | - Yadan Zhao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Haoliang Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Jiawei Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Zhen Wen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Xuhui Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| |
Collapse
|
10
|
Kuang G, Ding J, Xie W, Ye Z, Zhang Q. Stimuli-Responsive Nodal Dual-Drug Polymer Nanoparticles for Cancer Therapy. Int J Nanomedicine 2025; 20:5181-5192. [PMID: 40292406 PMCID: PMC12034347 DOI: 10.2147/ijn.s517291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Background Polymeric drug delivery systems (DDSs) have gained significant attention in cancer therapy. However, these systems often respond to a single biological stimulus in tumor tissues or cells, limiting their effectiveness. While multi-sensitive DDSs improve therapeutic precision, their complex synthesis involving multi-step modifications remains challenging. Developing functionally integrated and simplified multiple stimuli-responsive DDSs is crucial to addressing tumor diversity and enhancing treatment efficacy. Methods and Results Here, we develop a dual-sensitive nodal dual-drug polymer nanoparticle (DDPoly NP) system for cancer therapy. This system combines a platinum(IV) prodrug (Cisplatin(IV)) with Demehylcantharidin (DMC) to create a dual-drug molecule (DDM). Then DDM is conjugated with methoxypolyethylene glycol (MPEG), forming a nodal dual-drug polymer (DDPoly). The amphiphilic polymer is capable of self-assembling into nanoparticles (DDPoly NPs) when in aqueous solution. The drug release experiments displayed that lower pH and reductive conditions simulating tumor microenvironment promoted the release of Cisplatin and DMC. Cytotoxicity studies demonstrated that DDPoly NPs exhibited superior anti-cancer activity compared to the single-drug system (SDPoly NPs). The IC50 values of DDPoly NPs against A549 cells (15.37 μM) and HeLa cells (17.05 μM) were significantly lower than those observed for SDPoly NPs, which were 40.48 μM for A549 cells and 38.11 μM for HeLa cells, respectively. Conclusion The study developed dual stimuli-responsive DDPoly NPs based on acid- and reduction-sensitive DDM, enabling tumor-specific activation without additional responsive components. DDPoly NPs triggered Pt(II) release via reduction and generated DMC through acid hydrolysis. The synergistic effect of DDPoly NPs lies in that DMC could inhibit the expression of serine/threonine protein phosphatase 2A (PP2A) and further elevate the expression of hyper-phosphorylated Akt (pAKt), thus blocking DNA repair to enhance Pt(II)-induced apoptosis. DDPoly NPs showed enhanced anti-cancer efficacy against cancer cells compared to SDPoly NPs, highlighting its potential for nanomedicine development.
Collapse
Affiliation(s)
- Gaizhen Kuang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jiaze Ding
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Weiyi Xie
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zihui Ye
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Park J, Wu Y, Le QV, Kim JS, Xu E, Lee J, Oh YK. Self-disassembling nanoparticles as oral nanotherapeutics targeting intestinal microenvironment. Nat Commun 2025; 16:3365. [PMID: 40204740 PMCID: PMC11982569 DOI: 10.1038/s41467-025-58513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Inspired by the survival strategies of pyomelanin-producing microbes, we synthesize pyomelanin nanoparticles (PMNPs) from homogentisic acid- γ-lactone via auto-oxidation and investigate their biomedical potential. PMNPs possess distinct physicochemical properties, including reactive oxygen species scavenging and microenvironment-responsive self-disassembly. Under intestinal conditions, PMNPs self-disassemble and penetrate the nanoscale pores of the mucin layer. In an inflammatory bowel disease model, orally administered PMNPs withstand gastric acidity and, in their solubilized form, interact with macrophages and epithelial cells. They significantly reduce reactive oxygen species levels, exert anti-inflammatory effects, and restore gut microbiota composition. Compared to conventional nanoparticles and 5-aminosalicylic acid, PMNPs exhibit greater therapeutic efficacy. Clinical symptoms and intestinal inflammation are alleviated, and the gut microbiota is restored to near-normal levels. These findings underscore the therapeutic potential of PMNPs for inflammatory bowel disease treatment and suggest broader biomedical applications.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Enzhen Xu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Sun J, Wu J, Zhao W, Zhang L, Han Y, Dong J, Zhang R, Shi Y. Multienzyme active melanin nanodots for antioxidant-immunomodulatory therapy of hyperoxia lung injury. Mater Today Bio 2025; 31:101609. [PMID: 40104637 PMCID: PMC11919337 DOI: 10.1016/j.mtbio.2025.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Supraphysiological oxygen is the most conventional method of treating patients with acute respiratory failure, but prolonged exposure to hyperoxia generates large amounts of reactive oxygen species (ROS) in the lungs, leading to hyperoxia lung injury (HLI). Nevertheless, there is no safe and effective prevention strategy. Herein, multienzyme active melanin nanodots were developed as an antioxidant-immunomodulatory defense nanoplatform for the treatment of HLI. The prepared nanodots are about 4 nm in size and are mainly composed of carbon, nitrogen and oxygen elements with high stability and multi-enzymatic activity for scavenging various reactive oxygen and reactive nitrogen radicals. Cellular experiments showed that melanin nanodots increased cell viability and ameliorated hyperoxia-induced morphological changes, mitochondrial damage and apoptosis. Meanwhile, by activating the Nrf2/Keap1/HO-1 signaling pathway, the treatment of melanin nanodots significantly inhibited the overproduction of ROS, reduced malondialdehyde, and increased the endogenous antioxidant enzyme activity in BEAS-2B cells. Interestingly, the antioxidant properties of melanin nanodots indirectly promoted the phenotypic shift of macrophages, and reduced hyperoxia-induced inflammatory responses in the damaged environment. In vivo NIR-II fluorescence imaging confirms the high retention of nanodots in the lungs and low accumulation in other major organs after inhalation administration, as well as the high biosafety of the melanin nanodots as they are metabolized out of the body over time via the liver and intestines. In addition, the melanin nanodots exhibited satisfactory antioxidant protection and inhibition of inflammatory cell infiltration in the lungs of HLI mouse models. Therefore, the melanin nanodots provide a potential and effective strategy for the treatment of HLI, showing great promise for application.
Collapse
Affiliation(s)
- Jinghua Sun
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Wu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjing Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Liyan Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Yiwei Shi
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Chen X, Xu J, Qin F, Yang Z, Li X, Yu M, Li M, Wang Y, Xin W. An immunoregulation PLGA/Chitosan aligned nanofibers with polydopamine coupling basic fibroblast growth factor and ROS scavenging for peripheral nerve regeneration. Mater Today Bio 2025; 31:101543. [PMID: 40026623 PMCID: PMC11869013 DOI: 10.1016/j.mtbio.2025.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
The repair and functional recovery of long-segment peripheral nerve injuries are crucial in clinical settings. Nerve conduits are seen as promising alternatives to autologous nerve grafts, but their effectiveness is limited by the controlled delivery of bioactive factors and meeting various functional requirements during different stages of repair. This research developed multifunctional nerve conduits using electrospinning and polydopamine (PDA) coating techniques to integrate bioactive substances. Chitosan-composite PLGA electrospun nerve conduits demonstrated exceptional mechanical properties and biocompatibility. Nanofibers with specific topological structures effectively promoted oriented cell growth. The PDA coating provided ROS scavenging and immune modulation functions. The bFGF growth factor attached to the PDA coating facilitated sustained release, enhancing Schwann cell functionality and stimulating neurite outgrowth. In a rat sciatic nerve defect model with a 10 mm gap, PLGA/CS-PDA-bFGF nerve conduits showed a positive impact on nerve regeneration and functional recovery. Consequently, nerve conduits with multiple functions modified with PDA-coated bioactive molecules are poised to be excellent materials for mending peripheral nerve injuries.
