1
|
Li J, Liu G, Yu H, Ma H, Liu X, Tian J, Yu B. Generation of cross-reactive DNA aptamers to construct the fluorescent sensing array for identifying the origin of Toad Venom. Talanta 2025; 287:127705. [PMID: 39929049 DOI: 10.1016/j.talanta.2025.127705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/29/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Toad venom, a traditional Chinese medicine, has long been used to treat various challenging ailments. Its effectiveness and toxicity can vary depending on the types and concentrations of bufadienolides, which vary from region to region. However, identifying the origin of toad venom is challenging due to the absence of distinct visual characteristics of the original animals. Therefore, developing a scientific and practical method for origin identification is crucial to ensure the safety and efficacy of toad venom. Integrating a fluorescent sensing array with cross-reactive aptamers provides a promising solution to this issue. We isolated cross-reactive aptamers using a combination of complex target-directed SELEX and convergent selection strategies. During the selection process, we used an immobilized stem-loop library to select aptamers and evaluated the enrichment rate and pool affinity using gel elution assays. After high-throughput sequencing, we selected three cross-reactive aptamers designated N4.8, N2.4, and S1 that exhibit distinct binding profiles for bufadienolides as the biorecognition elements for the fluorescent sensing array. This sensor is capable of distinguishing toad venom from different origins with high accuracy (98.7 %), offering convenient operation, and providing a new method for detecting the origin of toad venom.
Collapse
Affiliation(s)
- Jiwei Li
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Guocai Liu
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Xiufeng Liu
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiangwei Tian
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Boyang Yu
- Country State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Gao Y, Mardian R, Ma J, Li Y, French CE, Wang B. Programmable trans-splicing riboregulators for complex cellular logic computation. Nat Chem Biol 2025; 21:758-766. [PMID: 39747656 DOI: 10.1038/s41589-024-01781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
Synthetic genetic circuits program the cellular input-output relationships to execute customized functions. However, efforts to scale up these circuits have been hampered by the limited number of reliable regulatory mechanisms with high programmability, performance, predictability and orthogonality. Here we report a class of split-intron-enabled trans-splicing riboregulators (SENTRs) based on de novo designed external guide sequences. SENTR libraries provide low leakage expression, wide dynamic range, high predictability with machine learning and low crosstalk at multiple component levels. SENTRs can sense RNA targets, process signals by logic computation and transduce them into various outputs, either mRNAs or noncoding RNAs. We subsequently demonstrate that digital logic operation with up to six inputs can be implemented using multiple orthogonal SENTRs to regulate a single gene simultaneously and coupling SENTRs with split intein-mediated protein trans-splicing. SENTR represents a powerful and versatile regulatory tool at the post-transcriptional level in Escherichia coli, suggesting broad biotechnological applications.
Collapse
Affiliation(s)
- Yuanli Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rizki Mardian
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jiaxin Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Yang Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Christopher E French
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Joint Research Center for Engineering Biology, International Campus, Zhejiang University, Haining, China
| | - Baojun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Zhang L, Yang H, Yan Y, Zhao H, Han D, Su X. A Multi-Input Molecular Classifier Based on Digital DNA Strand Displacement for Disease Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413198. [PMID: 39891016 DOI: 10.1002/adma.202413198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/24/2025] [Indexed: 02/03/2025]
Abstract
DNA-based molecular computing systems for biomarkers have emerged as powerful tools for intelligent diagnostics. However, with the variety of feature biomarkers expanding, current molecular computing systems suffer from the use of a large number of oligonucleotides and limited encoding capability. Here, the study develops an alternative molecular computing approach termed Digital DNA Strand Displacement (DDSD) which recognizes targets and operates target valence through DNA polymerase-based extension and strand release. DDSD significantly reduced the number of used oligonucleotide species, provided robust molecular classifiers. In clinical blood samples, a 96% accuracy rate is achieved with a DDSD-based binary classifier for distinguishing bacterial and viral infections, a 100% accuracy rate is achieved with a multiclass classifier for identifying pathogen types, surpassing existing classifier systems. Moreover, DDSD can be readily expanded. Cascade DDSD is developed, enabling simultaneous computing of up to 14 valence states with a maximum valence of 25. Multiway junction DDSD is implemented to achieve high-valence computing by compact DNA nanostructures rather than split DNA computing units, reducing the potential leakage. The implementation of DDSD enhances the capability of valence-based intelligent molecular diagnostics and multiplexed biomarker detection.
Collapse
Affiliation(s)
- Linghao Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huixiao Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yumin Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongyang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Da Han
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
4
|
Du Y, Ma C, Zeng Y, Liu Y, Zhao Z, Lyu Y. Reducing Measurement Deviation by Metastable DNA Probes for Aptamer Thermodynamic Characterization. Anal Chem 2025; 97:1870-1878. [PMID: 39801262 DOI: 10.1021/acs.analchem.4c05900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
DNA reaction equilibrium-based calculations have great potential in thermodynamic characterization, but their widespread applications are hindered by significant measurement deviation of equilibrium concentration. Here, we report the advantages of metastable DNA hybridization in reducing quantification deviation of equilibrium concentration and propose a universal and standardized strategy for measuring aptamer binding energy, termed metastable DNA reference calorimetry (MDRC). We built different MDRC-based algorithms tailored to different aptamer binding models, enabling the calculation of thermodynamic parameters for aptamers with one or more binding sites. Our correlative model, considering the cross-effects between different binding sites, showed that for ATP aptamers with two binding sites, binding of the first ATP molecule would decrease its affinity for the second at low temperatures and even completely inhibit this binding at high temperatures. Moreover, the thermodynamic parameters of protein-specific aptamers were calculated to elucidate the universality of the method. The successful analysis of cell-specific aptamers further demonstrated MDRC's applicability in complex biological systems.
Collapse
Affiliation(s)
- Yulin Du
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunran Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Furong Laboratory, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Goh H, Choi S, Kim J. Synthetic translational coupling element for multiplexed signal processing and cellular control. Nucleic Acids Res 2024; 52:13469-13483. [PMID: 39526390 PMCID: PMC11602170 DOI: 10.1093/nar/gkae980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Repurposing natural systems to develop customized functions in biological systems is one of the main thrusts of synthetic biology. Translational coupling is a common phenomenon in diverse polycistronic operons for efficient allocation of limited genetic space and cellular resources. These beneficial features of translation coupling can provide exciting opportunities for creating novel synthetic biological devices. Here, we introduce a modular synthetic translational coupling element (synTCE) and integrate this design with de novo designed riboregulators, toehold switches. A systematic exploration of sequence domain variants for synTCEs led to the identification of critical design considerations for improving the system performance. Next, this design approach was seamlessly integrated into logic computations and applied to construct multi-output transcripts with well-defined stoichiometric control. This module was further applied to signaling cascades for combined signal transduction and multi-input/multi-output synthetic devices. Further, the synTCEs can precisely manipulate the N-terminal ends of output proteins, facilitating effective protein localization and cellular population control. Therefore, the synTCEs could enhance computational capability and applicability of riboregulators for reprogramming biological systems, leading to future applications in synthetic biology, metabolic engineering and biotechnology.
