1
|
Roy S, Pan S, Sivaram S, De P. Naphthalimide-based fluorescent polymeric probe: a dual-phase sensor for formaldehyde detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2025; 26:2469493. [PMID: 40084219 PMCID: PMC11905309 DOI: 10.1080/14686996.2025.2469493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 03/16/2025]
Abstract
Formaldehyde (FA) is a common pollutant found indoors and outdoors, posing a significant threat to human health. Therefore, developing sensitive and efficient detection methods for FA is essential for environmental monitoring and protecting public health. Herein, we report a naphthalimide-conjugated water-soluble polymeric fluorescent probe for the detection of FA in both aqueous and vapor phases using fluorimetric methods. The aromatic amines present in the side chain of the polymer react with FA, forming a Schiff base (imine bond). This imine formation inhibits the photoinduced electron transfer (PET) process within the polymer, leading to a 'turn-on' fluorescence under 365 nm UV light. The probe is capable of selectively sensing FA with a detection limit as low as 1.36 nM in aqueous medium. The formation of imine is confirmed for the model reaction between 6-(4-aminophenyl)-2-(4-((4-vinylbenzyl)oxy)phenyl)-1 h-benzo[de]isoquinoline-1,3(2 h)-dione and FA by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) titration methods. The mechanism behind 'turn-on' FA sensing is investigated using density functional theory (DFT) analysis. Additionally, the study demonstrates a facile approach for covalently attaching the polymer on the surface of a filter paper surface via ultraviolet (UV) light-induced cross-linking. Such polymer attached paper exhibits FA vapor sensing through changes in fluorescence intensity.
Collapse
Affiliation(s)
- Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Swagata Pan
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | | | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
2
|
Zhou L, Pan Y, Li X, Fan T, Liang X, Li X. Organelle-resolved imaging of formaldehyde reveals its spatiotemporal dynamics. J Mater Chem B 2024; 12:9592-9599. [PMID: 39225152 DOI: 10.1039/d4tb01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Understanding the spatiotemporal dynamics of formaldehyde (FA) is crucial for elucidating its pathophysiology. In this study, we designed a series of organelle-resolved probes to investigate FA dynamics. By incorporating various organelle anchors into a coumarin hydrazonate, we developed a series of probes with excellent organelle selectivity and FA specificity, enabling rapid and precise sensing of FA in an organelle-resolved way. Leveraging these probes, we captured the spatiotemporal dynamics of native FA in response to exogenous FA or oxidative stress challenges. In particular, we unveiled the distinct responses of various organelles to identical cellular stressors. Moreover, we observed the dynamic response within individual organelles when cells were exposed to stressors for varying durations. We envision these probes will serve as versatile tools for probing FA pathophysiology.
Collapse
Affiliation(s)
- Lei Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaozhuan Li
- Department of Clinical Pharmacy, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Tingmin Fan
- Department of Clinical Pharmacy, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Xingguang Liang
- Department of Clinical Pharmacy, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Chothia SY, Emms VL, Thomas LA, Bulman NFA, Monks PS, Cordell RL, Hopkinson RJ. Formaldehyde quantification using gas chromatography-mass spectrometry reveals high background environmental formaldehyde levels. Sci Rep 2024; 14:20621. [PMID: 39232096 PMCID: PMC11375156 DOI: 10.1038/s41598-024-71271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Formaldehyde (HCHO) is a human toxin that is both a pollutant and endogenous metabolite. HCHO concentrations in human biological samples are reported in the micromolar range; however, accurate quantification is compromised by a paucity of sensitive analysis methods. To address this issue, we previously reported a novel SPME-GC-MS-based HCHO detection method using cysteamine as an HCHO scavenger. This method showed cysteamine to be a more efficient scavenger than the widely used O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine, and enabled detection of aqueous HCHO in the nanomolar range and quantification in the micromolar range. However, quantification in this range required immersive extraction of the HCHO-derived thiazolidine, while a high background signal was also observed. Following on from these studies, we now report an optimised head-space extraction SPME-GC-MS method using cysteamine, which provides similarly sensitive HCHO quantification to the immersive method but avoids extensive wash steps and is therefore more amenable to screening applications. However, high background HCHO levels were still observed A Complementary GC-MS analyses using a 2-aza-Cope-based HCHO scavenger also revealed high background HCHO levels; therefore, the combined results suggest that HCHO exists in high (i.e. micromolar) concentration in aqueous samples that precludes accurate quantification below the micromolar range. This observation has important implications for ongoing HCHO quantification studies in water, including in biological samples.
Collapse
Affiliation(s)
- Sara Y Chothia
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Vicki L Emms
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Liam A Thomas
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Natasha F A Bulman
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK
| | - Paul S Monks
- Space Park Leicester, University of Leicester, 92 Corporation Road, Leicester, LE4 5SP, UK
| | - Rebecca L Cordell
- Space Park Leicester, University of Leicester, 92 Corporation Road, Leicester, LE4 5SP, UK.
| | - Richard J Hopkinson
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
4
|
Xu X, Yang E, Chen Y. Progress in the Study of Optical Probes for the Detection of Formaldehyde. Crit Rev Anal Chem 2024; 54:1146-1172. [PMID: 35939357 DOI: 10.1080/10408347.2022.2107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Formaldehyde, one of the simplest reactive carbonyl substances, is involved in many physiological and pathological processes in living organisms. There is a large amount of data showing that abnormal elevation of formaldehyde is associated with a variety of diseases in the body, such as neurodegenerative diseases, Alzheimer's disease, cardiovascular diseases and cancer, and is also a representative carcinogen, so monitoring formaldehyde is of great importance for disease diagnosis and treatment. In this review, In this paper, we summarize and classify the last ten years of probes for the detection of formaldehyde according to different reaction mechanisms and discuss the structures and applications of the probes. Finally, we briefly describe the challenges and possible solutions in this field. We believe that more new probes provide powerful tools to study the function of formaldehyde in living systems.