Collapse
Affiliation(s)
- Xiaokun Chen
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jihai Xu
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Feng Qin
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Ziyuan Yang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xueyuan Li
- Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Miao Yu
- Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Ming Li
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Yanhua Wang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Wang Xin
- Department of Plastic Reconstructive Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| |
Collapse
|
14
|
Zhang F, Gan Y, Xie W, Lu S, Zha Y, Liang Y, Qian J, Duan Y, Liao C, Wu Z, Zhang S. A novel zinc ferrite nanoparticle protects against MSU-induced gout arthritis via Nrf2/NF-κB/NLRP3 pathway. Life Sci 2025; 366-367:123475. [PMID: 39983819 DOI: 10.1016/j.lfs.2025.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
AIMS Gouty arthritis (GA), a prevalent and intricate form of inflammatory arthritis, affects individuals across all age groups. Existing therapeutic agents for GA are associated with substantial adverse effects. The overarching objective of this study is to identify an efficacious and biocompatible intervention strategy for GA. MATERIALS AND METHODS In this investigation, we developed a zinc ferrite nanoparticle (ZFN) characterized by outstanding catalytic activities in anti-inflammatory and antioxidative processes, along with negligible biotoxicity. ZFN features low-content Zn2+ doping, which effectively overcomes the issue of low biocompatibility commonly encountered in Zn-based nanoparticles. Both in vitro and in vivo experimental models were utilized to comprehensively evaluate the effects of ZFN. KEY FINDINGS The experimental results demonstrate that ZFN exhibits remarkable efficacy in alleviating inflammation and oxidative stress both in vitro and in vivo. It exerts its therapeutic effect on GA by modulating the NF-κB signaling pathway, suppressing the activation of the NLRP3 inflammasome, and activating the Nrf2 pathway. SIGNIFICANCE The protective effect of ZFN against GA holds great promise for the clinical translation of biocompatible inorganic nanoplatforms in the treatment of GA. This finding offers a potential alternative to the currently available medications, thereby providing new insights and possibilities for the management of GA.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuehao Gan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenteng Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengyuan Lu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yang Zha
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yingquan Liang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Junchao Qian
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
15
|
Menichetti A, Mordini D, Vicenzi S, Pane A, Montalti M. Unexplored Mechanisms of Photoprotection: Synergistic Light Absorption and Antioxidant Activity of Melanin. Antioxidants (Basel) 2025; 14:376. [PMID: 40298620 PMCID: PMC12024421 DOI: 10.3390/antiox14040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Light exposure has relevant effects both on living organisms and artificial materials. In particular, ultraviolet radiation is known to kill living cells and damage human skin but also degrade important artificial materials like plastics. In nature, the main pigment responsible for photoprotection is melanin, which is able both to prevent penetration of light by absorption and scattering and to block the action of light-generated radicals thanks to its antioxidant properties. The combination of light extinction with antioxidant action is still the most diffused and effective approach to photoprotection. Nevertheless, up to now, these two mechanisms, light extinction and antioxidant activity, have been considered independent. Recent studies showed that exposing melanin to light leads to an increase in its radical content and possibly in its antioxidant activity. Do light extinction and antioxidant activity work in synergy for photoprotection in nature? In this paper, we discuss the steps still needed to answer this intriguing question.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
- Tecnopolo di Rimini, via Dario Campana 71, 47922 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
| | - Silvia Vicenzi
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
| | - Agata Pane
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
- Tecnopolo di Rimini, via Dario Campana 71, 47922 Rimini, Italy
| |
Collapse
|
16
|
Chen X, Wu Y, Qin Y, Carmieli R, Popov I, Gutkin V, Fan C, Willner I. Molecularly Imprinted Polyaniline-Coated Cu-Zeolitic Imidazolate Framework Nanoparticles: Uricase-Mimicking "Polynanozyme" Catalyzing Uric Acid Oxidation. ACS NANO 2025; 19:9981-9993. [PMID: 40043252 PMCID: PMC11924329 DOI: 10.1021/acsnano.4c16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
One of the drawbacks of nanozyme catalytic functions rests in their moderate catalytic activities due to the lack of effective binding sites concentrating the reaction substrate at the nanozyme catalytic interface. Methods to concentrate the substrates at the catalytic interface are essential to improving nanozyme functions. The present study addresses this goal by designing uric acid (UA) molecular-imprinted polyaniline (PAn)-coated Cu-zeolitic imidazolate framework (Cu-ZIF) nanoparticles as superior nanozymes, "polynanozymes", catalyzing the H2O2 oxidation of UA to allantoin (peroxidase activity) or the aerobic, uricase mimicking, oxidation of UA to allantoin (oxidase activity). While bare Cu-ZIF nanoparticles reveal only peroxidase activity and the nonimprinted PAn-coated Cu-ZIF nanoparticles reveal inhibited peroxidase activity, the molecular-imprinted PAn-coated Cu-ZIF nanoparticles reveal a 6.1-fold enhanced peroxidase activity, attributed to the concentration of the UA substrate at the catalytic nanoparticle interface. Moreover, the catalytic aerobic oxidation of UA to allantoin by the imprinted PAn-coated Cu-ZIF nanoparticles is lacking in the bare particles, demonstrating the evolved catalytic functions in the molecularly imprinted polynanozymes. Mechanistic characterization of the system reveals that within the UA molecular imprinting process of the PAn coating, Cu+ reactive units are generated within the Cu-ZIF nanoparticles, and these provide reactive sites for generating O2-• as an intermediate agent guiding the oxidase activities of the nanoparticles. The study highlights the practical utility of molecular-imprinted polynanozymes in catalytic pathways lacking in the bare nanozymes, thus broadening the scope of nanozyme systems.
Collapse
Affiliation(s)
- Xinghua Chen
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yi Wu
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
| | - Yunlong Qin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Inna Popov
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vitaly Gutkin
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
17
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2025; 14:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
18
|
Malla P, Wang YM, Su CH. New horizons for the therapeutic application of nanozymes in cancer treatment. J Nanobiotechnology 2025; 23:130. [PMID: 39979897 PMCID: PMC11844087 DOI: 10.1186/s12951-025-03185-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/01/2025] [Indexed: 02/22/2025] Open
Abstract
The advent of nanozymes has revolutionized approaches to cancer diagnosis and therapy, introducing innovative strategies that address the limitations of conventional treatments. Nanozyme nanostructures with enzyme-mimicking catalytic abilities exhibit exceptional stability, biocompatibility, and customizable functions, positioning them as promising tools for cancer theranostics. By emulating natural enzyme reactions, nanozymes can selectively target and eradicate cancer cells, minimizing harm to adjacent healthy tissues. Nanozymes can also be functionalized with specific targeting ligands, allowing for the precise delivery and regulated release of therapeutic agents, improving treatment effectiveness and reducing adverse effects. However, issues such as biocompatibility, selectivity, and regulatory compliance remain critical challenges for the clinical application of nanozymes. This review provides an overview of nanozymes, highlighting their unique properties, various classifications, catalytic activities, and diverse applications in cancer treatments. The strategic oncological deployment of nanozymes could profoundly impact future advancements in personalized medicine, highlighting recent progress and prospective directions in enzyme-mimetic approaches for cancer treatment. This review summarizes an overview of nanozymes, highlighting their unique properties, various classifications, catalytic activities, and diverse applications in cancer treatments.