Collapse
Affiliation(s)
- Hyunseop Goh
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Seungdo Choi
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
6
|
Zhao M, Kim J, Jiao J, Lim Y, Shi X, Guo S, Kim J. Construction of multilayered gene circuits using de-novo-designed synthetic transcriptional regulators in cell-free systems. J Biol Eng 2024; 18:64. [PMID: 39501344 PMCID: PMC11539451 DOI: 10.1186/s13036-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND De-novo-designed synthetic transcriptional regulators have great potential as the genetic parts for constructing complex multilayered gene circuits. The design flexibility afforded by advanced nucleic acid sequence design tools vastly expands the repertoire of regulatory elements for circuit design. In principle, the design space of synthetic regulators should allow for the construction of regulatory circuits of arbitrary complexity; still, the orthogonality and robustness of such components have not been fully elucidated, thereby limiting the depth and width of synthetic circuits. RESULTS In this work, we systematically explored the design strategy of synthetic transcriptional regulators, termed switchable transcription terminators. Specifically, by redesigning key sequence domains, we created a high-performance switchable transcription terminator with a maximum fold change of 283.11 upon activation by its cognate input RNA. Further, an automated design algorithm was developed for these elements to improve orthogonality for a complex multi-layered circuit construction. The resulting orthogonal switchable transcription terminators could be used to construct a three-layer cascade circuit and a two-input three-layer OR gate. CONCLUSIONS We demonstrated a practical strategy for designing standardized regulatory elements and assembling modular gene circuits, ultimately laying the foundation for the streamlined construction of complex synthetic gene circuits.
Collapse
Affiliation(s)
- Mingming Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jeongwon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jiayan Jiao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yelin Lim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
- International Joint Laboratory of Intelligent Health Care, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
- International Joint Laboratory of Intelligent Health Care, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
7
|
Kang H, Park D, Kim J. Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs. Nucleic Acids Res 2024; 52:8595-8608. [PMID: 38943344 DOI: 10.1093/nar/gkae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
The CRISPR-Cas system provides a versatile RNA-guided approach for a broad range of applications. Thanks to advances in RNA synthetic biology, the engineering of guide RNAs (gRNAs) has enabled the conditional control of the CRISPR-Cas system. However, achieving precise regulation of the CRISPR-Cas system for efficient modulation of internal metabolic processes remains challenging. In this work, we developed a robust dCas9 regulator with engineered conditional gRNAs to enable tight control of endogenous genes. Our conditional gRNAs in Escherichia coli can control gene expression upon specific interaction with trigger RNAs with a dynamic range as high as 130-fold, evaluating up to a three-input logic A OR (B AND C). The conditional gRNA-mediated targeting of endogenous metabolic genes, lacZ, malT and poxB, caused differential regulation of growth in Escherichia coli via metabolic flux control. Further, conditional gRNAs could regulate essential cytoskeleton genes, ftsZ and mreB, to control cell filamentation and division. Finally, three types of two-input logic gates could be applied for the conditional control of ftsZ regulation, resulting in morphological changes. The successful operation and application of conditional gRNAs based on programmable RNA interactions suggests that our system could be compatible with other Cas-effectors and implemented in other host organisms.
Collapse
Affiliation(s)
- Hansol Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Dongwon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
8
|
Yan Z, Eshed A, Tang AA, Arevalos NR, Ticktin ZM, Chaudhary S, Ma D, McCutcheon G, Li Y, Wu K, Saha S, Alcantar-Fernandez J, Moreno-Camacho JL, Campos-Romero A, Collins JJ, Yin P, Green AA. Rapid, Multiplexed, and Enzyme-Free Nucleic Acid Detection Using Programmable Aptamer-Based RNA Switches. Chem 2024; 10:2220-2244. [PMID: 39036067 PMCID: PMC11259118 DOI: 10.1016/j.chempr.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. We describe a class of aptamer-based RNA switches or aptaswitches that recognize target nucleic acid molecules and initiate folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide an intense fluorescent readout without intervening enzymes, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. Aptaswitches can be used to regulate folding of seven fluorogenic aptamers, providing a general means of controlling aptamers and an array of multiplexable reporter colors. Coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/μL in one-pot reactions. Application of multiplexed all-in-one reactions against RNA from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that are readily integrated into rapid diagnostic assays.
Collapse
Affiliation(s)
- Zhaoqing Yan
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Amit Eshed
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Anli A. Tang
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Nery R. Arevalos
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Zachary M. Ticktin
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Soma Chaudhary
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Duo Ma
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | - Griffin McCutcheon
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yudan Li
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Kaiyue Wu
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
| | - Sanchari Saha
- Biodesign Center for Molecular Design and Biomimetics at
the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
| | | | | | | | - James J. Collins
- Department of Biological Engineering, Massachusetts
Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT,
Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA,
USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering,
Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School,
Boston, MA, USA
| | - Alexander A. Green
- Department of Biomedical Engineering, Boston University,
Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program,
Graduate School of Arts and Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA
02215, USA
- School of Molecular Sciences, Arizona State University,
Tempe, AZ, USA
- Lead contact
| |
Collapse
|
9
|
Wang H, Liu J, Fang Y, Shen X, Liu H, Yu L, Zeng S, Cai S, Zhou J, Li Z. Design and analysis of self-priming extension DNA hairpin probe for miRNA detection based on a unified dynamic programming framework. Anal Chim Acta 2024; 1303:342530. [PMID: 38609269 DOI: 10.1016/j.aca.2024.342530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
MicroRNAs (miRNAs) are potential biomarkers for cancer diagnosis and prognosis, methods for detecting miRNAs with high sensitivity, selectivity, and stability are urgently needed. Various nucleic acid probes that have traditionally been for this purpose suffer several drawbacks, including inefficient signal-to-noise ratios and intensities, high cost, and time-consuming method establishment. Computing tools used for investigating the thermodynamics of DNA hybridization reactions can accurately predict the secondary structure of DNA and the interactions between DNA molecules. Herein, NUPACK was used to design a series of nucleic acid probes and develop a phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) signal amplification strategy, which enabled the ultrasensitive detection of miR-200a in serum samples. The free and binding energies of the DNA detection probes calculated using NUPACK, as well as the biological experimental results, were considered synthetically to select the best sequence and experimental conditions. A unified dynamic programming framework, NUPACK analysis and the experimental data, were complementary and improved the designed model in all respects. Our study demonstrates the feasibility of using computer technology such as NUPACK to simplify the experimental process and provide intuitive results.
Collapse
Affiliation(s)
- Hecheng Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiatong Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanyan Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xudan Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hui Liu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jingjing Zhou
- Beijing Lab for Cardiovascular Precision Medicine, Echocardiography Medical Center, Maternal-Fetal Medicine Center in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Zheyong Li
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China; Zhejiang University Sir Run Run Shaw Alaer Hospital, Alaer, Xinjiang, 843300, China.
| |
Collapse
|
10
|
Koksaldi I, Park D, Atilla A, Kang H, Kim J, Seker UOS. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. ACS Synth Biol 2024; 13:1026-1037. [PMID: 38588603 PMCID: PMC11036506 DOI: 10.1021/acssynbio.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.
Collapse
Affiliation(s)
- Ilkay
Cisil Koksaldi
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Dongwon Park
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Abdurahman Atilla
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Hansol Kang
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Urartu Ozgur Safak Seker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
11
|
Henkel M, Kimna C, Lieleg O. DNA Crosslinked Mucin Hydrogels Allow for On-Demand Gel Disintegration and Triggered Particle Release. Macromol Biosci 2024; 24:e2300427. [PMID: 38217373 DOI: 10.1002/mabi.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Indexed: 01/15/2024]
Abstract
Whereas hydrogels created from synthetic polymers offer a high level of control over their stability and mechanical properties, their biomedical activity is typically limited. In contrast, biopolymers have evolved over billions of years to integrate a broad range of functionalities into a single design. Thus, biopolymeric hydrogels can show remarkable capabilities such as regulatory behavior, selective barrier properties, or antimicrobial effects. Still, despite their widespread use in numerous biomedical applications, achieving a meticulous control over the physical properties of macroscopic biopolymeric networks remains a challenge. Here, a macroscopic, DNA-crosslinked mucin hydrogel with tunable viscoelastic properties that responds to two types of triggers: temperature alterations and DNA displacement strands, is presented. As confirmed with bulk rheology and single particle tracking, the hybridized base pairs governing the stability of the hydrogel can be opened, thus allowing for a precise control over the hydrogel stiffness and even enabling a full gel-to-sol transition. As those DNA-crosslinked mucin hydrogels possess tunable mechanical properties and can be disintegrated on demand, they can not only be considered for controlled cargo release but may also serve as a role model for the development of smart biomedical materials in applications such as tissue engineering and wound healing.