Collapse
Affiliation(s)
- Xuexuan Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Erpei Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yanyan Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
5
|
Zhang Y, Du Y, Liao K, Peng T. Modular development of organelle-targeting fluorescent probes for imaging formaldehyde in live cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3646-3653. [PMID: 38738568 DOI: 10.1039/d4ay00360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Formaldehyde (FA) is endogenously generated via fundamental biological processes in living systems. Aberrant FA homeostasis in subcellular microenvironments is implicated in numerous pathological conditions. Fluorescent probes for detecting FA in specific organelles are thus of great research interest. Herein, we present a modular strategy to construct diverse organelle-targeting FA probes by incorporating selective organelle-targeting moieties into the scaffold of a 1,8-naphthalimide-derived FA fluorescent probe. These probes react with FA through the 2-aza-Cope arrangement and exhibit highly selective fluorescence increases for detecting FA in aqueous solutions. Moreover, these organelle-targeting probes, i.e., FFP551-Nuc, FFP551-ER, FFP551-Mito, and FFP551-Lyso, allow selective localization and imaging of FA in the nucleus, endoplasmic reticulum, mitochondria, and lysosomes of live mammalian cells, respectively. Furthermore, FFP551-Nuc has been successfully employed to monitor changes of endogenous FA levels in the nucleus of live mammalian cells. Overall, these probes should represent new imaging tools for studying the biology and pathology associated with FA in different intracellular compartments.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yimeng Du
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kongke Liao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
6
|
Tenney L, Pham VN, Brewer TF, Chang CJ. A mitochondrial-targeted activity-based sensing probe for ratiometric imaging of formaldehyde reveals key regulators of the mitochondrial one-carbon pool. Chem Sci 2024; 15:8080-8088. [PMID: 38817555 PMCID: PMC11134394 DOI: 10.1039/d4sc01183j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Formaldehyde (FA) is both a highly reactive environmental genotoxin and an endogenously produced metabolite that functions as a signaling molecule and one-carbon (1C) store to regulate 1C metabolism and epigenetics in the cell. Owing to its signal-stress duality, cells have evolved multiple clearance mechanisms to maintain FA homeostasis, acting to avoid the established genotoxicity of FA while also redirecting FA-derived carbon units into the biosynthesis of essential nucleobases and amino acids. The highly compartmentalized nature of FA exposure, production, and regulation motivates the development of chemical tools that enable monitoring of transient FA fluxes with subcellular resolution. Here we report a mitochondrial-targeted, activity-based sensing probe for ratiometric FA detection, MitoRFAP-2, and apply this reagent to monitor endogenous mitochondrial sources and sinks of this 1C unit. We establish the utility of subcellular localization by showing that MitoRFAP-2 is sensitive enough to detect changes in mitochondrial FA pools with genetic and pharmacological modulation of enzymes involved in 1C and amino acid metabolism, including the pervasive, less active genetic mutant aldehyde dehydrogenase 2*2 (ALDH2*2), where previous, non-targeted versions of FA sensors are not. Finally, we used MitoRFAP-2 to comparatively profile basal levels of FA across a panel of breast cancer cell lines, finding that FA-dependent fluorescence correlates with expression levels of enzymes involved in 1C metabolism. By showcasing the ability of MitoRFAP-2 to identify new information on mitochondrial FA homeostasis, this work provides a starting point for the design of a broader range of chemical probes for detecting physiologically important aldehydes with subcellular resolution and a useful reagent for further studies of 1C biology.
Collapse
Affiliation(s)
- Logan Tenney
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Vanha N Pham
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Thomas F Brewer
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley CA 94720 USA
| |
Collapse
|
7
|
Wang H, Zhang Y, Rong X, Wang B, Wang L, Wang C, Gao W, Ye X, Hou X, Liu W, Wu M, Cheng Y, Shu X, Shang J. A novel lysosome-targeted fluorescent probe for precise formaldehyde detection in water samples, living cells and breast cancer tumors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124105. [PMID: 38461560 DOI: 10.1016/j.saa.2024.124105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
This study investigated the potential ability of the fluorescent probe Ly-CHO to detect formaldehyde (FA) in living cells and tumor-bearing mice. Ly-CHO exhibited great selectivity, excellent sensitivity, and rapid response to FA, making it a valuable tool for tracking FA concentration changes. The probe was also found to target lysosomes specifically. Furthermore, Ly-CHO showed an obvious fluorescence increase in endogenous CHO detection after adding tetrahydrogen folic acid (THFA). This study validated Ly-CHO's possibility for FA imaging in vivo, with potential applications in understanding formaldehyde-related diseases.
Collapse
Affiliation(s)
- Haiping Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Yibin Zhang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China.
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Li Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Chen Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wanxia Gao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiansheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaoying Hou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Meihui Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| | - Jinting Shang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
8
|
Crossley SW, Tenney L, Pham VN, Xie X, Zhao MW, Chang CJ. A Transfer Hydrogenation Approach to Activity-Based Sensing of Formate in Living Cells. J Am Chem Soc 2024; 146:8865-8876. [PMID: 38470125 PMCID: PMC11487638 DOI: 10.1021/jacs.3c09735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.
Collapse
Affiliation(s)
- Steven W.M. Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Logan Tenney
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Vanha N. Pham
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Xiao Xie
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Michelle W. Zhao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
9
|
Wills R, Shirke R, Hrncir H, Talbott JM, Sad K, Spangle JM, Gracz AD, Raj M. Tunable fluorescent probes for detecting aldehydes in living systems. Chem Sci 2024; 15:4763-4769. [PMID: 38550703 PMCID: PMC10966992 DOI: 10.1039/d4sc00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/02/2024] [Indexed: 04/30/2024] Open
Abstract
Aldehydes, pervasive in various environments, pose health risks at elevated levels due to their collective toxic effects via shared mechanisms. Monitoring total aldehyde content in living systems is crucial due to their cumulative impact. Current methods for detecting cellular aldehydes are limited to UV and visible ranges, restricting their analysis in living systems. This study introduces an innovative reaction-based trigger that leverages the exceptional selectivity of 2-aminothiophenol for aldehydes, leading to the production of dihydrobenzothiazole and activating a fluorescence response. Using this trigger, we developed a series of fluorescent probes for aldehydes by altering the fluorophore allowing for excitation and emission wavelengths across the visible to near-infrared spectral regions without compromising the reactivity of the bioorthogonal moiety. These probes exhibit remarkable aldehyde chemoselectivity, rapid kinetics, and high quantum yields, enabling the detection of diverse aldehyde types, both exogenous and endogenous, within complex biological contexts. Notably, we employed the most red-shifted near-infrared probe from this series to detect aldehydes in living systems, including biliary organoids and mouse organs. These probes provide valuable tools for exploring the multifaceted roles of aldehydes in biological functions and diseases within living systems, laying the groundwork for further investigations.
Collapse
Affiliation(s)
- Rachel Wills
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Rajendra Shirke
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Hannah Hrncir
- Department of Digestive Diseases, Department of Medicine, Emory University Atlanta GA 30322 USA
| | - John M Talbott
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Kirti Sad
- Department of Radiation Oncology, Winship Cancer Institute of Emory University School of Medicine Atlanta GA 30322 USA
| | - Jennifer M Spangle
- Department of Radiation Oncology, Winship Cancer Institute of Emory University School of Medicine Atlanta GA 30322 USA
| | - Adam D Gracz
- Department of Digestive Diseases, Department of Medicine, Emory University Atlanta GA 30322 USA
| | - Monika Raj
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| |
Collapse
|
10
|
Yang Y, Hao Y, Huang L, Luo Y, Chen S, Xu M, Chen W. Recent Advances in Electrochemical Sensors for Formaldehyde. Molecules 2024; 29:327. [PMID: 38257238 PMCID: PMC11154431 DOI: 10.3390/molecules29020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges. This comprehensive review delves into the latest advancements in electrochemical methods for detecting formaldehyde, a compound of growing concern due to its widespread use and potential health hazards. This review underscores the inherent advantages of electrochemical techniques, such as high sensitivity, selectivity, and capability for real-time analysis, making them highly effective for formaldehyde monitoring. We explore the fundamental principles, mechanisms, and diverse methodologies employed in electrochemical formaldehyde detection, highlighting the role of innovative sensing materials and electrodes. Special attention is given to recent developments in nanotechnology and sensor design, which significantly enhance the sensitivity and selectivity of these detection systems. Moreover, this review identifies current challenges and discusses future research directions. Our aim is to encourage ongoing research and innovation in this field, ultimately leading to the development of advanced, practical solutions for formaldehyde detection in various environmental and biological contexts.
