1
|
Matic ES, Bernard M, Jernstedt AJ, Grommet AB. Orthogonal Phase Transfer of Oppositely Charged Fe II 4L 6 Cages. Chemistry 2024; 30:e202403411. [PMID: 39373569 DOI: 10.1002/chem.202403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
Coordination cages and their encapsulated cargo can be manoeuvred between immiscible liquid layers in a process referred to as phase transfer. Among the stimuli reported to drive phase transfer, counterion exchange is the most widespread. This method exploits the principle that counterions contribute strongly to the solubility preferences of coordination cages, and involves exchanging hydrophilic and hydrophobic counterions. Nevertheless, phase transfer of anionic cages remains relatively unexplored, as does selective phase transfer of individual cages from mixtures. Here we compare the phase transfer behaviour of two FeII 4L6 cages with the same size and geometry, but with opposite charges. As such, this study presents a rare example wherein an anionic cage undergoes phase transfer upon countercation exchange. We then combine these two cages, and demonstrate that their quantitative separation can be achieved by inducing selective phase transfer of either cage. These results represent unprecedented control over the movement of coordination cages between different physical compartments and are anticipated to inform the development of next-generation supramolecular systems.
Collapse
Affiliation(s)
- Ebba S Matic
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Maylis Bernard
- Ecole Supérieure de Chimie Organique et Minérale, 60200, Compiègne, France
| | - Alexandra J Jernstedt
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Angela B Grommet
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
2
|
Ling QH, Lou ZC, Zhang L, Jin T, Dou WT, Yang HB, Xu L. Supramolecular cage-mediated cargo transport. Chem Soc Rev 2024; 53:6042-6067. [PMID: 38770558 DOI: 10.1039/d3cs01081c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A steady stream of material transport based on carriers and channels in living systems plays an extremely important role in normal life activities. Inspired by nature, researchers have extensively applied supramolecular cages in cargo transport because of their unique three-dimensional structures and excellent physicochemical properties. In this review, we will focus on the development of supramolecular cages as carriers and channels for cargo transport in abiotic and biological systems over the past fifteen years. In addition, we will discuss future challenges and potential applications of supramolecular cages in substance transport.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Zhen-Chen Lou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Tongxia Jin
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| |
Collapse
|
3
|
Ryan HP, Fishman ZS, Pawlik JT, Grommet A, Musial M, Rizzuto F, Booth JC, Long CJ, Schwarz K, Orloff ND, Nitschke JR, Stelson AC. Quantifying the Effect of Guest Binding on Host Environment. J Am Chem Soc 2023; 145:19533-19541. [PMID: 37642307 PMCID: PMC10510717 DOI: 10.1021/jacs.3c01409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 08/31/2023]
Abstract
The environment around a host-guest complex is defined by intermolecular interactions between the complex, solvent molecules, and counterions. These interactions govern both the solubility of these complexes and the rates of reactions occurring within the host molecules and can be critical to catalytic and separation applications of host-guest systems. However, these interactions are challenging to detect using standard analytical chemistry techniques. Here, we quantify the hydration and ion pairing of a FeII4L4 coordination cage with a set of guest molecules having widely varying physicochemical properties. The impact of guest properties on host ion pairing and hydration was determined through microwave microfluidic measurements paired with principal component analysis (PCA). This analysis showed that introducing guest molecules into solution displaced counterions that were bound to the cage, and that the solvent solubility of the guest has the greatest impact on the solvent and ion-pairing dynamics surrounding the host. Specifically, we found that when we performed PCA of the measured equivalent circuit parameters and the solubility and dipole moment, we observed a high (>90%) explained variance for the first two principal components for each circuit parameter. We also observed that cage-counterion pairing is well-described by a single ion-pairing type, with a one-step reaction model independent of the type of cargo, and that the ion-pairing association constant is reduced for cargo with higher water solubility. Quantifying hydration and cage-counterion interactions is a critical step to building the next generation of design criteria for host-guest chemistries.