Collapse
Affiliation(s)
- Manuel Henkel
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Straße 8, 85748, Garching, Germany
| |
Collapse
|
12
|
Tajadini H, Cornelissen JJLM, Zadegan R, Ravan H. An approach for state differentiation in nucleic acid circuits: Application to diagnostic DNA computing. Anal Chim Acta 2024; 1294:342266. [PMID: 38336407 DOI: 10.1016/j.aca.2024.342266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Differentiating between different states in nucleic acid circuits is crucial for various biological applications. One approach, there is a requirement for complicated sequential summation, which can be excessive for practical purposes. By selectively labeling biologically significant states, this study tackles the issue and presents a more cost-effective and streamlined solution. The challenge is to efficiently distinguish between different states in a nucleic acid circuit. RESULTS An innovative method is introduced in this study to distinguish between states in a nucleic acid circuit, emphasizing the biologically relevant ones. The circuit comprises four DNA logic gates and two detection modules, one for determining fetal gender and the other for diagnosing X-linked genetic disorders. The primary module generates a G-quadruplex DNAzyme when activated by specific biomarkers, which leads to a distinct colorimetric signal. The secondary module responds to hemophilia and choroideremia biomarkers, generating one or two DNAzymes. The absence of female fetus indicators results in no DNAzyme or color change. The circuit can differentiate various fetal states by producing one to four active DNAzymes in response to male fetus biomarkers. A single-color solution for state differentiation is provided by this approach, which promises significant advancements in DNA computing and diagnostic applications. SIGNIFICANCE The innovative approach used in this study to distinguish states in nucleic acid circuits holds great significance. By selectively labeling biologically relevant states, circuit design is simplified and complexity is reduced. This advancement enables cost-effective and efficient diagnostic applications and contributes to DNA computing, providing a valuable solution to a fundamental problem.
Collapse
Affiliation(s)
- Hanie Tajadini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, AE, 7500, the Netherlands
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, AE, 7500, the Netherlands.
| |
Collapse
|
13
|
Schulte S, Shin B, Rothenberg EV, Pierce NA. Multiplex, Quantitative, High-Resolution Imaging of Protein:Protein Complexes via Hybridization Chain Reaction. ACS Chem Biol 2024; 19:280-288. [PMID: 38232374 PMCID: PMC10877569 DOI: 10.1021/acschembio.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Signal amplification based on the mechanism of hybridization chain reaction (HCR) facilitates spatial exploration of gene regulatory networks by enabling multiplex, quantitative, high-resolution imaging of RNA and protein targets. Here, we extend these capabilities to the imaging of protein:protein complexes, using proximity-dependent cooperative probes to conditionally generate a single amplified signal if and only if two target proteins are colocalized within the sample. HCR probes and amplifiers combine to provide automatic background suppression throughout the protocol, ensuring that even if reagents bind nonspecifically in the sample, they will not generate amplified background. We demonstrate protein:protein imaging with a high signal-to-background ratio in human cells, mouse proT cells, and highly autofluorescent formalin-fixed paraffin-embedded (FFPE) human breast tissue sections. Further, we demonstrate multiplex imaging of three different protein:protein complexes simultaneously and validate that HCR enables accurate and precise relative quantitation of protein:protein complexes with subcellular resolution in an anatomical context. Moreover, we establish a unified framework for simultaneous multiplex, quantitative, high-resolution imaging of RNA, protein, and protein:protein targets, with one-step, isothermal, enzyme-free HCR signal amplification performed for all target classes simultaneously.
Collapse
Affiliation(s)
- Samuel
J. Schulte
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Boyoung Shin
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Ellen V. Rothenberg
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division
of Biology and Biological Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Yan J, Ma X, Liang D, Ran M, Zheng D, Chen X, Zhou S, Sun W, Shen X, Zhang H. An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer. Nat Commun 2023; 14:6905. [PMID: 37903795 PMCID: PMC10616286 DOI: 10.1038/s41467-023-42740-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Collapse
Affiliation(s)
- Jiaqi Yan
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Danna Liang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Meixin Ran
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Xiaodong Chen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xian Shen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hongbo Zhang
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
15
|
Liu Y, Zhang X, Zhang X, Liu X, Wang B, Zhang Q, Wei X. Temporal logic circuits implementation using a dual cross-inhibition mechanism based on DNA strand displacement. RSC Adv 2023; 13:27125-27134. [PMID: 37701285 PMCID: PMC10493850 DOI: 10.1039/d3ra03995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Molecular circuits crafted from DNA molecules harness the inherent programmability and biocompatibility of DNA to intelligently steer molecular machines in the execution of microscopic tasks. In comparison to combinational circuits, DNA-based temporal circuits boast supplementary capabilities, allowing them to proficiently handle the omnipresent temporal information within biochemical systems and life sciences. However, the lack of temporal mechanisms and components proficient in comprehending and processing temporal information presents challenges in advancing DNA circuits that excel in complex tasks requiring temporal control and time perception. In this study, we engineered temporal logic circuits through the design and implementation of a dual cross-inhibition mechanism, which enables the acceptance and processing of temporal information, serving as a fundamental building block for constructing temporal circuits. By incorporating the dual cross-inhibition mechanism, the temporal logic gates are endowed with cascading capabilities, significantly enhancing the inhibitory effect compared to a cross-inhibitor. Furthermore, we have introduced the annihilation mechanism into the circuit to further augment the inhibition effect. As a result, the circuit demonstrates sensitive time response characteristics, leading to a fundamental improvement in circuit performance. This architecture provides a means to efficiently process temporal signals in DNA strand displacement circuits. We anticipate that our findings will contribute to the design of complex temporal logic circuits and the advancement of molecular programming.
Collapse
Affiliation(s)
- Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
16
|
Chu Y, Xiao SJ, Zhu JJ. Rapid Signal Amplification Based on Planetary Cross-Catalytic Hairpin Assembly Reactions. Anal Chem 2023; 95:4317-4324. [PMID: 36826784 DOI: 10.1021/acs.analchem.2c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Non-enzymatic nucleic acid catalytic systems based on branch migration have been developed, with applications ranging from biological sensing to molecular computation. A scalable planetary cross-catalytic (PCC) system is built up in this work by cross-cascading three planetary catalytic hairpin assembly (CHA) reactions with a central three-arm-branched CHA reaction. With the bottom-up hierarchy strategy, we designed four levels of catalytic reactions, simple CHA reactions, two-layered linear cascades, conventional one-planetary PCC reactions, and two- and three-planetary PCC reactions, and examined the reaction products and intermediates in each level via native polyacrylamide gel electrophoresis. The gel shift assay optimized the designs of hairpin strands to keep the leaking reactions at a manageable level and protect against signal attenuation during serial signal transduction in nucleic acid circuits. The reaction kinetics, measured via fluorescence, are strongly dependent on the number of planetary reactions. As a result, the three-planetary PCC system achieved an exponential amplification factor of about 3k, while the conventional one-planetary cross-catalytic system has an amplification factor of 2k (k represents the cycling number). Finally, we demonstrated the rapid detection of a cancer biomarker, microRNA141, used as the catalyst in a two-planetary PCC system. We envision that the PCC systems could be applied in biological signal transduction, biocomputing, rapid detection of single- and multi-target nucleic acid probes, etc.