Collapse
Affiliation(s)
- Pravanjan Malla
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
19
|
Zhang H, Wang J, Tian Y, Wang C, Hou L. Shear force-ROS sequential responsive drug delivery system for improving cerebral thrombosis microcirculation and neurological function. J Control Release 2025; 378:195-208. [PMID: 39653151 DOI: 10.1016/j.jconrel.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
The ischemic strokes seriously threaten human health with high incidence and disability rates. Cerebral embolism and impaired brain function are the two major clinical features of this disease. Therefore, rapid restoration of cerebral blood supply and synchronous improvement of impaired neurological function is the key to treating strokes. Herein, based on the microenvironment of cerebral thrombosis and pathological characteristics of damaged neurons, we constructed a shear force and reactive oxygen species (ROS) dual-responsive system (UK@Fuc/CDPC-PTPCS) for sequential targeted delivery of thrombolytic agent urokinase (UK) and neuroprotective drug cytosolic choline (CDPC). Results proved that after intravenous administration, UK@Fuc/CDPC-PTPCS can quickly locate to cerebral thrombosis site via the active recognition capability of fucoidan (Fuc) to P-selectin overexpressed on activated platelets. Subsequently, the sharply increased blood shear force separated the core-shell structure by breaking the host-guest interaction of β-cyclodextrin (β-CD), so the UK loaded in the shell was first released to rapid thrombolysis and then restored cerebral blood supply. Afterward, the stroke homing peptide (SHp) modified CDPC-PTPCS core actively recognized ischemic damaged neuronal cells. Then high intracellular ROS triggered CDPC release at specific sites to exert neuroprotective effects. This study offered a new therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, China.
| | - Jingjing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingmei Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chaoqun Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, China.
| |
Collapse
|
20
|
Cun JE, He Z, Fan X, Pan Q, Luo K, He B, Pu Y. Copper-Based Bio-Coordination Nanoparticle for Enhanced Pyroptosis-Cuproptosis Cancer Immunotherapy through Redox Modulation and Glycolysis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409875. [PMID: 39757406 DOI: 10.1002/smll.202409875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Copper-based nanoparticles have garnered significant interest in cancer therapy due to their ability to induce oxidative stress and cuproptosis in cancer cells. However, their antitumor effectiveness is constrained by the dynamic redox balance and the metabolic shift between oxidative phosphorylation and glycolysis. Here, a polydopamine-coated copper-α-ketoglutaric acid (α-KG) coordination polymer nanoparticle (CKPP) is designed for combined pyroptosis-cuproptosis cancer immunotherapy by amplifying reactive oxygen species (ROS) production and regulating cellular metabolism. The intracellular redox imbalance is achieved through the synergistic effects of α-KG-induced mitochondrial metabolic reprogramming, photothermally enhanced superoxide dismutase-like activity of polydopamine, and glutathione depletion by copper ions. The multifaceted redox modulation results in a substantial increase in intracellular ROS levels, triggering oxidative stress and subsequent pyroptosis in cancer cells. Furthermore, α-KG shifts cellular metabolism from glycolysis to oxidative phosphorylation, thereby enhancing cuproptosis induced by copper ions. The combination of ROS dyshomeostasis and glycolysis inhibition results in a potent enhancement of pyroptosis-cuproptosis-mediated cancer therapy. In a murine model of colorectal cancer, CKPP exhibited a remarkable anticancer effect, achieving a tumor inhibition rate of 96.3% and complete tumor eradication in two out of five cases. Overall, this bio-engineered metal-organic nanocomposite demonstrates significant potential for treating cancer through combined pyroptosis-cuproptosis cancer immunotherapy.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
21
|
Zhu J, Zhang Y, Sun Y, Yu F, Lu Y, Hu Q, Guo J, Zhang H, Chen T, Lian F, Wang J, Li X, Xiao J. Mesoporous Prussian blue nanoparticle neuroconduit for the biological therapy targeting oxidative stress reduction, inflammation inhibition, and nerve regeneration. J Nanobiotechnology 2025; 23:1. [PMID: 39743507 DOI: 10.1186/s12951-024-02937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/16/2024] [Indexed: 01/04/2025] Open
Abstract
The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment. The present study demonstrates the fabrication of a Mesoporous Prussian blue nanoparticles (MPBN) functionalized Inverse Opal Film (IOF) neuroconduit for peripheral nerve repair through reverse replication and freeze-drying techniques. The binding of MPBN to the neuroconduit can effectively decreasing reactive oxygen species and inflammatory factors in the vicinity of the residual nerve, thereby providing protective effects on the damaged nerve. Furthermore, comprehensive behavioral, electrophysiological, and pathological analyses unequivocally substantiate the efficacy of MPBN in increasing nerve structure regeneration and ameliorating denervation-induced myopathy. Moreover, MPBN enhances the antioxidant capacity of Schwann cells by activating the AMPK/SIRT1/PGC-1 pathway. The findings suggest that MPBN, a biocompatible nanoparticle, can safeguard damaged nerves by optimizing the microenvironment surrounding nerve cells and augmenting the antioxidant capacity of nerve cells, thereby facilitating nerve regeneration and repair. This also establishes a theoretical foundation for exploring the integration and clinical translation between nanomaterials and biotherapy.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yijia Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yinuo Sun
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fangzheng Yu
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianqian Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiali Guo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Haijuan Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianling Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Feifei Lian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jian Xiao
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
22
|
Ding Q, Wang Y, Wang T, Zhang C, Yang S, Mao L, Cheng Y, Li Y, Lin K. A natural polyphenolic nanoparticle--knotted hydrogel scavenger for osteoarthritis therapy. Bioact Mater 2025; 43:550-563. [PMID: 40115875 PMCID: PMC11923377 DOI: 10.1016/j.bioactmat.2024.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 03/23/2025] Open
Abstract
Exploring highly efficient and cost-effective biomaterials for osteoarthritis (OA) treatment remains challenging, as current therapeutic strategies are difficult to eradicate the excessive reactive oxygen species (ROS) and nitric oxide (NO) at damaged sites. Tea polyphenol (TP) nanoparticles (NPs), a nature-inspired antioxidant in combination with 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a NO scavenger, could provide maximized positive therapeutic effects on OA by eradicating both ROS and NO. Notably, this combination not only improves the half-life of the TP monomer and the drug loading efficiency of carboxy-PTIO but also prevents nitrite from being harmful to tissue. Moreover, the protonation ability of carboxy-PTIO allows smart acid-responsive release in response to environmental pH, which provides conditioned treatment strategies for OA. In in vitro experiments, TP/PTIO NPs downregulated proinflammatory cytokine release via synergistic removal of ROS and NO and suppression of ROS/NF-κB and iNOS/NO/Caspase-3 signaling. For in vivo experiments, NPs were cross-linked with 4-arm-PEG-SH to form an injectable hydrogel system. The release of TP and carboxy-PTIO from the system efficiently prevents cartilage inflammation and damage via similar signaling pathways. Overall, the proposed system provides an efficient approach for OA therapy.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chengyao Zhang
- Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lu Mao
- Department of Spine Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yiyun Cheng
- School of Life Science, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
23
|
Wang L, Li X, Chen L, Mei S, Shen Q, Liu L, Liu X, Liao S, Zhao B, Chen Y, Hou J. Mitochondrial Uncoupling Protein-2 Ameliorates Ischemic Stroke by Inhibiting Ferroptosis-Induced Brain Injury and Neuroinflammation. Mol Neurobiol 2025; 62:501-517. [PMID: 38874704 DOI: 10.1007/s12035-024-04288-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ischemic stroke is a devastating disease in which mitochondrial damage or dysfunction substantially contributes to brain injury. Mitochondrial uncoupling protein-2 (UCP2) is a member of the UCP family, which regulates production of mitochondrial superoxide anion. UCP2 is reported to be neuroprotective for ischemic stroke-induced brain injury. However, the molecular mechanisms of UCP2 in ischemic stroke remain incompletely understood. In this study, we investigated whether and how UCP2 modulates neuroinflammation and regulates neuronal ferroptosis following ischemic stroke in vitro and in vivo. Wild-type (WT) and UCP2 knockout (Ucp2-/-) mice were subjected to middle cerebral artery occlusion (MCAO). BV2 cells (mouse microglial cell line) and HT-22 cells (mouse hippocampal neuronal cell line) were transfected with small interfering (si)-RNA or overexpression plasmids to knockdown or overexpress UCP2 levels. Cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/RX) to simulate hypoxic injury in vitro. We found that UCP2 expression was markedly reduced in a time-dependent manner in both in vitro and in vivo ischemic stroke models. In addition, UCP2 was mainly expressed in neurons. UCP2 deficiency significantly enlarged infarct volumes, aggravated neurological deficit scores, and exacerbated cerebral edema in mice after MCAO. In vitro knockdown of Ucp2 and in vivo genetic depletion of Ucp2 (Ucp2-/- mice) increased neuronal ferroptosis-related indicators, including Fe2+, malondialdehyde, glutathione, and lipid peroxidation. Overexpression of UCP2 in neuronal cells resulted in reduced ferroptosis. Moreover, knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ischemic stroke models, suggesting that endogenous UCP2 inhibits neuroinflammation following ischemic stroke. Upregulation of UCP2 expression in microglia appeared to decrease the release of pro-inflammatory factors and increase the levels of anti-inflammatory factors. Further investigation showed that UCP2 deletion inhibited expression of AMPKα/NRF1 pathway-related proteins, including p-AMPKα, t-AMPKα, NRF1, and TFAM. Thus, UCP2 protects the brain from ischemia-induced ferroptosis by activating AMPKα/NRF1 signaling. Activation of UCP2 represents an attractive strategy for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Li
- Department of Pain Medicine, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shenglan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Yannan Chen
- Department of Endocrinology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China.