Collapse
Affiliation(s)
- Hugh P. Ryan
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Zachary S. Fishman
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Jacob T. Pawlik
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Angela Grommet
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Malgorzata Musial
- National
Institute of Standards and Technology Material Measurement Laboratory, 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - Felix Rizzuto
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - James C. Booth
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Christian J. Long
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Kathleen Schwarz
- National
Institute of Standards and Technology Material Measurement Laboratory, 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - Nathan D. Orloff
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| | - Jonathan R. Nitschke
- Cambridge
University Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Angela C. Stelson
- National
Institute of Standards and Technology Communications Technology Laboratory, 325 Broadway, Boulder, Colorado 80305, United States
| |
Collapse
|
4
|
Liu H, Guo C, Zhang Z, Mu C, Feng Q, Zhang M. Hexaphenyltriphenylene-Based Multicomponent Metallacages: Host-Guest Complexation for White-Light Emission. Chemistry 2023; 29:e202203926. [PMID: 36727501 DOI: 10.1002/chem.202203926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
A hexaphenyltriphenylene-based hexatopic pyridyl ligand is designed and used to prepare three hexagonal prismatic metallacages via metal-coordination-driven self-assembly. Owing to the planar conjugated structures of the hexaphenyltriphenylene skeleton, such metallacages show good host-guest complexation with a series of emissive dyes, which have been further used to tune their emission in solution. Interestingly, based on their complementary emission colors, white light emission is achieved in a mixture of the host metallacages and the guests.
Collapse
Affiliation(s)
- Haifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Escamilla P, Guerra WD, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo E. Metal-organic frameworks as chemical nanoreactors for the preparation of catalytically active metal compounds. Chem Commun (Camb) 2023; 59:836-851. [PMID: 36598064 DOI: 10.1039/d2cc05686k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the emergence of metal-organic frameworks (MOFs), a myriad of thrilling properties and applications, in a wide range of fields, have been reported for these materials, which mainly arise from their porous nature and rich host-guest chemistry. However, other important features of MOFs that offer great potential rewards have been only barely explored. For instance, despite the fact that MOFs are suitable candidates to be used as chemical nanoreactors for the preparation, stabilization and characterization of unique functional species, that would be hardly accessible outside the functional constrained space offered by MOF channels, only very few examples have been reported so far. In particular, we outline in this feature recent advances in the use of highly robust and crystalline oxamato- and oxamidato-based MOFs as reactors for the in situ preparation of well-defined catalytically active single atom catalysts (SACS), subnanometer metal nanoclusters (SNMCs) and supramolecular coordination complexes (SCCs). The robustness of selected MOFs permits the post-synthetic (PS) in situ preparation of the desired catalytically active metal species, which can be characterised by single-crystal X-ray diffraction (SC-XRD) taking advantage of its high crystallinity. The strategy highlighted here permits the always challenging large-scale preparation of stable and well-defined SACs, SNMCs and SCCs, exhibiting outstanding catalytic activities.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Walter D Guerra
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Antonio Leyva-Pérez
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
6
|
Zhang Z, Huang Y, Bai Q, Wu T, Jiang Z, Su H, Zong Y, Wang M, Su PY, Xie TZ, Wang P. Aggregation-Induced Emission Metallocuboctahedra for White Light Devices. JACS AU 2022; 2:2809-2820. [PMID: 36590262 PMCID: PMC9795569 DOI: 10.1021/jacsau.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Materials for organic light-emitting devices which exhibit superior emission properties in both the solution and solid states with a high fluorescence quantum yield have been extensively sought after. Herein, two metallocages, S1 and S2, were constructed, and both showed typical aggregation-induced emission (AIE) features with intense yellow fluorescence. By adding blue-emissive 9,10-dimethylanthracene, pure white light emission can be produced in the solution of S1 and S2. Furthermore, due to the remarkable AIE feature and good fluorescence quantum yield in the solid state, metallocages are highly emissive in the solid state and can be utilized to coat blue LED bulbs or integrate with blue-emitting chips to obtain white light. This study advances the usage of metallocages as practical solid-state fluorescent materials and provides a fresh perspective on highly emissive AIE materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Huang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Qixia Bai