Collapse
Affiliation(s)
- Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
17
|
Yu H, Weng Z, Zhou X, Bai D, Luo W, Han X, Song L, Liu Q, Li J, Yang Y, Guo Y, Lv K, Xie G. A hairpin probe-mediated exponential amplification reaction for highly sensitive and specific detection of microRNAs. Chem Commun (Camb) 2023; 59:4158-4161. [PMID: 36880314 DOI: 10.1039/d3cc00241a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In this work, we propose a hairpin probe-mediated exponential amplification reaction (HEAR) strategy that combines DNA strand displacement with a "who triggers, who gets generated" mode, providing excellent single-base discrimination and a reduced background signal. The detection limit is 19 aM, which is reduced by 3 orders of magnitude compared to traditional exponential amplification approaches. This one-pot strategy also exhibits a wide dynamic range, high specificity and short detection time. It is expected to become a powerful tool for clinical diagnosis.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Zhi Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Lin Song
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Qian Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, LuZhou Key Laboratory of Nanobiosensing and Microfluidic Point-of-Care Testing, Luzhou 646000, P. R. China.
| | - Ke Lv
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing 40016, P. R. China.
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, P. R. China.
| |
Collapse
|
18
|
Bošković F, Zhu J, Tivony R, Ohmann A, Chen K, Alawami MF, Đorđević M, Ermann N, Pereira-Dias J, Fairhead M, Howarth M, Baker S, Keyser UF. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. NATURE NANOTECHNOLOGY 2023; 18:290-298. [PMID: 36646828 PMCID: PMC10020084 DOI: 10.1038/s41565-022-01287-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/07/2022] [Indexed: 05/31/2023]
Abstract
Respiratory infections are the major cause of death from infectious disease worldwide. Multiplexed diagnostic approaches are essential as many respiratory viruses have indistinguishable symptoms. We created self-assembled DNA nanobait that can simultaneously identify multiple short RNA targets. The nanobait approach relies on specific target selection via toehold-mediated strand displacement and rapid readout via nanopore sensing. Here we show that this platform can concurrently identify several common respiratory viruses, detecting a panel of short targets of viral nucleic acids from multiple viruses. Our nanobait can be easily reprogrammed to discriminate viral variants with single-nucleotide resolution, as we demonstrated for several key SARS-CoV-2 variants. Last, we show that the nanobait discriminates between samples extracted from oropharyngeal swabs from negative- and positive-SARS-CoV-2 patients without preamplification. Our system allows for the multiplexed identification of native RNA molecules, providing a new scalable approach for the diagnostics of multiple respiratory viruses in a single assay.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Milan Đorđević
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Niklas Ermann
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Joana Pereira-Dias
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | | | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Kim D, Lee J, Han J, Lim J, Lim EK, Kim E. A highly specific and flexible detection assay using collaborated actions of DNA-processing enzymes for identifying multiple gene expression signatures in breast cancer. Analyst 2023; 148:316-327. [PMID: 36484412 DOI: 10.1039/d2an01672a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most nucleic acid biosensors employ nucleic acid-processing enzymes to bind, degrade, splice, synthesize, and modify nucleic acids. Utilizing their unique substrate preference, binding mode, and catalytic activity is of great importance in designing nucleic acid biosensors. Combination with DNA-processing enzymes enables them to transform into a new generation of molecular diagnostics tools with enhanced selectivity and sensitivity and reduced reaction time. Here, we report an isothermal amplification strategy by coemploying a structure-specific endonuclease (flap endonuclease 1, FEN1) and a strand-displacing DNA polymerase (Bst DNA polymerase) to detect long RNA targets. This approach couples the FEN1-driven invasive cleavage reaction with toehold-mediated rolling circle amplification (iFEN-tRCA), enabling the highly selective and rapid detection of long RNA targets and offering a detection limit below 10 pM within 1 h. We used two targets, such as human epidermal growth factor receptor 2 (HER2, encoded by ERBB2) and dopamine- and cyclic AMP-regulated phosphoprotein (DARPP, encoded by PPP1R1B), associated with prognosis or response to anticancer therapy. We demonstrated the feasibility and quantitative capability of the iFEN-tRCA assay by assessing the expression of two RNA transcripts (ERBB2 and PPP1R1B) with total RNA extracts purified from human breast cancer cells. Therefore, we envision that the developed assay will provide a suitable prognostic and diagnostic tool for identifying appropriate patients for HER2-targeted therapy and predicting the clinical outcome and occurrence of metastasis relapse in breast cancer.
Collapse
Affiliation(s)
- Dain Kim
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.
| | - Jiyoung Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jueun Han
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea. .,Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea.,School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunjung Kim
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
20
|
Mayer T, Oesinghaus L, Simmel FC. Toehold-Mediated Strand Displacement in Random Sequence Pools. J Am Chem Soc 2023; 145:634-644. [PMID: 36571481 DOI: 10.1021/jacs.2c11208] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toehold-mediated strand displacement (TMSD) has been used extensively for molecular sensing and computing in DNA-based molecular circuits. As these circuits grow in complexity, sequence similarity between components can lead to cross-talk, causing leak, altered kinetics, or even circuit failure. For small non-biological circuits, such unwanted interactions can be designed against. In environments containing a huge number of sequences, taking all possible interactions into account becomes infeasible. Therefore, a general understanding of the impact of sequence backgrounds on TMSD reactions is of great interest. Here, we investigate the impact of random DNA sequences on TMSD circuits. We begin by studying individual interfering strands and use the obtained data to build machine learning models that estimate kinetics. We then investigate the influence of pools of random strands and find that the kinetics are determined by only a small subpopulation of strongly interacting strands. Consequently, their behavior can be mimicked by a small collection of such strands. The equilibration of the circuit with the background sequences strongly influences this behavior, leading to up to 1 order of magnitude difference in reaction speed. Finally, we compare two established and one novel technique that speed up TMSD reactions in random sequence pools: a three-letter alphabet, protection of toeholds by intramolecular secondary structure, or by an additional blocking strand. While all of these techniques were useful, only the latter can be used without sequence constraints. We expect that our insights will be useful for the construction of TMSD circuits that are robust to molecular noise.
Collapse
Affiliation(s)
- Thomas Mayer
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| | - Lukas Oesinghaus
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| | - Friedrich C Simmel
- School of Natural Sciences, Department of Bioscience, TU Munich, D-85748Garching, Germany
| |
Collapse
|
21
|
DNA computational device-based smart biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Chen RP, Chen W. Tunable and Modular miRNA Classifier through Indirect Associative Toehold Strand Displacement. ACS Synth Biol 2022; 11:2719-2725. [PMID: 35816756 DOI: 10.1021/acssynbio.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The programmability of nucleic acids allows detection devices with complex behaviors to be designed de novo. While highly specific, these high-order circuits are usually sequence constrained, making their adaptability toward biological targets challenging. Here, we devise a new strategy called indirect associative strand displacement to decouple sequence constraints between miRNA inputs and de novo strand displacement circuits. By splitting circuit inputs into their toehold and branch migration regions and controlling their association through a docking strand, we demonstrate how any miRNA sequence can be interfaced with synthetic DNA circuits, including catalytic hairpin assembly and a four-input classifier.
Collapse
Affiliation(s)
- Rebecca P Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
23
|
Xiu D, Zhao S, Li Z, Xu Y, Wang Y, Zhu Z, Zhang M, Snow CD, Belfiore LA, Tang J. Conditionally designed luminescent DNA crystals doped by Ln 3+(Eu 3+/Tb 3+) complexes or fluorescent proteins with smart drug sensing property. J Mater Chem B 2022; 10:6443-6452. [PMID: 35703105 DOI: 10.1039/d2tb00847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a designed porous DNA crystal with high intrinsic biocompatibility was used as the scaffold material to load fluorescent guest molecules to detect anti-cancer drugs. It is shown here that the synthesized crystals have the characteristics consistent with the designed large solvent channels, and can therefore accommodate guest molecules such as fluorescent proteins that cannot be accommodated by less porous crystals. Eu(TTA)3phen and Tb(acac)3phen lanthanide complexes were individually noncovalently loaded into the porous crystals, resulting in hybrid luminescent DNA crystals. Emodin, an anti-cancer, anti-tumor, anti-inflammatory drug, was found to quench lanthanide complexes in solution or in crystals. Notably, emodin is the active ingredient of Lianhua Qingwen Capsule, an anti-COVID-19 drug candidate. Therefore, the porous DNA crystals reported here have potential applications as a biocompatible and theranostic delivery biomaterial for functional macromolecules.