Collapse
Affiliation(s)
- Yufei Yang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Lijie Huang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanjian Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Maotian Xu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
11
|
Pham VN, Bruemmer KJ, Toh JDW, Ge EJ, Tenney L, Ward CC, Dingler FA, Millington CL, Garcia-Prieto CA, Pulos-Holmes MC, Ingolia NT, Pontel LB, Esteller M, Patel KJ, Nomura DK, Chang CJ. Formaldehyde regulates S-adenosylmethionine biosynthesis and one-carbon metabolism. Science 2023; 382:eabp9201. [PMID: 37917677 PMCID: PMC11500418 DOI: 10.1126/science.abp9201] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.
Collapse
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Kevin J. Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Joel D. W. Toh
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Eva J. Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Logan Tenney
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Carl C. Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Felix A. Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christopher L. Millington
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Carlos A. Garcia-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Mia C. Pulos-Holmes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Lucas B. Pontel
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Calle Monforte de Lemos, Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Feixa Llarga, l’Hospitalet de Llobregat, Spain
| | - Ketan J. Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94704 USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
12
|
Mikami T, Majima S, Song H, Bode JW. Biocompatible Lysine Protecting Groups for the Chemoenzymatic Synthesis of K48/K63 Heterotypic and Branched Ubiquitin Chains. ACS CENTRAL SCIENCE 2023; 9:1633-1641. [PMID: 37637747 PMCID: PMC10450881 DOI: 10.1021/acscentsci.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/29/2023]
Abstract
The elucidation of emerging biological functions of heterotypic and branched ubiquitin (Ub) chains requires new strategies for their preparation with defined lengths and connectivity. While in vitro enzymatic assembly using expressed E1-activating and E2-conjugating enzymes can deliver homotypic chains, the synthesis of branched chains typically requires extensive mutations of lysines or other sequence modifications. The combination of K48- and K63-biased E2-conjugating enzymes and two new carbamate protecting groups-pyridoxal 5'-phosphate (PLP)-cleavable aminobutanamide carbamate (Abac group) and periodate-cleavable aminobutanol carbamate (Aboc group)-provides a strategy for the synthesis of heterotypic and branched Ub trimers, tetramers, and pentamers. The Abac- and Aboc-protected lysines are readily prepared and incorporated into synthetic ubiquitin monomers. As these masking groups contain a basic amine, they preserve the overall charge and properties of the Ub structure, facilitating folding and enzymatic conjugations. These protecting groups can be chemoselectively removed from folded Ub chains and monomers by buffered solutions of PLP or NaIO4. Through the incorporation of a cleavable C-terminal His-tag on the Ub acceptor, the entire process of chain building, iterative Abac deprotections, and global Aboc cleavage can be conducted on a resin support, obviating the need for handling and purification of the intermediate oligomers. Simple modulation of the Ub monomers affords various K48/K63 branched chains, including tetramers and pentamers not previously accessible by synthetic or biochemical methods.
Collapse
Affiliation(s)
- Toshiki Mikami
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Sohei Majima
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Haewon Song
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
13
|
Song Q, Liu Z, Niu J, Zheng B, Hao J, Jiang J. A two-photon fluorescent probe for formaldehyde detection and regeneration in living cells. J Mater Chem B 2023; 11:4408-4415. [PMID: 37161642 DOI: 10.1039/d3tb00158j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A two-photon excited fluorescent probe CMB-1 has been rationally developed for the detection and regeneration of formaldehyde based on a novel nucleophilic addition of a secondary amine to FA and subsequential alcoholysis reactivity mechanism. It enables a specific turn-on response towards formaldehyde and facilitates the monitoring of exogenous and endogenous formaldehyde in living cells via both one- and two-photon microscopy, with minimal influence on its native homeostasis and local concentration.
Collapse
Affiliation(s)
- Qi Song
- Key Laboratory of the Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Jie Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Bowen Zheng
- Key Laboratory of the Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Jingcheng Hao
- Key Laboratory of the Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Jie Jiang
- Key Laboratory of the Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
14
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
15
|
Lin NJ, Wu H, Peng J, Yang SH, Tan R, Peng Y, Wang YW. A ratiometric fluorescent probe for fast detection and bioimaging of formaldehyde. Org Biomol Chem 2023; 21:2167-2171. [PMID: 36799709 DOI: 10.1039/d2ob02314h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A novel ratiometric probe (SWJT-10) based on isophorone derivatives has been designed and synthesized for the detection of formaldehyde (FA). This probe displayed an obvious ratiometric fluorescence response to FA with a blue shift from the NIR (680 nm) to the yellow light region (600 nm) in aqueous solution. And it showed good selectivity, high sensitivity and a fast response to FA (less than 5 s) due to a new recognition mechanism. Moreover, SWJT-10 has been applied to monitor FA in living cells and zebrafish.