| |
Collapse
|
24
|
Sun Y, Zou Q, Yu H, Yi X, Dou X, Yang Y, Liu Z, Yang H, Jia J, Chen Y, Sun SK, Zhang L. Melanin-like nanoparticles slow cyst growth in ADPKD by dual inhibition of oxidative stress and CREB. EMBO Mol Med 2025; 17:169-192. [PMID: 39567834 PMCID: PMC11730739 DOI: 10.1038/s44321-024-00167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Melanin-like nanoparticles (MNPs) have recently emerged as valuable agents in antioxidant therapy due to their excellent biocompatibility and potent capacity to scavenge various reactive oxygen species (ROS). However, previous studies have mainly focused on acute ROS-related diseases, leaving a knowledge gap regarding their potential in chronic conditions. Furthermore, apart from their well-established antioxidant effects, it remains unclear whether MNPs target other intracellular molecular pathways. In this study, we synthesized ultra-small polyethylene glycol-incorporated Mn2+-chelated MNP (MMPP). We found that MMPP traversed the glomerular filtration barrier and specifically accumulated in renal tubules. Autosomal dominant polycystic kidney disease (ADPKD) is a chronic genetic disorder closely associated with increased oxidative stress and featured by the progressive enlargement of cysts originating from various segments of the renal tubules. Treatment with MMPP markedly attenuated oxidative stress levels, inhibited cyst growth, thereby improving renal function. Interestingly, we found that MMPP effectively inhibits a cyst-promoting gene program downstream of the cAMP-CREB pathway, a crucial signaling pathway implicated in ADPKD progression. Mechanistically, we observed that MMPP directly binds to the bZIP DNA-binding domain of CREB, leading to competitive inhibition of CREB's DNA binding ability and subsequent reduction in CREB target gene expression. In summary, our findings identify an intracellular target of MMPP and demonstrate its potential for treating ADPKD by simultaneously targeting oxidative stress and CREB transcriptional activity.
Collapse
Affiliation(s)
- Yongzhan Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huizheng Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudan Dou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hong Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| | - Lirong Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
25
|
Ranjan R, Kumar D, Singh MR, Singh D. Novel drug delivery systems in cerebral vascular disorders, transient ischaemic attack, and stroke interventions. NOVEL DRUG DELIVERY SYSTEMS IN THE MANAGEMENT OF CNS DISORDERS 2025:295-311. [DOI: 10.1016/b978-0-443-13474-6.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Peng B, Mohammed FS, Tang X, Liu J, Sheth KN, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioact Mater 2025; 43:145-161. [PMID: 39386225 PMCID: PMC11462157 DOI: 10.1016/j.bioactmat.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier (BBB). The BBB's selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then provide insights into the potential clinical translation of nanomedicine, offering a perspective on its transformative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug delivery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has shown significant promise in addressing this challenge, further advancements aimed at improving delivery efficiency and simplifying formulations are necessary for successful clinical translation.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Farrah S. Mohammed
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| | - Xiangjun Tang
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurosurgery, Taihe Hospital, Hubei, 442000, PR China
| | - Jia Liu
- Department of Neurosurgery, New Haven, CT, 06510, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, New Haven, CT, 06510, USA
| |
Collapse
|
27
|
Xue Y, Wang T, Liu JP, Chen Q, Dai XL, Su M, Cheng YH, Chu CC, Ren YQ. Recent Trends in the Development and Application of Nano-Antioxidants for Skin-Related Disease. Antioxidants (Basel) 2024; 14:27. [PMID: 39857361 PMCID: PMC11762136 DOI: 10.3390/antiox14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Skin is a vital barrier for the human body, protecting against external environmental influences and maintaining internal homeostasis. In addition, an imbalance of oxidative stress and antioxidant mechanisms can lead to skin-related diseases. Thus, for treating skin-related diseases, antioxidant therapy may be an important strategy to alleviate these symptoms. However, traditional drug therapies have limitations in treating these conditions, such as lack of lasting effect and insufficient skin permeability. Recently, nano-antioxidants, with their good permeability, sustained-release ability, multifunctionality, and other beneficial characteristics, have showed their advances in the exploration of skin-related diseases from research on safe therapies to clinical practice. Hereby, we review the latest research and advancements in nano-antioxidants for skin-related diseases. We categorize skin-related diseases into four main groups: skin inflammatory diseases, skin damage caused by ultraviolet rays, skin wound healing, and other skin-related conditions. Additionally, we summarize the prospects and potential future directions for nano-antioxidant drugs in treating skin-related diseases.
Collapse
Affiliation(s)
- Yi Xue
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tao Wang
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Ji-Peng Liu
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Qi Chen
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Xiao-Long Dai
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China;
| | - Yu-Hang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Cheng-Chao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yun-Qing Ren
- Department of Dermatology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| |
Collapse
|
28
|
Hajibeygi M, Ghasemi A. A hindered phenol containing PVC/CuO nanocomposites; study on the mechanical and thermooxidative properties. Turk J Chem 2024; 49:29-44. [PMID: 40104107 PMCID: PMC11913362 DOI: 10.55730/1300-0527.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 02/17/2025] [Accepted: 12/27/2024] [Indexed: 03/20/2025] Open
Abstract
The effect of synthesized 5-((4-hydroxy-3,5-di-tert-butylphenyl)diazenyl)isophthalic acid (HBA) containing a hindered phenol derivative on the thermooxidation, hydrochloric acid release time, and mechanical strength of PVC/CuO nanocomposites was studied. Moreover, 5-((4-hydroxy-2,5-dimethylphenyl)diazenyl)isophthalic acid (HMA) was synthesized for comparison of corresponding PVC nanocomposite properties. PVC nanocomposite thin films were prepared through in situ surface modification of CuO nanoparticles with HBA and HMA, individually, in the PVC solution. The XRD and FE-SEM results clarified the desirable dispersion of CuO nanoparticles. The PVC sample with loading of 5 wt% from each HBA and CuO was found to be the most thermally stable, which was confirmed by thermogravimetric analysis in inert conditions. The thermooxidation and Congo red test results revealed that the simultaneous loading of HBA and CuO nanoparticles into the PVC matrix could increase the initial thermal degradation and the stability times. Moreover, the PVC sample containing 2.5 wt% each from HBA and CuO nanoparticles exhibited tensile strength almost 20 MPa more than that of neat PVC.