Collapse
Affiliation(s)
- Dan Xiu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Sibo Zhao
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zhenhua Li
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yanan Xu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zhijun Zhu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Min Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China. .,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
24
|
Zhang Y, Li Z, Su W, Zhong G, Zhang X, Wu Y, Situ B, Xiao Y, Yan X, Zheng L. A highly sensitive and versatile fluorescent biosensor for pathogen nucleic acid detection based on toehold-mediated strand displacement initiated primer exchange reaction. Anal Chim Acta 2022; 1221:340125. [DOI: 10.1016/j.aca.2022.340125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
|
25
|
Pairing statistics and melting of random DNA oligomers: Finding your partner in superdiverse environments. PLoS Comput Biol 2022; 18:e1010051. [PMID: 35404933 PMCID: PMC9022813 DOI: 10.1371/journal.pcbi.1010051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding of the pairing statistics in solutions populated by a large number of distinct solute species with mutual interactions is a challenging topic, relevant in modeling the complexity of real biological systems. Here we describe, both experimentally and theoretically, the formation of duplexes in a solution of random-sequence DNA (rsDNA) oligomers of length L = 8, 12, 20 nucleotides. rsDNA solutions are formed by 4L distinct molecular species, leading to a variety of pairing motifs that depend on sequence complementarity and range from strongly bound, fully paired defectless helices to weakly interacting mismatched duplexes. Experiments and theory coherently combine revealing a hybridization statistics characterized by a prevalence of partially defected duplexes, with a distribution of type and number of pairing errors that depends on temperature. We find that despite the enormous multitude of inter-strand interactions, defectless duplexes are formed, involving a fraction up to 15% of the rsDNA chains at the lowest temperatures. Experiments and theory are limited here to equilibrium conditions. Several biological processes require that specific partner molecules succeed in binding after negotiating their way through a huge number of interactions with other molecules. How such molecular recognition emerges among millions distinct molecular species is an open problem. We have studied, both experimentally and theoretically, such process of “molecular recognition” in pools of highly diverse random DNA oligomers, which binds preferentially, but not exclusively, to its perfect complementary sequence. We find a complex behavior, in which some perfect pairing takes place with a non-trivial temperature dependence that we understand thorough statistical mechanics modelling. The pairing pattern of short random DNA is relevant in the context of the origin of life since the so-called “RNA World” was most probably based on the mutual recognition of random chains.
Collapse
|
26
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Yan J, Zou H, Zhou W, Yuan X, Li Z, Ma X, Liu C, Wang Y, Rosenholm JM, Cui W, Qu X, Zhang H. Self-assembly of DNA Nanogels with Endogenous MicroRNA Toehold Self-regulating Switches for Targeted Gene Regulation Therapy. Biomater Sci 2022; 10:4119-4125. [DOI: 10.1039/d2bm00640e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a smart nanohydrogel with endogenous microRNA-21 toehold is developed to encapsulate gemcitabine-loaded mesoporous silica nanoparticles for targeted pancreatic cancer therapy. This toehold mediated strand displacement method can simultaneously achieve...
Collapse
|
28
|
Zambrano RAI, Hernandez-Perez C, Takahashi MK. RNA Structure Prediction, Analysis, and Design: An Introduction to Web-Based Tools. Methods Mol Biol 2022; 2518:253-269. [PMID: 35666450 DOI: 10.1007/978-1-0716-2421-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding RNA structure has become critical in the study of RNA in their roles as mediators of biological processes. To aid in these studies, computational algorithms that utilize thermodynamics have been developed to predict RNA secondary structure. Due to the importance of intermolecular interactions, the algorithms have been expanded to determine and predict RNA-RNA hybridization. This chapter discusses popular webservers with the tools for RNA secondary structure prediction, RNA-RNA hybridization, and design. We address key features that distinguish common-functioning programs and their purposes for the interests of the user. Ultimately, we hope this review elucidates web-based tools researchers may take advantage of in their investigations of RNA structure and function.
Collapse
Affiliation(s)
| | | | - Melissa K Takahashi
- Department of Biology, California State University Northridge, Northridge, CA, USA.
| |
Collapse
|
29
|
Liu B, Chappell J. Computational Design of Small Transcription Activating RNAs (STARs). Methods Mol Biol 2022; 2518:87-97. [PMID: 35666440 DOI: 10.1007/978-1-0716-2421-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A major goal of synthetic biology has been to develop libraries of versatile genetic regulators that enable the precise control of gene expression. In recent years, the creation of novel RNA design motifs has allowed for the bottom-up, computational design of large libraries of high-performing and orthogonal RNA regulator systems. One example of this is Small Transcription Activating RNAs (STARs), which function through the conditional formation of terminator hairpins to activate the transcription of targeted genes. STARs have found broad utility for creating synthetic gene circuits, engineering metabolic pathways, and creating new types of diagnostics. Here we describe the method to computationally design, build, and characterize STAR regulators.
Collapse
Affiliation(s)
- Baiyang Liu
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - James Chappell
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
30
|
Hieronymus R, Zhu J, Müller S. RNA self-splicing by engineered hairpin ribozyme variants. Nucleic Acids Res 2021; 50:368-377. [PMID: 34928378 PMCID: PMC8754997 DOI: 10.1093/nar/gkab1239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 11/14/2022] Open
Abstract
Small RNAs capable of self-cleavage and ligation might have been the precursors for the much more complex self-splicing group I and II introns in an early RNA world. Here, we demonstrate the activity of engineered hairpin ribozyme variants, which as self-splicing introns are removed from their parent RNA. In the process, two cleavage reactions are supported at the two intron-exon junctions, followed by ligation of the two generated exon fragments. As a result, the hairpin ribozyme, here acting as the self-splicing intron, is cut out. Two self-splicing hairpin ribozyme variants were investigated, one designed by hand, the other by a computer-aided approach. Both variants perform self-splicing, generating a cut-out intron and ligated exons.
Collapse
Affiliation(s)
- Robert Hieronymus
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Jikang Zhu
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| |
Collapse
|
31
|
Oesinghaus L, Simmel FC. Kontrolle von Genexpression in Säugetierzellen mithilfe von parallel schaltbaren Guide‐RNAs für Cas12a**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lukas Oesinghaus
- Physics Department, E14 TU München Am Coulombwall 4a 85748 Garching Deutschland
| | - Friedrich C. Simmel
- Physics Department, E14 TU München Am Coulombwall 4a 85748 Garching Deutschland
| |
Collapse
|
32
|
Oesinghaus L, Simmel FC. Controlling Gene Expression in Mammalian Cells Using Multiplexed Conditional Guide RNAs for Cas12a*. Angew Chem Int Ed Engl 2021; 60:23894-23902. [PMID: 34533878 PMCID: PMC8596743 DOI: 10.1002/anie.202107258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Indexed: 12/26/2022]
Abstract
Spatiotemporal control of the activity of CRISPR-associated (Cas) proteins is of considerable interest for basic research and therapeutics. Here, we show that conditional guide RNAs (gRNAs) for Cas12a can be transcribed in mammalian cells by RNA polymerase II, followed by activation via input-dependent processing of the 3' tail of the gRNA transcript. We demonstrate processing using an RNA strand displacement mechanism, as well as microRNA-dependent processing, and cleavage by a guanine-responsive ribozyme. We further demonstrate that Cas12a along with several independently switchable gRNAs can be compactly integrated on a single transcript using stabilizing RNA triplexes, providing a route towards Cas12a-based gene regulation constructs with multi-input switching capabilities. The principle is shown to work in HEK and mouse fibroblast cells using luminescence, fluorescence, and is also demonstrated for the conditional upregulation of an endogenous gene.