Collapse
Affiliation(s)
- Nai-Jie Lin
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Huan Wu
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Jing Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Shu-Han Yang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui Tan
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
16
|
Li M, Cai Z, Li M, Chen L, Zeng W, Yuan H, Liu C. The dual detection of formaldehydes and sulfenic acids with a reactivity fluorescent probe in cells and in plants. Anal Chim Acta 2023; 1239:340734. [PMID: 36628774 DOI: 10.1016/j.aca.2022.340734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In order to reveal the inter-relationship between protein sulfenic acid (RSOH) and formaldehyde (FA) in different physiological processes, development of tools that are capable of respective and continuous detection for both species is highly valuable. Herein, we reported an "off-on" sensor NA-SF for dual detection of RSOH and FA in cells and plant tissues. Importantly, the highly desirable attribute of the probe NA-SF combined with TCEP, makes it possible to monitor endogenous both RSOH and FA in living cells and plants tissues. NA-SF has been applied successfully in detecting RSOH and FA at physiological concentrations in HeLa, HepG2, A549 cells. Furthermore, the application of NA-SF in evaluating the RSOH and FA level in Arabidopsis thaliana roots of different growth stages are performed. The results show that the level of RSOH and FA in Arabidopsis thaliana roots correlates well with their growth stages, which suggests that both RSOH and FA might play important roles in promoting plant growth and roots elongation. And it also implied a potential application for the biological and pathological research of RSOH and FA, especially in plant physiology. Therefore, we expect NA-SF could provide a convenient and robust tool for better understanding the physiological and pathological roles of RSOH and FA.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhiyi Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Weili Zeng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
17
|
Pei X, Wang T, Liu C, Liu Z. A Ratiometric Fluorescent Nanoprobe for Ultrafast Detection of Formaldehyde in Wood and Food Samples. ChemistrySelect 2023. [DOI: 10.1002/slct.202203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaojuan Pei
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Tianzhu Wang
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Chaozheng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Zhipeng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institution Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| |
Collapse
|
18
|
Wang X, Su D, Liu C, Li P, Zhang R, Zhang W, Zhang W, Tang B. Janus-Faced Fluorescence Imaging Agent for Malondialdehyde and Formaldehyde in Brains. Anal Chem 2022; 94:14965-14973. [PMID: 36256865 DOI: 10.1021/acs.analchem.2c02805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbonyl stress caused by reactive carbonyl species (RCS) is closely related to various brain diseases. As the highly reactive, highly toxic, and lipophilic RCS, malondialdehyde (MDA) and formaldehyde (FA) could easily cross the blood-brain barrier (BBB) and induce protein dysfunction or cross-linking in the brain. Do MDA and FA coordinately regulate the physio-pathological processes of the brain? To answer the question, first of all, powerful identification and sensing tools are needed. However, competent probes for simultaneously analyzing MDA and FA in living brains are lacking, which originates from the following three challenges: (1) MDA and FA are difficult to distinguish due to their great similarity in structure and reactivity; (2) to achieve simultaneous and discriminable imaging, same excitation and different emissions are preferable; and (3) the detection of MDA and FA in living brains require the materials to pass through the BBB. Thus, we created a two-photon fluorescent agent, TFCH, for MDA/FA. The hydrazine group in TFCH could successfully differentiate MDA/FA at 440/510 nm under same excitation. Moreover, the lipophilic trifluoromethyl group (-CF3) in TFCH prompts it to traverse the BBB, thereby realizing the coinstantaneous visualization of MDA and FA in the living brain. Using TFCH, we observed the excessive production of MDA and FA in living PC12 cells under carbonyl stress and oxidative stress. Notably, for the first time, two-photon fluorescence imaging indicated the synchronous increase of MDA and FA in living brains of mice with depression. Altogether, this work provides a promising tool for revealing the carbonyl stress-related molecular mechanism involved in brain diseases.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunyu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
19
|
Kim SY, Park SH, Lee CH, Tae J, Shin I. Rhodamine-based cyclic hydrazide derivatives as fluorescent probes for selective and rapid detection of formaldehyde. RSC Adv 2022; 12:22435-22439. [PMID: 36105987 PMCID: PMC9366419 DOI: 10.1039/d2ra02104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
We describe fluorescent probes to detect formaldehyde (FA) in aqueous solutions and cells. The probes rapidly respond to FA in aqueous solutions and have great selectivity toward FA over other biologically relevant analytes. The results of cell studies reveal that probe 1 can be utilized to monitor endogenous and exogenous FA in live cells.
Collapse
Affiliation(s)
- Sung Yeon Kim
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Sang-Hyun Park
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Jinsung Tae
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
20
|
Zhou L, Zhang X, Dong Y, Pan Y, Li J, Zang Y, Li X. A Tandemly Activated Fluorescence Probe for Detecting Senescent Cells with Improved Selectivity by Targeting a Biomarker Combination. ACS Sens 2022; 7:1958-1966. [PMID: 35771145 DOI: 10.1021/acssensors.2c00719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The heterogeneous and complex phenotypes of cellular senescence necessitate a biomarker combination for the accurate detection of senescent cells from others. However, this raises the challenge of detecting multiple senescent biomarkers in the same live cell simultaneously. Herein we reported the strategy of biomarker combination triggered tandem activation for designing senescence-specific fluorogenic probes, which resulted in the development of the probe PGal-FA. The fluorescence of PGal-FA can only be activated by the sequential stimulation by the senescent biomarker combination of β-galactosidase (βGal) and formaldehyde (FA), with βGal activating the sensing ability of the probe toward FA. Facilitated by probe PGal-FA, the simultaneous detection of a biomarker combination in the same live cell was realized. We have demonstrated the improved selectivity of probe PGal-FA toward senescent cells compared to the traditional single-biomarker-based probe. Probe PGal-FA was also successfully used to detect senescent cells in bleomycin-induced pulmonary fibrosis tissues. We expect probe PGal-FA to be a reliable tool for the study on cellular senescence and envision that this probe design strategy may be expanded to other biological events to improve accuracy.
Collapse
Affiliation(s)
- Lei Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Liu J, Li K, Xue P, Xu J. Cell-permeable fluorescent indicator for imaging formaldehyde activity in living systems. Anal Biochem 2022; 652:114749. [PMID: 35636460 DOI: 10.1016/j.ab.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Formaldehyde (FA), as a reactive signaling molecule, plays an important role in living systems through a diverse array of cellular pathways. However, no systematic investigation for detection and imaging of FA by rendering cells transiently permeable has been reported yet. Specifically, we developed a new cell-permeable fluorescence probe functionality that was enhanced cellular entry efficiency and well retained intracellularly after activation for visualizing endogenous FA changes. Moreover, a smart "multi-lock system -key-and-lock" strategy,which have provoked a starting point for the use of probe and related biochemical tools to monitor FA in lysosomes. The versatile "latent" fluorophore that can undergo a subsequent self-immolative spacer for interrogating the roles and functions of FA in living systems as well as related biomedical applications.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China.
| | - Kaipeng Li
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| | - Peng Xue
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| | - Jinyi Xu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, PR China
| |
Collapse
|
22
|
Bachman JL, Wight CD, Bardo AM, Johnson AM, Pavlich CI, Boley AJ, Wagner HR, Swaminathan J, Iverson BL, Marcotte EM, Anslyn EV. Evaluating the Effect of Dye-Dye Interactions of Xanthene-Based Fluorophores in the Fluorosequencing of Peptides. Bioconjug Chem 2022; 33:1156-1165. [PMID: 35622964 DOI: 10.1021/acs.bioconjchem.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A peptide sequencing scheme utilizing fluorescence microscopy and Edman degradation to determine the amino acid position in fluorophore-labeled peptides was recently reported, referred to as fluorosequencing. It was observed that multiple fluorophores covalently linked to a peptide scaffold resulted in a decrease in the anticipated fluorescence output and worsened the single-molecule fluorescence analysis. In this study, we report an improvement in the photophysical properties of fluorophore-labeled peptides by incorporating long and flexible (PEG)10 linkers at the peptide attachment points. Long linkers to the fluorophores were installed using copper-catalyzed azide-alkyne cycloaddition conditions. The photophysical properties of these peptides were analyzed in solution and immobilized on a microscope slide at the single-molecule level under peptide fluorosequencing conditions. Solution-phase fluorescence analysis showed improvements in both quantum yield and fluorescence lifetime with the long linkers. While on the solid support, photometry measurements showed significant increases in fluorescence brightness and 20 to 60% improvements in the ability to determine the amino acid position with fluorosequencing. This spatial distancing strategy demonstrates improvements in the peptide sequencing platform and provides a general approach for improving the photophysical properties in fluorophore-labeled macromolecules.