Collapse
Affiliation(s)
- Mohsen Hajibeygi
- Department of Organic and Polymer Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Alireza Ghasemi
- Department of Organic and Polymer Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
29
|
Belgamwar A, Sharma R, Mali Y, Agrawal YO, Nakhate KT. Nano revolutions in ischemic stroke: A critical analysis of current options and the potential of nanomedicines in diagnosis and therapeutics. Neuroscience 2024; 562:90-105. [PMID: 39433081 DOI: 10.1016/j.neuroscience.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. Globally, stroke ranks as the second leading cause of death and disability.This review provides an overview of stroke, focusing on its early detection, current treatment options, and emerging therapies. We discuss the complex mechanisms that contribute to stroke development, including the roles of cells, biomolecules, and blood vessels. Additionally, the review explores recent advances in the use of nanoparticles to enhance the efficacy of the pharmacotherapy of stroke, particularly ischemic stroke. Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes.We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
Collapse
Affiliation(s)
- Aarti Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Rarchita Sharma
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogesh Mali
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India.
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra 424001, India
| |
Collapse
|
30
|
Lin CS, He MQ, An MY, Zhao QH, Zhang ZH, Deng KY, Ai Y, Xin HB. Ultra-Small Copper-Based Multienzyme-Like Nanoparticles Protect Against Hepatic Ischemia-Reperfusion Injury Through Scavenging Reactive Oxygen Species in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403313. [PMID: 39377344 DOI: 10.1002/smll.202403313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a severe complication that occurs in the process of liver transplantation, hepatectomy, and other end-stage liver disease surgery, often resulting in the failure of surgery operation and even patient death. Currently, there is no effective way to prevent hepatic IRI clinically. Here, it is reported that the ultra-small copper-based multienzyme-like nanoparticles with catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) catalytic activities significantly scavenge the surge-generated endogenous reactive oxygen species (ROS) and effectively protects hepatic IRI. Density functional theory calculations confirm that the nanoparticles efficiently scavenge ROS through their synergistic effects of the ultra-small copper SOD-like activity and manganese dioxides CAT-like activity. Furthermore, the results show that the biocompatible CMP NPs significantly protected hepatocytes from IRI in vitro and in vivo. Importantly, their therapeutic effect is much stronger than that of N-acetylcysteamine acid (NAC), an FDA-approved antioxidative drug. Finally, it is demonstrated that the protective effects of CMP NPs on hepatic IRI are related to suppressing inflammation and hepatocytic apoptosis and maintaining endothelial functions through scavenging ROS in liver tissues. The study can provide insight into the development of next-generation nanomedicines for scavenging ROS.
Collapse
Affiliation(s)
- Cai-Shi Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
| | - Meng-Qi He
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, P. R. China
| | - Meng-Ying An
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
| | - Qi-Hang Zhao
- School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
- School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Yongjian Ai
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330088, P. R. China
- School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
31
|
Liu H, Zhuo R, Zou C, Xu S, Cai X, Ge Y, Liu G, Wu C, Dai C, Li J, Fan Z, Yang L, Li Y. RVG-peptide-camouflaged iron-coordinated engineered polydopamine nanoenzyme with ROS scavenging and inhibiting inflammatory response for ischemic stroke therapy. Int J Biol Macromol 2024; 282:136778. [PMID: 39442842 DOI: 10.1016/j.ijbiomac.2024.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Stroke is one of the most common causes of death and disability. In addition, most neuroprotective agents fail to rescue neurons from cerebral ischemic insults due to their poor ability to penetrate the blood-brain barrier (BBB). Here, the tailored engineered nanoenzyme has been successfully synthesized by coordination-driven co-assembly of dopamine (DA) and iron ion (Fe3+), which is subsequently camouflaged by neuron-specific rabies viral glycoprotein (RVG) peptide to scavenge reactive oxygen species (ROS) and inhibit inflammatory response in damaged neuron for the efficient therapy of ischemic stroke. The resulting nanoenzyme with good biocompatibility, core-shell structure, and suitable diameter can nondestructively cross the BBB and then internalize into the damaged neuron through the camouflaging and homologous targeted strategy of neuron-specific RVG peptide. After intravenous injection into transient middle cerebral artery occlusion (tMCAO) mouse models, nanoenzyme exerted a significant neuroprotective effect, resulting in a 50 % reduction in neurological scores and an approximate 33 % decrease in cerebral infarction volume. Interestingly, such nanoenzyme can eliminate free radicals, reduce neuroinflammation, enhance BBB integrity, improve mitochondrial function, and inhibit neuronal ferroptosis. Taken together, this well-designed nanoenzyme with its excellent biocompatibility and well-understood mechanisms holds promise a robust therapy for ischemic stroke.
Collapse
Affiliation(s)
- Heng Liu
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Rengong Zhuo
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chuanyang Zou
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shuyu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Cai
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuxue Ge
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chuang Wu
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Cuilian Dai
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen 361002, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| | - Lichao Yang
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Ying Li
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
32
|
Kong W, Liu Y, Ai P, Bi Y, Wei C, Guo X, Cai Z, Gao G, Hu P, Zheng J, Liu J, Huo M, Guan Y, Wu Q. Genetically modified E. Coli secreting melanin (E.melanin) activates the astrocytic PSAP-GPR37L1 pathway and mitigates the pathogenesis of Parkinson's disease. J Nanobiotechnology 2024; 22:690. [PMID: 39523310 PMCID: PMC11552183 DOI: 10.1186/s12951-024-02955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The characteristic neuropathology of Parkinson's disease (PD) involves the abnormal accumulation of phosphorylated α-synuclein (αSyn), as well as a significant decrease in neuromelanin (NM) levels within dopamine neurons (DaNs). Unlike αSyn aggregates, the relationship between NM levels and PD pathogenesis is not well understood. In this study, we engineered an E. coli MG1655 strain to produce exosomes containing melanin (E.melanin), and investigated its potential neuroprotective effects on DaNs in the context of PD. By employing a combination of cell cultures, biochemical studies, single nuclear RNA sequencing (snRNA seq), and various in vivo validations, we found that administration of E.melanin effectively alleviated DaNs loss and improved motor behavior impairments observed in both pharmacological and transgenic PD mouse models. Mechanistically, snRNA seq data suggested that E.melanin activated the PSAP-GPR37L1 signaling pathway specifically within astrocytes, leading to a reduction in astrocytic engulfment of synapses. Notably, activation of the GPR37L1 receptor using Tx14(A) peptide successfully rescued motor defects as well as protected against DaNs degeneration in mice with PD. Overall, our findings provide novel insights into understanding the molecular mechanisms underlying melanin's protective effects on DaNs in PD while offering potential strategies for manipulating and treating its pathophysiological progression.
Collapse
Affiliation(s)
- Weixian Kong
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu Liu
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pu Ai
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yong Bi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Chaoguang Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyang Guo
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhenyu Cai
- Cancer Center, Tenth Peoples Hospital of Tongji University, Shanghai, 200070, China
- College of Pharmacy, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Ge Gao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University School of Medicine, Tongji University, Shanghai, 200092, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jianhui Liu
- Department of Anaesthesiology, School of Medicine, Tongji Hospital, Tongji University, Shanghai, China.
| | - Minfeng Huo
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Qihui Wu
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
33
|
Pan T, Huang Y, Wei J, Lai C, Chen Y, Nan K, Wu W. Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment. J Nanobiotechnology 2024; 22:683. [PMID: 39506841 PMCID: PMC11542345 DOI: 10.1186/s12951-024-02962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Optic nerve regeneration remains challenging worldwide due to the limited intrinsic regenerative capacity of retinal ganglion cells (RGCs) and the inhibitory microenvironment. Oxidative stress, induced by excessive reactive oxygen species (ROS) following optic nerve injury, is associated with prolonged neuroinflammation, resulting in a secondary injury of RGCs and the impairment of axon regeneration. Herein, we developed a bionic nanocomposite scaffold (GA@PDA) with immunoregulatory ability for enhanced optic nerve regeneration. The ice-templating method was employed to fabricate biopolymer-based scaffolds with a directional porous structure, mimicking the optic nerve, which effectively guided the oriented growth of neuronal cells. The incorporation of bioinspired polydopamine nanoparticles (PDA NPs) further confers excellent ROS scavenging ability, thereby modulating the phenotype transformation of microglia/macrophages from pro-inflammatory M1 to anti-inflammatory M2. In a rat optic nerve crush model, the implantation of GA@PDA scaffold enhanced survival of RGCs and promoted axonal regeneration. Our study offers novel insights and holds promising potential for the advancement of engineered biomaterials in facilitating optic nerve regeneration.