Collapse
Affiliation(s)
- Lukas Oesinghaus
- Physics Department, E14TU MunichAm Coulombwall 4a85748GarchingGermany
| | | |
Collapse
|
33
|
Yang Y, Liu J, Zhou X. A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosens Bioelectron 2021; 190:113418. [PMID: 34119838 PMCID: PMC8182983 DOI: 10.1016/j.bios.2021.113418] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
The continuing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has spread globally and its reliable diagnosis is one of the foremost priorities for protecting public health. Herein a rapid (<1 h), easy-to-implement, and accurate CRISPR-based evanescent wave fluorescence biosensing platform for detection of SARS-CoV-2 is reported. The collateral effect of Cas13a is combined with a universal autonomous enzyme-free hybridization chain reaction (HCR) by designing a cleavage hairpin reporter, which is cleaved upon target recognition, and hence releasing the initiator sequence to trigger the downstream HCR circuits. Detection of HCR assemblies is accomplished by first adsorbing to the desthiobiotin-modified optical fiber, followed by fluorescence emission induced by an evanescent field. Three Cas13a crRNAs targeting the genes of S, N and Orf1ab of SARS-CoV-2 are programmed to specifically target SARS-CoV-2 or broadly detect related coronavirus strains, such as MERS-CoV and SARS-CoV. The HCR amplification coupled Cas13a-based biosensing platform is capable of rapid detection of SARS-CoV-2 with attomolar sensitivity. This method is further validated by adding target RNA of SARS-CoV-2 in negative oropharyngeal swabs. The good discrimination capability of this technique demonstrates its promising potential for point-of-care diagnosis of COVID-19.
Collapse
Affiliation(s)
- Yihan Yang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinchuan Liu
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Köksaldı İÇ, Köse S, Ahan RE, Hacıosmanoğlu N, Şahin Kehribar E, Güngen MA, Baştuğ A, Dinç B, Bodur H, Özkul A, Şeker UÖŞ. SARS-CoV-2 Detection with De Novo-Designed Synthetic Riboregulators. Anal Chem 2021; 93:9719-9727. [PMID: 34192453 PMCID: PMC8265535 DOI: 10.1021/acs.analchem.1c00886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 is a human pathogen and the main cause of COVID-19 disease, announced as a global pandemic by the World Health Organization. COVID-19 is characterized by severe conditions, and early diagnosis can make dramatic changes for both personal and public health. Low-cost, easy-to-use diagnostic capabilities can have a very critical role in controlling the transmission of the disease. Here, we are reporting a state-of-the-art diagnostic tool developed with an in vitro synthetic biology approach by employing engineered de novo riboregulators. Our design coupled with a home-made point-of-care device can detect and report the presence of SARS-CoV-2-specific genes. The presence of SARS-CoV-2-related genes triggers the translation of sfGFP mRNAs, resulting in a green fluorescence output. The approach proposed here has the potential of being a game changer in SARS-CoV-2 diagnostics by providing an easy-to-run, low-cost diagnostic capability.
Collapse
Affiliation(s)
- İlkay Çisil Köksaldı
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Sıla Köse
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Recep Erdem Ahan
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Nedim Hacıosmanoğlu
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Ebru Şahin Kehribar
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Murat Alp Güngen
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| | - Aliye Baştuğ
- Department of Infectious Diseases and Clinical
Microbiology, Health Science University Turkey, Ankara City
Hospital, 06800 Ankara, Turkey
| | - Bedia Dinç
- Department of Infectious Diseases and Clinical
Microbiology, Health Science University Turkey, Ankara City
Hospital, 06800 Ankara, Turkey
| | - Hürrem Bodur
- Department of Infectious Diseases and Clinical
Microbiology, Health Science University Turkey, Ankara City
Hospital, 06800 Ankara, Turkey
| | - Aykut Özkul
- Faculty of Veterinary Medicine, Department of
Virology, Ankara University, 06110 Ankara,
Turkey
- Biotechnology Institute, Ankara
University, 06135 Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM—National Nanotechnology Research Center,
Bilkent University, 06800 Ankara,
Turkey
- Institute of Materials Science and Nanotechnology,
Bilkent University, 06800 Ankara,
Turkey
| |
Collapse
|
35
|
Fu S, Zhang T, Jiang H, Xu Y, Chen J, Zhang L, Su X. DNA nanotechnology enhanced single-molecule biosensing and imaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Hochrein LM, Li H, Pierce NA. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-Selective Regulation of CRISPR/Cas. ACS Synth Biol 2021; 10:964-971. [PMID: 33930275 DOI: 10.1021/acssynbio.1c00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activity of a conditional guide RNA (cgRNA) is dependent on the presence or absence of an RNA trigger, enabling cell-selective regulation of CRISPR/Cas function. cgRNAs are programmable at two levels, with the target-binding sequence controlling the target of Cas activity (edit, silence, or induce a gene of choice) and the trigger-binding sequence controlling the scope of Cas activity (subset of cells expressing the trigger RNA). Allosteric cgRNA mechanisms enable independent design of the target and trigger sequences, providing the flexibility to select the regulatory target and scope independently. Building on prior advances in dynamic RNA nanotechnology that demonstrated the cgRNA concept, here we set the goal of engineering high-performance allosteric cgRNA mechanisms for the mammalian setting, pursuing both ON → OFF logic (conditional inactivation by an RNA trigger) and OFF → ON logic (conditional activation by an RNA trigger). For each mechanism, libraries of orthogonal cgRNA/trigger pairs were designed using NUPACK. In HEK 293T cells expressing cgRNAs, triggers, and inducing dCas9: (1) a library of four ON → OFF "terminator switch" cgRNAs exhibit a median fold-change of ≈50×, a median fractional dynamic range of ≈20%, and a median crosstalk modulus of ≈9%; (2) a library of three OFF → ON "split-terminator switch" cgRNAs exhibit a median fold-change of ≈150×, a median fractional dynamic range of ≈50%, and a median crosstalk modulus of ≈4%. Further, we demonstrate that xrRNA elements that protect viral RNAs from degradation by exoribonucleases can dramatically enhance the performance of RNA synthetic biology. The high-performance allosteric cgRNAs demonstrated here for ON → OFF and OFF → ON logic in mammalian cells provide a foundation for pursuing applications of programmable cell-selective regulation.
Collapse
Affiliation(s)
- Lisa M Hochrein
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Heyun Li
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
37
|
Yu Q, Ren K, You M. Genetically encoded RNA nanodevices for cellular imaging and regulation. NANOSCALE 2021; 13:7988-8003. [PMID: 33885099 PMCID: PMC8122502 DOI: 10.1039/d0nr08301a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleic acid-based nanodevices have been widely used in the fields of biosensing and nanomedicine. Traditionally, the majority of these nanodevices were first constructed in vitro using synthetic DNA or RNA oligonucleotides and then delivered into cells. Nowadays, the emergence of genetically encoded RNA nanodevices has provided a promising alternative approach for intracellular analysis and regulation. These genetically encoded RNA-based nanodevices can be directly transcribed and continuously produced inside living cells. A variety of highly precise and programmable nanodevices have been constructed in this way during the last decade. In this review, we will summarize the recent advances in the design and function of these artificial genetically encoded RNA nanodevices. In particular, we will focus on their applications in regulating cellular gene expression, imaging, logic operation, structural biology, and optogenetics. We believe these versatile RNA-based nanodevices will be broadly used in the near future to probe and program cells and other biological systems.