Collapse
Affiliation(s)
- James L Bachman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher D Wight
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Angela M Bardo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amber M Johnson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cyprian I Pavlich
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Boley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Holden R Wagner
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jagannath Swaminathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Massing JO, Almounajed L, Minder K, Lange J, Eltahir L, Kelts J. 19F magnetic resonance probes for detecting formaldehyde. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Guo T, Chen X, Qu W, Yang B, Tian R, Geng Z, Wang Z. Red and Near-Infrared Fluorescent Probe for Distinguishing Cysteine and Homocysteine through Single-Wavelength Excitation with Distinctly Dual Emissions. Anal Chem 2022; 94:5006-5013. [PMID: 35294170 DOI: 10.1021/acs.analchem.1c04895] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small-molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), participate in various pathological and physiological processes. It is still a challenge to simultaneously distinguish Cys and Hcy because of their similar structures and reactivities, as well as the interference from the high intramolecular concentration of GSH. Herein, a novel fluorescent probe, CySI, based on cyanine and thioester was developed to differentiate Cys and Hcy through a single-wavelength excitation and two distinctly separated emission channels. The probe exhibited a turn-on fluorescence response to Cys at both 625 nm (the red channel) and 740 nm (the near-infrared channel) but only showed fluorescence turn-on to Hcy at 740 nm (the near-infrared channel) and no fluorescent response to GSH. With the aid of built-in self-calibration of single excitation and dual emissions, simultaneous discriminative determinations of Cys and Hcy were realized through red and near-infrared channels. CySI exhibited excellent selectivity toward Cys and Hcy with a fast response. This probe was further exploited to visualize exogenous Cys and Hcy in cells through dual emission channels under one excitation. Moreover, it could efficiently target mitochondria and was applied to monitor the endogenous Cys fluctuations independently in mitochondria through the red emission channel.
Collapse
Affiliation(s)
- Taiyu Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyue Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Wangbo Qu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ruowei Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Jana A, Baruah M, Samanta A. Activity-based fluorescent probes for sensing and imaging of Reactive Carbonyl species (RCSs). Chem Asian J 2022; 17:e202200044. [PMID: 35239996 DOI: 10.1002/asia.202200044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Indexed: 11/08/2022]
Abstract
This review explains various strategies for developing fluorescent probes to detect reactive carbonyl species (RCS). There are sevaral number of mono and diacarbonyls among 30 varieties of reactive carbonyl species (RCSs) so far discovered, which play pivotal roles in pathological processes such as cancer, neurodegenerative diseases, cardiovascular disease, renal failure, and diabetes mellitus. These RCSs play essential roles in maintaining ion channels regulation, cellular signaling pathways, and metabolisms. Among RCSs, Carbon moxide (CO) is also utilized for its cardioprotective, anti-inflammatory, and anti-apoptotic effects. Fluorescence-based non-invasive optical tools have come out as one of the promising methods for analyzing the concentrations and co-localizations of these small metabolites. There has been a tremendous eruption in developing fluorescent probes for selective detection of specific RCSs within cellular and aqueous environments due to its high sensitivity, high spatial and temporal resolution of fluorescence imaging. Fluorescence-based sensing mechanisms such as intramolecular charge transfer (ICT), photoinduced electron transfer (PeT), excited-state intramolecular proton transfer (ESIPT), and fluorescence resonance energy transfer (FRET) are described. In particular, probes for dicarbonyls such as methylglyoxal (MGO), malondialdehyde (MDA), along with monocarbonyls that include formaldehyde (FA), carbon monoxide (CO) and phosgene are discussed. One of the most exciting advances in this review is the summary of fluorescent probes of dicarbonyl compounds.
Collapse
Affiliation(s)
- Anal Jana
- Shiv Nadar University, Chemistry, INDIA
| | | | - Animesh Samanta
- Shiv Nadar University, CHEMISTRY, NH 91, TEHSIL DADRI, GAUSTAM BUDHA NAGAR, 201314, GREATER NOIDA, INDIA
| |
Collapse
|
26
|
Pan S, Roy S, Choudhury N, Behera PP, Sivaprakasam K, Ramakrishnan L, De P. From small molecules to polymeric probes: recent advancements of formaldehyde sensors. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:49-63. [PMID: 35185388 PMCID: PMC8856084 DOI: 10.1080/14686996.2021.2018920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 05/12/2023]
Abstract
Formaldehyde is a well-known industrial material regularly used in fishery, vegetable markets, and fruit shops for maintaining their freshness. But due to its carcinogenic nature and other toxic effects, it is very important to detect it in very low concentrations. In recent years, amine-containing fluorescent probes have gained significant attention for designing formaldehyde sensors. However, the major drawbacks of these small molecular probes are low sensitivity and long exposure time, which limits their real-life applications. In this regard, polymeric probes have gained significant attention to overcome the aforementioned problems. Several polymeric probes have been utilized as a coating material, nanoparticle, quartz crystal microbalance (QCM), etc., for the selective and sensitive detection of formaldehyde. The main objective of this review article is to comprehensively describe the recent advancements in formaldehyde sensors based on small molecules and polymers, and their successful applications in various fields, especially in situ formaldehyde sensing in biological systems.
Collapse
Affiliation(s)
- Swagata Pan
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Subhadip Roy
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Neha Choudhury
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Priyanka Priyadarshini Behera
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Kannan Sivaprakasam
- Department of Chemistry and Biochemistry, St. Cloud State University, Saint Cloud, MN, USA
| | - Latha Ramakrishnan
- College of Science and Technology, Bloomsburg University, Bloomsburg, PA, USA
| | - Priyadarsi De
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
27
|
Huang S, Li Z, Liu M, Zhou M, Weng J, He Y, Jiang Y, Zhang H, Sun H. Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging. Chem Commun (Camb) 2022; 58:1442-1453. [PMID: 34991152 DOI: 10.1039/d1cc05644a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde (FA), a reactive carbonyl species, is classified as Group 1 carcinogen by International Agency for Research on Cancer (IARC) in 2004. In addition, clinical studies have implicated that elevated levels of FA have been associated with different kinds of diseases, such as neurodegenerative diseases, diabetes, and chronic liver and heart disorders. However, in addition to the direct inhalation of FA in the environment, most organisms can also produce FA endogenously by demethylases and oxidases during the metabolism of amino acids and xenobiotics. Since FA plays an important role in physiological and pathological processes, developing reliable and efficient methods to monitor FA levels in biological samples is crucial. Reaction-based fluorescent/chemiluminescent probes have provided robust methods for FA detection and real-time visualization in living organisms. In this highlight, we will summarize the major developments in the structure design and applications of FA probes in recent years. Three main strategies for designing FA probes have been discussed and grouped by different reaction mechanisms. In addition, some miscellaneous reaction mechanisms have also been discussed. We also highlight novel applications of these probes in biological systems, which offer powerful tools to discover the diverse functions of FA in physiology and pathology processes.