Collapse
Affiliation(s)
- Tonghe Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chen Lai
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, PKU-HKUST ShenZhen- HongKong Institution, Shenzhen, 518057, Guangdong, China
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
34
|
Geng S, Fang B, Wang K, Wang F, Zhou Y, Hou Y, Iqbal MZ, Chen Y, Yu Z. Polydopamine Nanoformulations Induced ICD and M1 Phenotype Macrophage Polarization for Enhanced TNBC Synergistic Photothermal Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59814-59832. [PMID: 39450881 DOI: 10.1021/acsami.4c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photothermal therapy (PTT) is a promising technology that can achieve the thermal ablation of tumors and induce immunogenic cell death (ICD). However, relying solely on the antitumor immune responses caused by PTT-induced ICD is insufficient to suppress tumor metastasis and recurrence effectively. Fortunately, multifunctional nanoformulation-based synergistic photothermal immunotherapy can eliminate primary and metastatic tumors and inhibit tumor recurrence for a long time. Herein, we select polydopamine (PDA) nanoparticles to serve as the carrier for our nanomedicine as well as a potent photothermal agent and modulator of macrophage polarization. PDA nanoparticles are loaded with the insoluble immune adjuvant Imiquimod (R837) to construct PDA(R837) nanoformulations. These straightforward yet highly effective nanoformulations demonstrate excellent performance, allowing for successful triple-negative breast cancer (TNBC) treatment through synergistic photothermal immunotherapy. Moreover, experimental results showed that PDA(R837) implementation of PTT is effective in the thermal ablation of primary tumors while causing ICD and releasing R837, further promoting dendritic cell (DC) maturation and activating the systemic antitumor immune response. Furthermore, PDA(R837) nanoformulations inhibit tumor metastasis and recurrence and achieve M1 phenotype macrophage polarization, achieving long-term and excellent antitumor efficacy. Therefore, the structurally simple PDA(R837) nanoformulations provide cancer treatment and have excellent clinical translational application prospects.
Collapse
Affiliation(s)
- Siqi Geng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Baoru Fang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Ke Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Fang Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| | - Yiqing Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yanping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| | - Zhangsen Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P. R. China
| |
Collapse
|
35
|
Song Z, Wang L, Chen L, Chen Y. 2D MXene Biomaterials for Catalytic Medical Applications. ChemMedChem 2024; 19:e202400329. [PMID: 38981670 DOI: 10.1002/cmdc.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
In recent years, two-dimensional transition metal carbides, nitrides, and carbonitrides, termed as MXenes, have been widely applied in energy storage, photocatalysis and biomedicine owing to their unique physicochemical properties of large specific surface area, high electrical conductivity, excellent optical performance, good stability, etc. Moreover, due to their strong light absorption capacity in the first and second near-infrared bio-window, and their ability of being simply functionalized with multiple organic/inorganic materials, MXene biomaterials have shown great potential in the field of catalytic therapy. This review will summarize the common catalytic mechanism of MXene biomaterials and their latest applications in catalytic medicine such as tumor therapy, antibacterial and anti-inflammatory, and present the current challenges and opportunities in clinical translation for future development to promote the advancement of MXene biomaterials in the field of catalytic medicine.
Collapse
Affiliation(s)
- Ziying Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
36
|
Hua S, Zhang Y, Zhu Y, Fu X, Meng L, Zhao L, Kong L, Pan S, Che Y. Tunicate cellulose nanocrystals strengthened injectable stretchable hydrogel as multi-responsive enhanced antibacterial wound dressing for promoting diabetic wound healing. Carbohydr Polym 2024; 343:122426. [PMID: 39174115 DOI: 10.1016/j.carbpol.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/24/2024]
Abstract
The intricate microenvironment of diabetic wounds characterized by hyperglycemia, intense oxidative stress, persistent bacterial infection and complex pH fluctuations hinders the healing process. Herein, an injectable multifunctional hydrogel (QPTx) was developed, which exhibited excellent mechanical performance and triple responsiveness to pH, temperature, and glucose due to dynamic covalent cross-linking involving dynamic Schiff base bonds and phenylboronate esters with phenylboronic-modified quaternized chitosan (QCS-PBA), polydopamine coated tunicate cellulose crystals (PDAn@TCNCs) and polyvinyl alcohol (PVA). Furthermore, the hydrogels can incorporate insulin (INS) drugs to adapt to the complex and variable wound environment in diabetic patients for on-demand drug release that promote diabetic wound healing. Based on various excellent properties of the colloidal materials, the hydrogels were evaluated for self-healing, rheological and mechanical properties, in vitro insulin response to pH/temperature/glucose release, antibacterial, antioxidant, tissue adhesion, coagulation, hemostasis in vivo and in vitro, and biocompatibility and biodegradability. By introducing PDAn@TCNCs particles, the hydrogel has photothermal antibacterial activity, enhanced adhesion and oxidation resistance. We further demonstrated that these hydrogel dressings significantly improved the healing process compared to commercial dressings (Tegaderm™) in full-layer skin defect models. All indicated that the glucose-responsive QPTx hydrogel platform has great potential for treating diabetic wounds.
Collapse
Affiliation(s)
- Shengming Hua
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Yifei Zhu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Xin Fu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingtao Meng
- School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lihua Zhao
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
37
|
Shi YH, Jiang WC, Wu W, Xu LY, Cheng HL, Zeng J, Wang SY, Zhao Y, Xu ZH, Zhang GQ. Colorimetric sensor array for identifying antioxidants based on pyrolysis-free synthesis of Fe-N/C single-atom nanozymes. Talanta 2024; 279:126621. [PMID: 39079437 DOI: 10.1016/j.talanta.2024.126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Iron-anchored nitrogen/doped carbon single-atom nanozymes (Fe-N/C), which possess homogeneous active sites and adjustable catalytic environment, represent an exemplary model for investigating the structure-function relationship and catalytic activity. However, the development of pyrolysis-free synthesis technique for Fe-N/C with adjustable enzyme-mimicking activity still presents a significant challenge. Herein, Fe-N/C anchored three carrier morphologies were created via a pyrolysis-free approach by covalent organic polymers. The peroxidase-like activity of these Fe-N/C nanozymes was regulated via the pores of the anchored carrier, resulting in varying electron transfer efficiency due to disparities in contact efficacy between substrates and catalytic sites within diverse microenvironments. Additionally, a colorimetric sensor array for identifying antioxidants was developed: (1) the Fe-N/C catalytically oxidized two substrates TMB and ABTS, respectively; (2) the development of a colorimetric sensor array utilizing oxTMB and oxABTS as sensing channels enabled accurate discrimination of antioxidants such as ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), gallic acid (GA), and caffeic acid (CA). Subsequently, the sensor array underwent rigorous testing to validate its performance, including assessment of antioxidant mixtures and individual antioxidants at varying concentrations, as well as target antioxidants and interfering substances. In general, the present study offered valuable insights into the active origin and rational design of nanozyme materials, and highlighting their potential applications in food analysis.