Collapse
Affiliation(s)
- Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
38
|
Zhao S, Yu L, Yang S, Tang X, Chang K, Chen M. Boolean logic gate based on DNA strand displacement for biosensing: current and emerging strategies. NANOSCALE HORIZONS 2021; 6:298-310. [PMID: 33877218 DOI: 10.1039/d0nh00587h] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA computers are considered one of the most prominent next-generation molecular computers that perform Boolean logic using DNA elements. DNA-based Boolean logic gates, especially DNA strand displacement-based logic gates (SDLGs), have shown tremendous potential in biosensing since they can perform the logic analysis of multi-targets simultaneously. Moreover, SDLG biosensors generate a unique output in the form of YES/NO, which is contrary to the quantitative measurement used in common biosensors. In this review, the recent achievements of SDLG biosensing strategies are summarized. Initially, the development and mechanisms of Boolean logic gates, strand-displacement reaction, and SDLGs are introduced. Afterwards, the diversified input and output of SDLG biosensors are elaborated. Then, the state-of-the-art SDLG biosensors are reviewed in the classification of different signal-amplification methods, such as rolling circle amplification, catalytic hairpin assembly, strand-displacement amplification, DNA molecular machines, and DNAzymes. Most importantly, limitations and future trends are discussed. The technology reviewed here is a promising tool for multi-input analysis and lays a foundation for intelligent diagnostics.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China.
| | | | | | | | | | | |
Collapse
|
39
|
Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots. Methods Mol Biol 2021; 2167:113-143. [PMID: 32712918 DOI: 10.1007/978-1-0716-0716-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ribozymes are RNAs that catalyze reactions. They occur in nature, and can also be evolved in vitro to catalyze novel reactions. This chapter provides detailed protocols for using inverse folding software to design a ribozyme sequence that will fold to a known ribozyme secondary structure and for testing the catalytic activity of the sequence experimentally. This protocol is able to design sequences that include pseudoknots, which is important as all naturally occurring full-length ribozymes have pseudoknots. The starting point is the known pseudoknot-containing secondary structure of the ribozyme and knowledge of any nucleotides whose identity is required for function. The output of the protocol is a set of sequences that have been tested for function. Using this protocol, we were previously successful at designing highly active double-pseudoknotted HDV ribozymes.
Collapse
|
40
|
Collins SP, Rostain W, Liao C, Beisel CL. Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch. Nucleic Acids Res 2021; 49:2985-2999. [PMID: 33619539 PMCID: PMC7968991 DOI: 10.1093/nar/gkab100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR technologies increasingly require spatiotemporal and dosage control of nuclease activity. One promising strategy involves linking nuclease activity to a cell's transcriptional state by engineering guide RNAs (gRNAs) to function only after complexing with a ‘trigger’ RNA. However, standard gRNA switch designs do not allow independent selection of trigger and guide sequences, limiting gRNA switch application. Here, we demonstrate the modular design of Cas12a gRNA switches that decouples selection of these sequences. The 5′ end of the Cas12a gRNA is fused to two distinct and non-overlapping domains: one base pairs with the gRNA repeat, blocking formation of a hairpin required for Cas12a recognition; the other hybridizes to the RNA trigger, stimulating refolding of the gRNA repeat and subsequent gRNA-dependent Cas12a activity. Using a cell-free transcription-translation system and Escherichia coli, we show that designed gRNA switches can respond to different triggers and target different DNA sequences. Modulating the length and composition of the sensory domain altered gRNA switch performance. Finally, gRNA switches could be designed to sense endogenous RNAs expressed only under specific growth conditions, rendering Cas12a targeting activity dependent on cellular metabolism and stress. Our design framework thus further enables tethering of CRISPR activities to cellular states.
Collapse
Affiliation(s)
- Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - William Rostain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.,Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany.,Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
41
|
Taneda A, Sato K. A Web Server for Designing Molecular Switches Composed of Two Interacting RNAs. Int J Mol Sci 2021; 22:ijms22052720. [PMID: 33800268 PMCID: PMC7962656 DOI: 10.3390/ijms22052720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The programmability of RNA–RNA interactions through intermolecular base-pairing has been successfully exploited to design a variety of RNA devices that artificially regulate gene expression. An in silico design for interacting structured RNA sequences that satisfies multiple design criteria becomes a complex multi-objective problem. Although multi-objective optimization is a powerful technique that explores a vast solution space without empirical weights between design objectives, to date, no web service for multi-objective design of RNA switches that utilizes RNA–RNA interaction has been proposed. We developed a web server, which is based on a multi-objective design algorithm called MODENA, to design two interacting RNAs that form a complex in silico. By predicting the secondary structures with RactIP during the design process, we can design RNAs that form a joint secondary structure with an external pseudoknot. The energy barrier upon the complex formation is modeled by an interaction seed that is optimized in the design algorithm. We benchmarked the RNA switch design approaches (MODENA+RactIP and MODENA+RNAcofold) for the target structures based on natural RNA-RNA interactions. As a result, MODENA+RactIP showed high design performance for the benchmark datasets.
Collapse
Affiliation(s)
- Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
- Correspondence:
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan;
| |
Collapse
|
42
|
Cabello-Garcia J, Bae W, Stan GBV, Ouldridge TE. Handhold-Mediated Strand Displacement: A Nucleic Acid Based Mechanism for Generating Far-from-Equilibrium Assemblies through Templated Reactions. ACS NANO 2021; 15:3272-3283. [PMID: 33470806 DOI: 10.1021/acsnano.0c10068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of templates is a well-established method for the production of sequence-controlled assemblies, particularly long polymers. Templating is canonically envisioned as akin to a self-assembly process, wherein sequence-specific recognition interactions between a template and a pool of monomers favor the assembly of a particular polymer sequence at equilibrium. However, during the biogenesis of sequence-controlled polymers, template recognition interactions are transient; RNA and proteins detach spontaneously from their templates to perform their biological functions and allow template reuse. Breaking template recognition interactions puts the product sequence distribution far from equilibrium, since specific product formation can no longer rely on an equilibrium dominated by selective copy-template bonds. The rewards of engineering artificial polymer systems capable of spontaneously exhibiting nonequilibrium templating are large, but fields like DNA nanotechnology lack the requisite tools; the specificity and drive of conventional DNA reactions rely on product stability at equilibrium, sequestering any recognition interaction in products. The proposed alternative is handhold-mediated strand displacement (HMSD), a DNA-based reaction mechanism suited to producing out-of-equilibrium products. HMSD decouples the drive and specificity of the reaction by introducing a transient recognition interaction, the handhold. We measure the kinetics of 98 different HMSD systems to prove that handholds can accelerate displacement by 4 orders of magnitude without being sequestered in the final product. We then use HMSD to template the selective assembly of any one product DNA duplex from an ensemble of equally stable alternatives, generating a far-from-equilibrium output. HMSD thus brings DNA nanotechnology closer to the complexity of out-of-equilibrium biological systems.
Collapse
Affiliation(s)
- Javier Cabello-Garcia
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Wooli Bae
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Guy-Bart V Stan
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, SW7 2AZ London, U.K
| |
Collapse
|
43
|
Shi K, Xie S, Tian R, Wang S, Lu Q, Gao D, Lei C, Zhu H, Nie Z. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. SCIENCE ADVANCES 2021; 7:7/5/eabc7802. [PMID: 33571114 PMCID: PMC7840123 DOI: 10.1126/sciadv.abc7802] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
Artificial nucleic acid circuits with precisely controllable dynamic and function have shown great promise in biosensing, but their utility in molecular diagnostics is still restrained by the inability to process genomic DNA directly and moderate sensitivity. To address this limitation, we present a CRISPR-Cas-powered catalytic nucleic acid circuit, namely, CRISPR-Cas-only amplification network (CONAN), for isothermally amplified detection of genomic DNA. By integrating the stringent target recognition, helicase activity, and trans-cleavage activity of Cas12a, a Cas12a autocatalysis-driven artificial reaction network is programmed to construct a positive feedback circuit with exponential dynamic in CONAN. Consequently, CONAN achieves one-enzyme, one-step, real-time detection of genomic DNA with attomolar sensitivity. Moreover, CONAN increases the intrinsic single-base specificity of Cas12a, and enables the effective detection of hepatitis B virus infection and human bladder cancer-associated single-nucleotide mutation in clinical samples, highlighting its potential as a powerful tool for disease diagnostics.