Collapse
Affiliation(s)
- Shumei Huang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Zejun Li
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Minghui Liu
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jintao Weng
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yong He
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yin Jiang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Hongyan Sun
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.,Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
28
|
Lu H, Tang Y, Zhou H, Lin W. Synthesis and Study of Performance for An Enhanced Formaldehyde Fluorescent Probe. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
30
|
Tao R, Liao M, Wang Y, Wang H, Tan Y, Qin S, Wei W, Tang C, Liang X, Han Y, Li X. In Situ Imaging of Formaldehyde in Live Mice with High Spatiotemporal Resolution Reveals Aldehyde Dehydrogenase-2 as a Potential Target for Alzheimer's Disease Treatment. Anal Chem 2021; 94:1308-1317. [PMID: 34962779 DOI: 10.1021/acs.analchem.1c04520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alterations in formaldehyde (FA) homeostasis are associated with the pathology of Alzheimer's disease (AD). In vivo tracking of FA flux is important for understanding the underlying molecular mechanisms, but is challenging due to the lack of sensitive probes favoring a selective, rapid, and reversible response toward FA. In this study, we re-engineered the promiscuous and irreversible phenylhydrazines to make them selective and reversible toward FA by tuning their nucleophilicity. This effort resulted in PFM309, a selective (selectivity coefficient KFA,methylglyoxal = 0.06), rapid (t1/2 = 32 s at [FA] = 200 μM), and reversible fluorogenic probe (K = 6.24 mM-1) that tracks the FA flux in both live cells and live mice. In vivo tracking of the FA flux was realized by PFM309 imaging, which revealed the gradual accumulation of FA in the live mice brain during normal aging and its further increase in AD mice. We further identified the age-dependent loss of catabolism enzymes ALDH2 and ADH5 as the primary mechanism responsible for formaldehyde excess. Activating ALDH2 with the small molecular activator Alda1 significantly protected neurovascular cells from formaldehyde overload and consequently from impairment during AD progress both in vitro and in vivo. These findings revealed PFM309 as a robust tool to study AD pathology and highlight ALDH2 as a potential target for AD drug development.
Collapse
Affiliation(s)
- Rongrong Tao
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Meihua Liao
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Yuxiang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Huan Wang
- College of Life Science and Technology, Dalian University, Dalian 116622 Liaoning, China
| | - Yuhang Tan
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Siyao Qin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Wenjing Wei
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006 Guangdong, China
| | - Xingguang Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018 Zhejiang, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| |
Collapse
|
31
|
Quan T, Liang Z, Pang H, Zeng G, Chen T. A ratiometric ESIPT probe based on 2-aza-Cope rearrangement for rapid and selective detection of formaldehyde in living cells. Analyst 2021; 147:252-261. [PMID: 34931639 DOI: 10.1039/d1an01722e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formaldehyde (FA) is a crucial reactive signaling molecule participating in epigenetic and metabolic pathways. However, abnormally elevated levels of FA are implicated in various diseases spanning from tumors to neurodegenerative disorders. Despite being highly selective for FA, current 2-aza-Cope-based fluorescent probes leave room for improvement because their relatively slow reaction kinetics (1-9 hours response time) hinder their capability to track transient biological FA. Herein, we present a ratiometric fluorescent probe, FormAFP, based on excited state intramolecular photon transfer (ESIPT) for rapid (within 10 min), selective (above 70-fold over other RCS) and sensitive (240-times fluorescence enhancement with 66 nM detection limit) detection of FA via 2-aza-Cope rearrangement. The probe also displayed a fast response (<20 min) to both exogenous and endogenous FA in living cells. Besides, FormAFP was capable of monitoring FA released by folate degradation in living MCF7 cells. More importantly, FormAFP successfully detected fluctuations of endogenous FA levels in oxidative stress stimulation, demonstrating its potential as an ideal tool to explore FA biology.
Collapse
Affiliation(s)
- Tingting Quan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huaiting Pang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Guanling Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd, Qingyuan 511517, China
| |
Collapse
|
32
|
Gou JX, Luo Y, Yang XN, Zhang W, Lu JH, Tao Z, Xiao X. Study on the interactions between melamine-cored Schiff bases with cucurbit[ n]urils of different sizes and its application in detecting silver ions. Beilstein J Org Chem 2021; 17:2950-2958. [PMID: 34956415 PMCID: PMC8685555 DOI: 10.3762/bjoc.17.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022] Open
Abstract
Three different complexes, TMeQ[6]-TBT, Q[7]-TBT, and Q[8]-TBT are constructed by three different cucurbiturils and synthesized by guest melamine-cored Schiff bases (TBT) through outer-surface interaction and host-guest interactions. TBT forms a TMeQ[6]-TBT complex with TMeQ[6] through outer-surface interaction, while Q[7]-TBT and Q[8]-TBT form complexes with Q[7,8] through host-guest interactions. Among them, Q[7]-TBT is selected as a UV detector for the detection of silver ions (Ag+). This work makes full use of the characteristics of each cucurbituril and melamine-cored Schiff base to construct a series of complexes and these are applied to metal detection.