Collapse
Affiliation(s)
- Yu-Han Shi
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wen-Cai Jiang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wei Wu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Li-Yao Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Hui-Ling Cheng
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jing Zeng
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Si-Yan Wang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yan Zhao
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Zhi-Hong Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Guo-Qi Zhang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, 610039, PR China.
| |
Collapse
|
38
|
Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: Enhancing drug delivery and efficacy. Biomed Pharmacother 2024; 180:117564. [PMID: 39405899 DOI: 10.1016/j.biopha.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Ischemic stroke, characterized by vascular occlusion, has recently emerged as one of the primary causes of mortality and disability worldwide. Conventional treatment modalities, such as thrombolytic and neuroprotective therapies, face numerous challenges, including limited bioavailability, significant neurotoxicity, suboptimal targeting, short half-life, and poor blood-brain barrier (BBB) penetration. Nanoparticle-based drug delivery systems present distinct advantages, such as small size, enhanced lipophilicity, and modifiability, which can potentially address these limitations. Utilizing nanoparticles for drug delivery in ischemic stroke therapy offers improved drug bioavailability, reduced neurotoxicity, enhanced targeted delivery, prolonged drug half-life, and better dissolution kinetics. This review aims to provide a comprehensive overview of current strategies in preclinical studies for managing or preventing ischemic stroke from a nanomaterial perspective, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Qingqing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jiahui Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Wanyi Mao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Yan
- Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou 225300, China.
| |
Collapse
|
39
|
Phan HL, Tran NCT, Le THY, Le QV, Le TTD, Thach UD. Fabrication of polydopamine-modified cellulose hydrogel for controlled release of α-mangostin. Biopolymers 2024; 115:e23613. [PMID: 38989603 DOI: 10.1002/bip.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Hydrogels are notable for their outstanding absorbent qualities, satisfactory compatibility with biological systems, ability to degrade, and inherent safety, all of which contribute to their high demand in the field of biomedicine. This study focuses on the fabrication of hydrogels using environmentally friendly cellulosic material. Cellulose hydrogel beads were prepared by physical cross-linking in a NaOH/urea medium. Furthermore, nano polydopamine was integrated into the hydrogel matrix as functional polymers and α-mangostin was employed as an active pharmaceutical ingredient. The physicochemical properties were comprehensively analyzed using Fourier-transform infrared spectrometer, 13C cross-polarization/magic angle spinning nuclear magnetic resonance, thermogravimetric analysis, and scanning electron microscope. The drug delivery properties, including water content, swelling ratio, and drug release profiles, were evaluated. In vitro cytotoxicity against MC3T3-E1 cells was assessed using sulforhodamine B staining. All test hydrogels exhibited inhibitory activity against the growth of MC3T3-E1 cells. These results indicated the potential use of these hydrogels as a drug delivery carrier for α-mangostin in the treatment of ankylosing spondylitis.
Collapse
Affiliation(s)
- Hoang Lich Phan
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Thi Hoang Yen Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Tran-Thai-Duong Le
- Research and Development Department, Institute of Drug Quality Control, Ho Chi Minh City, Vietnam
| | - Ut Dong Thach
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
40
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
41
|
Han Q, Wang C, Liu J, Wang C, Zhang H, Ni Q, Sun J, Wang Y, Sun B. Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke. Transl Stroke Res 2024; 15:880-892. [PMID: 37555909 DOI: 10.1007/s12975-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Nanozymes are a new kind of material which has been applied since the beginning of this century, and its birth has promoted the development of chemistry, materials science, and biology. Nanozymes can be used as a substitute for natural enzyme and has a wide range of applications; therefore, it has attracted extensive attention from all sectors of the community, and the number of studies has constantly increasing. In this paper, we introduced the outstanding achievements in the field of nanozymes in recent years from the main function, the construction of nanozyme-based biosensors, and the treatment of ischemic stroke, and we also illustrated the internal mechanism and the catalytic principle. In the end, the obstacles and challenges in the future development of nanozymes were proposed.
Collapse
Affiliation(s)
- Qing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chengcheng Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jian Liu
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Cai Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Hongming Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
42
|
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, Dash SL, Sarangi MK. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chem Biodivers 2024; 21:e202401326. [PMID: 39041292 DOI: 10.1002/cbdv.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The nanozymes (NZs) are the artificial catalyst deployed for biosensing with their uniqueness (high robustness, surface tenability, inexpensive, and stability) for obtaining a better response/miniaturization of the varied sensors than their traditional ancestors. Nowadays, nanomaterials with their broadened scale such as metal-organic frameworks (MOFs), and metals/metal oxides are widely engaged in generating NZ-based biosensors (BS). Diverse strategies like fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and electrochemical sensing principles were implemented for signal transduction of NZs. Despite broad advantages, numerous encounters (like specificity, feasibility, stability, and issues in scale-up) are affecting the potentialities of NZs-based BS, and thus need prior attention for a promising exploration for a revolutionary outcome in advanced theranostics. This review includes different types of NZs, and the progress of numerous NZs tailored bio-sensing techniques in detecting abundant bio analytes for theranostic purposes. Further, the discussion highlighted some recent challenges along with their progressive way of possibly overcoming followed by commercial outbreaks.
Collapse
Affiliation(s)
- Abdul Sayeed Khan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Sudhir Kumar Sahu
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Santosh Kumar Dash
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Tankadhar Mishra
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Amiya Ranjan Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Damodar Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | | | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| |
Collapse
|
43
|
Kwon YS, Han Z. Advanced nanomedicines for the treatment of age-related macular degeneration. NANOSCALE 2024; 16:16769-16790. [PMID: 39177654 DOI: 10.1039/d4nr01917b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The critical and unmet medical need for novel therapeutic advancements in the treatment of age-related macular degeneration (AMD) cannot be overstated, particularly given the aging global population and the increasing prevalence of this condition. Current AMD therapy involves intravitreal treatments that require monthly or bimonthly injections to maintain optimal efficacy. This underscores the necessity for improved approaches, prompting recent research into developing advanced drug delivery systems to prolong the intervals between treatments. Nanoparticle-based therapeutic approaches have enabled the controlled release of drugs, targeted delivery of therapeutic materials, and development of smart solutions for the harsh microenvironment of diseased tissues, offering a new perspective on ocular disease treatment. This review emphasizes the latest pre-clinical treatment options in ocular drug delivery to the retina and explores the advantages of nanoparticle-based therapeutic approaches, with a focus on AMD, the leading cause of irreversible blindness in the elderly.
Collapse
Affiliation(s)
- Yong-Su Kwon
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | - Zongchao Han
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Chen F, Jiang Q, Xu B, Huang Y, Xu K, Xu X, Yu D, Chen Y, Wang X. Ototoxicity-Alleviating and Cytoprotective Allomelanin Nanomedicine for Efficient Sensorineural Hearing Loss Treatment. ACS NANO 2024. [PMID: 39259947 DOI: 10.1021/acsnano.4c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a significant clinical challenge, predominantly attributed to oxidative stress-related mechanisms. In this work, we report an innovative antioxidant strategy for mitigating SNHL, utilizing synthetically engineered allomelanin nanoparticles (AMNPs). Empirical evidence elucidates AMNPs' profound capability in free radical neutralization, substantiated by a significant decrement in reactive oxygen species (ROS) levels within HEI-OC1 auditory cells exposure to cisplatin or hydrogen peroxide (H2O2). Comparative analyses reveal that AMNPs afford protection against cisplatin-induced and noise-induced auditory impairments, mirroring the effect of dexamethasone (DEX), a standard pharmacological treatment for acute SNHL. AMNPs exhibit notable cytoprotective properties for auditory hair cells (HCs), effectively preventing ototoxicity from cisplatin or H2O2 exposure, as confirmed by both in vitro assays and cultured organ of Corti studies. Further in vivo research corroborates AMNPs' ability to reverse auditory brainstem response (ABR) threshold shifts resulting from acoustic injury, concurrently reducing HCs loss, ribbon synapse depletion, and spiral ganglion neuron degeneration. The therapeutic benefits of AMNPs are attributed to mitigating oxidative stress and inflammation within the cochlea, with transcriptome analysis indicating downregulated gene expression related to these processes post-AMNPs treatment. The pronounced antioxidative and anti-inflammatory effects of AMNPs position them as a promising alternative to DEX for SNHL treatment.