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Tun Wu
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| | - Haoyue Su
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yingxin Zong
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Pei-Yang Su
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting-Zheng Xie
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| |
Collapse
|
7
|
Mozaceanu C, Solea AB, Taylor CGP, Sudittapong B, Ward MD. Disentangling contributions to guest binding inside a coordination cage host: analysis of a set of isomeric guests with differing polarities. Dalton Trans 2022; 51:15263-15272. [PMID: 36129351 PMCID: PMC9578013 DOI: 10.1039/d2dt02623f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of a set of three isomeric guests (1,2-, 1,3- and 1,4-dicyanobenzene, abbreviated DCB) inside an octanuclear cubic coordination cage host H (bearing different external substitutents according to solvent used) has been studied in water/dmso (98 : 2) and CD2Cl2. These guests have essentially identical molecular surfaces, volumes and external functional groups to interact with the cage interior surface; but they differ in polarity with dipole moments of ca. 7, 4 and 0 Debye respectively. In CD2Cl2 guest binding is weak but we observe a clear correlation of binding free energy with guest polarity, with 1,4-DCB showing no detectable binding by NMR spectroscopy but 1,2-DCB having −ΔG = 9 kJ mol−1. In water (containing 2% dmso to solubilise the guests) we see the same trend but all binding free energies are much higher due to an additional hydrophobic contribution to binding, with −ΔG varying from 16 kJ mol−1 for 1,4-DCB to 22 kJ mol−1 for 1,4-DCB: again we see an increase associated with guest polarity but the increase in −ΔG per Debye of dipole moment is around half what we observe in CD2Cl2 which we ascribe to the fact the more polar guests will be better solvated in the aqueous solvent. A van't Hoff analysis by variable-temperature NMR showed that the improvement in guest binding in water/dmso is entropy-driven, which suggests that the key factor is not direct electrostatic interactions between a polar guest and the cage surface, but the variation in guest desolvation across the series, with the more polar (and hence more highly solvated) guests having a greater favourable entropy change on desolvation. The three dicyanobenzene isomers have obvious similarities but differ in their dipole moment: effects on binding in a coordination cage host in different solvents are discussed.![]()
Collapse
Affiliation(s)
| | - Atena B Solea
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Burin Sudittapong
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
8
|
Woods CZ, Wu HT, Ngai C, da Camara B, Julian RR, Hooley RJ. Modifying the internal substituents of self-assembled cages controls their molecular recognition and optical properties. Dalton Trans 2022; 51:10920-10929. [PMID: 35796048 DOI: 10.1039/d2dt01451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled Fe4L6 cage complexes with variable internal functions can be synthesized from a 2,7-dibromocarbazole ligand scaffold, which orients six functional groups to the cage interior. Both ethylthiomethylether and ethyldimethylamino groups can be incorporated. The cages show strong ligand-centered fluorescence emission and a broad range of guest binding properties. Coencapsulation of neutral organic guests is favored in the larger, unfunctionalized cage cavity, whereas the thioether cage has a more sterically hindered cavity that favors 1 : 1 guest binding. Binding affinities up to 106 M-1 in CH3CN are seen. The dimethylamino cage is more complex, as the internal amines display partial protonation and can be deprotonated by amine bases. This amine cage displays affinity for a broad range of neutral organic substrates, with affinities and stoichiometries comparable to that of the similarly sized thioether cage. These species show that simple variations in ligand backbone allow variations in the number and type of functions that can be displayed towards the cavity of self-assembled hosts, which will have applications in biomimetic sensing, catalysis and molecular recognition.