Collapse
Affiliation(s)
- Jun-Xian Gou
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xi-Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ji-Hong Lu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
33
|
Xu S, Pan W, Ren T, Huan S, Yuan L, Zhang X. Molecular Engineering of Novel Fluorophores for
High‐Contrast
Bioimaging. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Wenjing Pan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Tian‐Bing Ren
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Shuang‐Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| |
Collapse
|
34
|
Sheng W, Zhang X, Yu M, Jin M, Li N, Sun C, Wang L, Xia Q, Li X, Zhang Y, Zhu B, Liu K. A novel cell membrane-targeting fluorescent probe for imaging endogenous/exogenous formaldehyde in live cells and zebrafish. Analyst 2021; 146:7554-7562. [PMID: 34779444 DOI: 10.1039/d1an01669e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Formaldehyde (FA), an economically important chemical, has become a global pollutant and poses a threat to human health. As a kind of reactive carbonyl species, the abnormal production and degradation of FA in cells are related to many diseases. Therefore, it is of great significance to detect FA on the cell membrane and identify the internal and external sources of FA to analyse the causes of FA-induced physiological and pathological changes. In this work, a novel fluorescent probe Mem-FA was constructed by combining a dodecyl chain to target the cell membrane. Based on photoinduced electron transfer (PET), the probe relies on hydrazine as the receptor for FA recognition. Through this mechanism, the probe can detect FA sensitively, selectively and quantitatively. In addition, the probe Mem-FA can detect FA in vivo, especially the endogenous FA produced by tetrahydrofolate in a one-carbon cycle. More importantly, the probe Mem-FA can sensitively detect and distinguish the internal and external sources of FA on the cell membrane. Therefore, Mem-FA is capable of specifically tracing the fluctuations of FA-induced diseases.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China. .,Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.,Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| |
Collapse
|
35
|
Du Y, Zhang Y, Huang M, Wang S, Wang J, Liao K, Wu X, Zhou Q, Zhang X, Wu YD, Peng T. Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo. Chem Sci 2021; 12:13857-13869. [PMID: 34760171 PMCID: PMC8549814 DOI: 10.1039/d1sc04387k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence has highlighted the endogenous production of formaldehyde (FA) in a variety of fundamental biological processes and its involvement in many disease conditions ranging from cancer to neurodegeneration. To examine the physiological and pathological relevance and functions of FA, fluorescent probes for FA imaging in live biological samples are of great significance. Herein we report a systematic investigation of 2-aza-Cope reactions between homoallylamines and FA for identification of a highly efficient 2-aza-Cope reaction moiety and development of fluorescent probes for imaging FA in living systems. By screening a set of N-substituted homoallylamines and comparing them to previously reported homoallylamine structures for reaction with FA, we found that N-p-methoxybenzyl homoallylamine exhibited an optimal 2-aza-Cope reactivity to FA. Theoretical calculations were then performed to demonstrate that the N-substituent on homoallylamine greatly affects the condensation with FA, which is more likely the rate-determining step. Moreover, the newly identified optimal N-p-methoxybenzyl homoallylamine moiety with a self-immolative β-elimination linker was generally utilized to construct a series of fluorescent probes with varying excitation/emission wavelengths for sensitive and selective detection of FA in aqueous solutions and live cells. Among these probes, the near-infrared probe FFP706 has been well demonstrated to enable direct fluorescence visualization of steady-state endogenous FA in live mouse brain tissues and elevated FA levels in a mouse model of breast cancer. This study provides the optimal aza-Cope reaction moiety for FA probe development and new chemical tools for fluorescence imaging and biological investigation of FA in living systems.
Collapse
Affiliation(s)
- Yimeng Du
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Meirong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Kongke Liao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
36
|
Li M, Shen A, Du M, Hao X, Wang H, Du X, Ma S, Yuan J, Yang Y. Tb 3+-Doped Ag-MOFs for fluorescent detection of formaldehyde in a novel smartphone platform and its removal applications in milk products and wastewater. RSC Adv 2021; 11:34291-34299. [PMID: 35497289 PMCID: PMC9042377 DOI: 10.1039/d1ra05856h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
As one kind of reactive carbonyl species (RCS), formaldehyde (FA) with a high concentration could be extremely toxic to living bodies as well as the environment. This paper reports a three-dimensional (3D) Tb3+@Ag-MOFs-based fluorescent probe for fast sensing of FA, which uses a novel turn-on mechanism based on the luminescence induced by Tb3+. The MOF sensor shows broad dynamic ranges of 0.1-1 mM for FA with the detection limit of 1.9 μM. For online and real-time detection of FA, a portable smartphone platform was employed to analyze the RGB values of the fluorescence by a smartphone application. By incorporating this probe into a polyacrylonitrile (PAN) layer, we synthesized a film composite that could effectively remove FA in real samples including milk and chemical factory wastewater, and the removal rate reached 98.52% and 95.38% respectively. Moreover, the potential of the film to remove gaseous FA was confirmed by experiments as well.
Collapse
Affiliation(s)
- Mengwen Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ao Shen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Man Du
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Xiaohui Hao
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Hongquan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Xiaoyu Du
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Shufeng Ma
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jiaxin Yuan
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yunxu Yang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
37
|
Asiimwe N, Al Mazid MF, Murale DP, Kim YK, Lee J. Recent advances in protein modifications techniques for the targeting
N‐terminal
cysteine. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Asiimwe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | | | | | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | - Jun‐Seok Lee
- Department of Pharmacology Korea University College of Medicine Seoul Korea
| |
Collapse
|
38
|
Duan Y, He K, Zhang G, Hu J. Photoresponsive Micelles Enabling Codelivery of Nitric Oxide and Formaldehyde for Combinatorial Antibacterial Applications. Biomacromolecules 2021; 22:2160-2170. [PMID: 33884862 DOI: 10.1021/acs.biomac.1c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is of particular interest to develop new antibacterial agents with low risk of drug resistance development and low toxicity toward mammalian cells to combat pathogen infections. Although gaseous signaling molecules (GSMs) such as nitric oxide (NO) and formaldehyde (FA) have broad-spectrum antibacterial performance and the low propensity of drug resistance development, many previous studies heavily focused on nanocarriers capable of delivering only one GSM. Herein, we developed a micellar nanoparticle platform that can simultaneously deliver NO and FA under visible light irradiation. An amphiphilic diblock copolymer of poly(ethylene oxide)-b-poly(4-((2-nitro-5-(((2-nitrobenzyl)oxy)methoxy)benzyl)(nitroso)amino)benzyl methacrylate) (PEO-b-PNNBM) was successfully synthesized through atom transfer radical polymerization (ATRP). The resulting diblock copolymer self-assembled into micellar nanoparticles without premature NO and FA leakage, whereas they underwent phototriggered disassembly with the corelease of NO and FA. We showed that the NO- and FA-releasing micellar nanoparticles exhibited a combinatorial antibacterial performance, efficiently killing both Gram-negative (e.g., Escherichia coli) and Gram-positive (e.g., Staphylococcus aureus) bacteria with low toxicity to mammalian cells and low hemolytic property. This work provides new insights into the development of GSM-based antibacterial agents.
Collapse
Affiliation(s)
- Yutian Duan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, 230031 Anhui, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
39
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Verfahren zur Synthese von Luminogenen mit aggregationsinduzierter Emission. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Qian Wu
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Dong Wang
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| |
Collapse
|
40
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2021; 60:15724-15742. [PMID: 32432807 DOI: 10.1002/anie.202006191] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/12/2022]
Abstract
As a consequence of their intrinsic advantageous properties, luminogens that show aggregation-induced emission (AIEgens) have received increasing global interest for a wide range of applications. Whereas general synthetic methods towards AIEgens largely rely on tedious procedures and limited reaction types, various innovative synthetic methods have now emerged as complementary, and even alternative, strategies. In this Review, we systematically highlight advancements made in metal-catalyzed functionalization and metal-free-promoted pathways for the construction of AIEgens over the past five years, and briefly illustrate new perspectives in this area. The development of innovative synthetic procedures will enable the facile synthesis of AIEgens with great structural diversity for multifunctional applications.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Qian Wu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
41
|
Abstract
Writing in Nature communications, Zhu and collaborators reported the development of a genetically encoded sensor for the detection of formaldehyde in cells and tissues. This tool has great potential to transform formaldehyde research; illuminating a cellular metabolite that has remained elusive in live structures.