Collapse
Affiliation(s)
- Kai Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Shuo Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Qin Lu
- Hunan Research Center for Big Data Application in Genomics, Genetalks Inc., Changsha 410152, China
| | - Denghui Gao
- Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
44
|
Ebrahimi A, Ravan H, Mehrabani M. Multiplex monitoring of Alzheimer associated miRNAs based on the modular logic circuit operation and doping of catalytic hairpin assembly. Biosens Bioelectron 2020; 170:112710. [DOI: 10.1016/j.bios.2020.112710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
|
45
|
Fornace ME, Porubsky NJ, Pierce NA. A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed. ACS Synth Biol 2020; 9:2665-2678. [PMID: 32910644 DOI: 10.1021/acssynbio.9b00523] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. Here, to enhance the underlying physical model, ensure scalability for large calculations, and achieve dramatic speedups when calculating diverse physical quantities over complex and test tube ensembles, we introduce a unified dynamic programming framework that combines three ingredients: (1) recursions that specify the dependencies between subproblems and incorporate the details of the structural ensemble and the free energy model, (2) evaluation algebras that define the mathematical form of each subproblem, (3) operation orders that specify the computational trajectory through the dependency graph of subproblems. The physical model is enhanced using new recursions that operate over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are coded generically and then compiled with a quantity-specific evaluation algebra and operation order to generate an executable for each physical quantity: partition function, equilibrium base-pairing probabilities, MFE energy and proxy structure, suboptimal proxy structures, and Boltzmann sampled structures. For large complexes (e.g., 30 000 nt), scalability is achieved for partition function calculations using an overflow-safe evaluation algebra, and for equilibrium base-pairing probabilities using a backtrack-free operation order. A new blockwise operation order that treats subcomplex blocks for the complex species in a test tube ensemble enables dramatic speedups (e.g., 20-120× ) using vectorization and caching. With these performance enhancements, equilibrium analysis of substantial test tube ensembles can be performed in ≤ 1 min on a single computational core (e.g., partition function and equilibrium concentration for all complex species of up to six strands formed from two strand species of 300 nt each, or for all complex species of up to two strands formed from 80 strand species of 100 nt each). A new sampling algorithm simultaneously samples multiple structures from the complex ensemble to yield speedups of an order of magnitude or more as the number of structures increases above ≈103. These advances are available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly scripted using the all-new NUPACK Python module.
Collapse
Affiliation(s)
- Mark E. Fornace
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas J. Porubsky
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, U.K
| |
Collapse
|
46
|
Badu S, Melnik R, Singh S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1804564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
- BCAM-Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
47
|
A molecular device: A DNA molecular lock driven by the nicking enzymes. Comput Struct Biotechnol J 2020; 18:2107-2116. [PMID: 32913580 PMCID: PMC7451616 DOI: 10.1016/j.csbj.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022] Open
Abstract
As people are placing more and more importance on information security, how to realize the protection of information has become a hotspot of current research. As a security device, DNA molecular locks have great potential to realize information protection at the molecular level. However, building a highly secure molecular lock is still a serious challenge. Therefore, taking advantage of the DNA strand displacement and enzyme control technology, we constructed a molecular lock with a self-destructive mechanism. This molecular lock is mainly composed of logic circuits and takes nicking enzymes as inputs. To build this molecular lock, we first constructed a series of cascade circuits, including a YES–YES cascade circuit and a YES–AND cascade circuit. Then, an Inhibit logic gate was constructed to explore the inhibitory properties between different combinations of two nicking enzymes. Finally, using the characteristics of mutual inhibition between several enzymes, a DNA molecular lock driven by three nicking enzymes was constructed. In this molecular device, only the correct sequence of nicking enzymes can be input to ensure the normal operation of the molecular lock. Once the wrong password is entered, the device will be destroyed and cannot be recovered, which effectively prevents intruders from cracking the lock through exhaustive methods. The molecular lock has the function of simulating an electronic keyboard, which can realize the protection of information at the molecular level, and provides a new implementation method for building more advanced and complex molecular devices.
Collapse
|
48
|
Lakin MR, Phillips A. Domain-Specific Programming Languages for Computational Nucleic Acid Systems. ACS Synth Biol 2020; 9:1499-1513. [PMID: 32589838 DOI: 10.1021/acssynbio.0c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The construction of models of system behavior is of great importance throughout science and engineering. In bioengineering and bionanotechnology, these often take the form of dynamic models that specify the evolution of different species over time. To ensure that scientific observations and conclusions are consistent and that systems can be reliably engineered on the basis of model predictions, it is important that models of biomolecular systems can be constructed in a reliable, principled, and efficient manner. This review focuses on efforts to address this need by using domain-specific programming languages as the basis for custom design tools for researchers working on computational nucleic acid devices, where a domain-specific language is simply a programming language tailored to a particular application domain. The underlying thesis of our review is that there is a continuum of practical implementation strategies for computational nucleic acid systems, which can all benefit from appropriate domain-specific languages and software design tools. We emphasize the need for specialized yet flexible tools that can be realized using domain-specific languages that compile to more general-purpose representations.
Collapse
Affiliation(s)
- Matthew R. Lakin
- Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | |
Collapse
|
49
|
Badelt S, Grun C, Sarma KV, Wolfe B, Shin SW, Winfree E. A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. J R Soc Interface 2020; 17:20190866. [PMID: 32486951 PMCID: PMC7328391 DOI: 10.1098/rsif.2019.0866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way. Developing an effective hierarchy of abstractions may be critical for increasing the complexity of programmable DNA systems. Here, we build on prior practice to provide a new formalization of 'domain-level' representations of DNA strand displacement systems that has a natural connection to nucleic acid biophysics while still being suitable for formal analysis. Enumeration of unimolecular and bimolecular reactions provides a semantics for programmable molecular interactions, with kinetics given by an approximate biophysical model. Reaction condensation provides a tractable simplification of the detailed reactions that respects overall kinetic properties. The applicability and accuracy of the model is evaluated across a wide range of engineered DNA strand displacement systems. Thus, our work can serve as an interface between lower-level DNA models that operate at the nucleotide sequence level, and high-level chemical reaction network models that operate at the level of interactions between abstract species.
Collapse
Affiliation(s)
- Stefan Badelt
- California Institute of Technology, Pasadena, CA, USA
| | - Casey Grun
- Wyss Institute, Harvard University, Boston, MA, USA
| | | | - Brian Wolfe
- California Institute of Technology, Pasadena, CA, USA
| | | | - Erik Winfree
- California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
50
|
Weng Y, Huang Q, Li C, Yang Y, Wang X, Yu J, Huang Y, Liang XJ. Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:581-601. [PMID: 31927331 PMCID: PMC6957827 DOI: 10.1016/j.omtn.2019.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Due to a series of systemic and intracellular obstacles in nucleic acid (NA) therapy, including fast degradation in blood, renal clearance, poor cellular uptake, and inefficient endosomal escape, NAs may need delivery methods to transport to the cell nucleus or cytosol to be effective. Advanced nanoscale biotechnology-associated strategies, such as controlling the particle size, charge, drug loading, response to environmental signals, or other physical/chemical properties of delivery carriers, have provided great help for the in vivo and in vitro delivery of NA therapeutics. In this review, we introduce the characteristics of different NA modalities and illustrate how advanced nanoscale biotechnology assists NA therapy. The specific features and challenges of various nanocarriers in clinical and preclinical studies are summarized and discussed. With the help of advanced nanoscale biotechnology, some of the major barriers to the development of NA therapy will eventually be overcome in the near future.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Qianqian Huang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunhui Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yongfeng Yang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China.
| |
Collapse
|