Collapse
Affiliation(s)
- Fengqiu Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Qingjun Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Xiaoju Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| |
Collapse
|
45
|
Minibayeva FV, Rassabina AE, Zakirjanova GF, Fedorov NS, Khabibrakhmanova VR, Galeeva EI, Kuznetsova EA, Malomouzh AI, Petrov AM. Protective properties of melanin from lichen Lobaria pulmonaria (L.) HOFFM. In models of oxidative stress in skeletal muscle. Fitoterapia 2024; 177:106127. [PMID: 39019238 DOI: 10.1016/j.fitote.2024.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L. pulmonaria to counteract oxidative stress and related damages was studied in the mouse diaphragm, the main respiratory muscle. Initial in vitro experiments demonstrated ultraviolet (UV)-absorbing, antioxidant and metal chelating activities of melanin. This melanin can form nanoparticles and stabile colloidal system at concentration of 5 μg/ml. Pretreatment of the muscle with melanin (5 μg/ml) markedly reduced UV-induced increase in intracellular and extracellular reactive oxygen species (ROS) as well as antimycin A-mediated enhancement in mitochondrial ROS production accompanied by lipid peroxidation and membrane asymmetry loss. In addition, melanin attenuated suppression of neuromuscular transmission and alterations of contractile responses provoked by hydrogen peroxide. Thus, this study shed the light on the perspectives of the application of a lichen melanin as a protective component for treatment of skeletal muscle disorders, which are accompanied with an increased ROS production.
Collapse
Affiliation(s)
- Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia.
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Guzalia F Zakirjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Nikita S Fedorov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Ekaterina I Galeeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Kazan National Research Technical University, 10, K. Marx St., Kazan 420111, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; Kazan State Mediсal University, 49 Butlerova Street, Kazan 420012, Russia.
| |
Collapse
|
46
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
47
|
Liu R, Zhou T, Li X, Zou Q, Yu J, Ye J, Wang W, Zhou Y, Sun SK. A Non-Metallic Nanozyme Ameliorates Pulmonary Hypertension Through Inhibiting ROS/TGF-β1 Signaling. Adv Healthc Mater 2024:e2401909. [PMID: 39155419 DOI: 10.1002/adhm.202401909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Pulmonary hypertension (PH) is a life-threatening cardiovascular disease with a lack of effective treatment options. Nanozymes, though promising for PH therapy, pose safety risks due to their metallic nature. Here, a non-metallic nanozyme is reported for the treatment of monocrotaline (MCT)-induced PH with a therapeutic mechanism involving the ROS/TGF-β1 signaling. The synthesized melanin-polyvinylpyrrolidone-polyethylene glycol (MPP) nanoparticles showcase ultra-small size, excellent water solubility, high biocompatibility, and remarkable antioxidant capacity. The MPP nanoparticles are capable of effectively eliminating ROS in isolated pulmonary artery smooth muscle cells (PASMCs) from PH rats, and significantly reduce PASMC proliferation and migration. In vivo results from a PH model demonstrate that MPP nanoparticles significantly increase pulmonary artery acceleration time, decrease wall thickening and PCNA expression in lung tissues, as evidenced by echocardiograpy, histology and immunoblot analysis. Additionally, MPP nanoparticles treatment improve running capacity, decrease Fulton index, and attenuate right ventricular fibrosis in MCT-PH rats by using treadmill test, picrosirius red, and trichrome Masson staining. Further transcriptomic and biochemical analyses reveal that inhibiting ROS-driven activation of TGF-β1 in the PA is the mechanism by which MPP nanoparticles exert their therapeutic effect. This study provides a novel approach for treating PH with non-metallic nanozymes based on a well-understood mechanism.
Collapse
Affiliation(s)
- Ruxia Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Ting Zhou
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of CT, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, 710068, China
| | - Xinsheng Li
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Quan Zou
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jingjing Ye
- Trauma Treatment Center, Peking University People's Hospital, Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University) Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Wenhui Wang
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yan Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
48
|
Liu Y, Wang S, Zhang J, Sun Q, Xiao Y, Chen J, Yao M, Zhang G, Huang Q, Zhao T, Huang Q, Shi X, Feng C, Ai K, Bai Y. Reprogramming the myocardial infarction microenvironment with melanin-based composite nanomedicines in mice. Nat Commun 2024; 15:6651. [PMID: 39103330 PMCID: PMC11300711 DOI: 10.1038/s41467-024-50854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM. MCN is a nanocomposite composed of polydopamine (P), Prussian blue (PB) and cerium oxide (CexOy) with a Mayuan-like structure, which reprogramming the MIM by the efficient conversion of detrimental substances (H+, reactive oxygen species, and hypoxia) into beneficial status (O2 and H2O). In coronary artery ligation and ischemia reperfusion models of male mice, intravenously injecting MCN specifically targets the damaged area, resulting in restoration of cardiac function. With its promising therapeutic effects, MCN constitutes a new agent for MI treatment and demonstrates potential for clinical application.
Collapse
Affiliation(s)
- Yamei Liu
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yi Xiao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Chen
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Meilian Yao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guogang Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, P.R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaojing Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Can Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
| | - Yongping Bai
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
49
|
Han Q, Huang D, Li S, Xia B, Wang X. Multifunctional nanozymes for disease diagnosis and therapy. Biomed J 2024; 47:100699. [PMID: 38278414 PMCID: PMC11344012 DOI: 10.1016/j.bj.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
The development of nanotechnology has brought about groundbreaking advancements in diseases' diagnostics and therapeutics. Among them, multifunctional nanomaterials with enzyme-like activities (i.e., nanozymes) featured with high stability, large surface area for bioconjugation, and easy storage, offer unprecedented opportunities for disease diagnostics and treatment. Recent years have witnessed the great progress of nanozyme-based theranostics. To highlight these achievements, this review first introduces the recent advancements on nanozymes in biosensing and diagnostics. Then, it summarizes the applications of nanozymes in therapeutics including anti-tumor and antibacterial treatment, anti-inflammatory treatment, and other diseases treatment. In addition, several targeted strategies to improve the therapeutic efficacy of nanozyme are discussed. Finally, the opportunities and challenges in the field of diagnosis and therapy are summarized.
Collapse
Affiliation(s)
- Qingzhi Han
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Di Huang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Sijie Li
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China
| | - Bing Xia
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| | - Xiaoyu Wang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
50
|
Terranova ML. Physiological Roles of Eumelanin- and Melanogenesis-Associated Diseases: A Look at the Potentialities of Engineered and Microbial Eumelanin in Clinical Practice. Bioengineering (Basel) 2024; 11:756. [PMID: 39199714 PMCID: PMC11351163 DOI: 10.3390/bioengineering11080756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
This paper aims to highlight the physiological actions exerted by eumelanin present in several organs/tissues of the human body and to rationalise the often conflicting functional roles played by this biopolymer on the basis of its peculiar properties. Besides pigmentary disorders, a growing number of organ injuries and degenerative pathologies are presently ascribed to the modification of physiological eumelanin levels in terms of alterations in its chemical/structural features, and of a partial loss or uneven distribution of the pigment. The present review analyses the more recent research dedicated to the physiological and pathological actions of eumelanin and provides an insight into some melanogenesis-associated diseases of the skin, eye, ear, and brain, including the most significant neurodegenerative disorders. Also described are the potentialities of therapies based on the localised supply of exogeneous EU and the opportunities that EU produced via synthetic biology offers in order to redesign therapeutical and diagnostic applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dip.to di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|