Collapse
Affiliation(s)
- Carla Umansky
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Lucas B Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Cai S, Liu C, Gong J, He S, Zhao L, Zeng X. A lysosome-targeted fluorescent probe for the specific detection and imaging of formaldehyde in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118949. [PMID: 32979809 DOI: 10.1016/j.saa.2020.118949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We presented herien the rational design, synthesis, and photophysical property studies of the lysosome-targeted fluorescence FA probe NP-Lyso, an isopropyl group modified ortho-diaminonaphthalimide derivative. After the reaction of FA and ortho-phenylenediamine modified with the isopropyl group in NP-Lyso, the probe exhibited favorable features such as a large fluorescence enhancement, specific selectivity and high sensitivity for the detection of FA. More importantly, NP-Lyso could be used to detect and image endogenous FA in lysosomes. In light of these prominent properties, we envision that NP-Lyso will be an efficient optical imaging approach for investigating the biofunctions of FA in living systems.
Collapse
Affiliation(s)
- Songtao Cai
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jin Gong
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
43
|
Maiti A, Manna SK, Banik D, Mahapatra AK. Name reactions: strategies in the design of chemodosimeters for analyte detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj04056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and synthesis of suitable chemodosimeters for the detection of toxic analytes has become challenging for new researchers nowadays in the molecular recognition field.
Collapse
Affiliation(s)
- Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur 721657, West Bengal, India
| | - Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|
44
|
Kumaravel S, Wu SH, Chen GZ, Huang ST, Lin CM, Lee YC, Chen CH. Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva. Biosens Bioelectron 2021; 171:112720. [DOI: 10.1016/j.bios.2020.112720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 01/12/2023]
|
45
|
A single benzene fluorescent probe for efficient formaldehyde sensing in living cells using glutathione as an amplifier. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112091. [PMID: 33285487 DOI: 10.1016/j.jphotobiol.2020.112091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022]
Abstract
Formaldehyde (FA), a simple reactive carbonyl molecule, is endogenously produced in the cell at various physiological condition. At elevated level, FA causes severe cell toxicity as well as damage in macromolecules such proteins and DNA. For detecting FA in living cell, we identify a small but effective fluorescent turn on probe comprising single benzene-based orothophenylenediamine compound. Further study reveals that carboxylic group in orothophenylenediamine plays the important role in enhancing fluorescent signal than another electron withdrawing group. It is even interesting to observe the occurrence of fluorescent enhancement in glutathione (GSH) environment which is generally abundant in every cell. Our probe enables to detect FA over other bio-analytes efficiently with limit of detection of 123 nM and 355-fold of enhancement in cellular mimicking conditions. Moreover, this probe could be useful in discriminating cell that has high concentration of FA as well as GSH.
Collapse
|
46
|
Chen J, Chen K, Han B, Xue Y, Chen W, Gao Z, Hou X. A novel single-fluorophore-based ratiometric fluorescent probe for detection of formaldehyde in air. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Tian L, Feng H, Dai Z, Zhang R. Resorufin-based responsive probes for fluorescence and colorimetric analysis. J Mater Chem B 2020; 9:53-79. [PMID: 33226060 DOI: 10.1039/d0tb01628d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fluorescence imaging technique has attracted increasing attention in the detection of various biological molecules in situ and in real-time owing to its inherent advantages including high selectivity and sensitivity, outstanding spatiotemporal resolution and fast feedback. In the past few decades, a number of fluorescent probes have been developed for bioassays and imaging by exploiting different fluorophores. Among various fluorophores, resorufin exhibits a high fluorescence quantum yield, long excitation/emission wavelength and pronounced ability in both fluorescence and colorimetric analysis. This fluorophore has been widely utilized in the design of responsive probes specific for various bioactive species. In this review, we summarize the advances in the development of resorufin-based fluorescent probes for detecting various analytes, such as cations, anions, reactive (redox-active) sulfur species, small molecules and biological macromolecules. The chemical structures of probes, response mechanisms, detection limits and practical applications are investigated, which is followed by the discussion of recent challenges and future research perspectives. This review article is expected to promote the further development of resorufin-based responsive fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Lu Tian
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| | | | | | | |
Collapse
|
48
|
Jana A, Joseph MM, Munan S, Maiti KK, Samanta A. Highly selective chemosensor for reactive carbonyl species based on simple 1,8-diaminonaphthalene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112076. [PMID: 33161365 DOI: 10.1016/j.jphotobiol.2020.112076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Reactive carbonyl species (RCSs) including one carbon formaldehyde (FA) and dicarbonyl compounds such as methylglyoxal (MGO) and glyoxal (GO) are produced during demethylase reactions and various glucose metabolic pathways respectively. Elevation of the RCSs concentrations in cells is due to abnormal DNA damage, glycation adducts with macromolecules that lead to various neurotoxic diseases. Hence, regular monitoring of these RCSs with an easy tool is of utmost interest. However, conventional methods such as chromatography and mass spectrometry for the detection of these species are not so economically viable. These issues were well addressed by the non-invasive reactivity-based fluorescence techniques. However, tedious synthesis, only specific to either mono aldehyde is limited to detect multiple RCSs in physiologies by synthesized fluorophores. An alternative, simple small molecules are widely applied as commercial biomarkers such as terephthalate and 2,3-diaminonaphthalene (NAP) for hydroxy radical (OH·) and nitric oxide (NO) respectively. Herein, we report an analogue of NAP, 1,8-diamino naphthalene (DAN) is an efficient chemosensor for highly sensitive detection of FA, MGO and GO with minimum detection limits of 0.95-3.97 μM. Surprisingly, DAN shows a "turn on" response towards RCSs but remaining silent towards NO which are exactly opposite to commercial probe NAP. Exogenous RCSs imaging in vitro cancerous cells shows the efficacy of the probe and its potential application for RCSs monitoring in cancer cells, generation of toxic byproducts.
Collapse
Affiliation(s)
- Anal Jana
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, PO Pappanamcode, Trivandrum, Kerala 695019, India
| | - Subrata Munan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate, PO Pappanamcode, Trivandrum, Kerala 695019, India.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
49
|
Cai S, Liu C, Jiao X, Zhao L, Zeng X. A rational design of fluorescent probes for specific detection and imaging of endogenous formaldehyde in living cells. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Bhowmik D, Dutta A, Maitra U. An inexpensive and sensitive turn-on luminescence protocol for sensing formaldehyde. Chem Commun (Camb) 2020; 56:12061-12064. [PMID: 32902523 DOI: 10.1039/d0cc04183a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formaldehyde (FA), the simplest and most widely-used aldehyde, can pose serious health issues when present at elevated concentrations. Here, we report a "turn-on" terbium photoluminescence method for the efficient detection of FA. A pro-sensitizer molecule was designed and synthesised, which releases the sensitizer in the presence of FA inside the terbium cholate hydrogel matrix, resulting in a "turn-on" luminescence response. The introduction of a paper-based sensing approach makes the protocol simpler and cost-effective, and has a detection limit as low as 100 nM.
Collapse
Affiliation(s)
- Dipankar Bhowmik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | | | | |
Collapse
|