Collapse
Affiliation(s)
- Connor Z Woods
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Hoi-Ting Wu
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Courtney Ngai
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Bryce da Camara
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Ryan R Julian
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| | - Richard J Hooley
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Ganta S, Borter JH, Drechsler C, Holstein JJ, Schwarzer D, Clever GH. Photoinduced host-to-guest electron transfer in a self-assembled coordination cage. Org Chem Front 2022; 9:5485-5493. [DOI: 10.1039/d2qo01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Light–powered host–guest charge transfer (HGCT) is shown for a coordination cage based on electron-rich phenothiazines, containing an anthraquinone acceptor as guest. Transient absorption spectroscopy and spectroelectrochemistry data is presented.
Collapse
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Jan-Hendrik Borter
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J. Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Dirk Schwarzer
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Guido H. Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Ludden MD, Taylor CGP, Tipping MB, Train JS, Williams NH, Dorrat JC, Tuck KL, Ward MD. Interaction of anions with the surface of a coordination cage in aqueous solution probed by their effect on a cage-catalysed Kemp elimination. Chem Sci 2021; 12:14781-14791. [PMID: 34820094 PMCID: PMC8597839 DOI: 10.1039/d1sc04887b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
An octanuclear M8L12 coordination cage catalyses the Kemp elimination reaction of 5-nitro-1,2-benzisoxazole (NBI) with hydroxide to give 2-cyano-4-nitrophenolate (CNP) as the product. In contrast to the previously-reported very efficient catalysis of the Kemp elimination reaction of unsubstituted benzisoxazole, which involves the substrate binding inside the cage cavity, the catalysed reaction of NBI with hydroxide is slower and occurs at the external surface of the cage, even though NBI can bind inside the cage cavity. The rate of the catalysed reaction is sensitive to the presence of added anions, which bind to the 16+ cage surface, displacing the hydroxide ions from around the cage which are essential reaction partners in the Kemp elimination. Thus we can observe different binding affinities of anions to the surface of the cationic cage in aqueous solution by the extent to which they displace hydroxide and thereby inhibit the catalysed Kemp elimination and slow down the appearance of CNP. For anions with a -1 charge the observed affinity order for binding to the cage surface is consistent with their ease of desolvation and their ordering in the Hofmeister series. With anions that are significantly basic (fluoride, hydrogen carbonate, carboxylates) the accumulation of the anion around the cage surface accelerates the Kemp elimination compared to the background reaction with hydroxide, which we ascribe to the ability of these anions to participate directly in the Kemp elimination. This work provides valuable mechanistic insights into the role of the cage in co-locating the substrate and the anionic reaction partners in a cage-catalysed reaction.
Collapse
Affiliation(s)
- Michael D Ludden
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Max B Tipping
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Jennifer S Train
- Department of Chemistry, University of Sheffield Sheffield S3 7HF UK
| | | | - Jack C Dorrat
- School of Chemistry, Monash University Melbourne VIC3800 Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University Melbourne VIC3800 Australia
| | - Michael D Ward
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
11
|
Abstract
New synthetic routes are presented to derivatives of a (known) M8L12 cubic coordination cage in which a range of different substituents are attached at the C4 position of the pyridyl rings at either end of the bis(pyrazolyl-pyridine) bridging ligands. The substituents are (i) –CN groups (new ligand LCN), (ii) –CH2OCH2–CCH (containing a terminal alkyne) groups (new ligand LCC); and (iii) –(CH2OCH2)3CH2OMe (tri-ethyleneglycol monomethyl ether) groups (new ligand LPEG). The resulting functionalised ligands combine with M2+ ions (particularly Co2+, Ni2+, Cd2+) to give isostructural [M8L12]16+ cage cores bearing 24 external functional groups; the cages based on LCN (with M2+ = Cd2+) and LCC (with M2+ = Ni2+) have been crystallographically characterised. The value of these is twofold: (i) exterior nitrile or alkene substituents can provide a basis for further synthetic opportunities via ‘Click’ reactions allowing in principle a diverse range of functionalisation of the cage exterior surface; (ii) the exterior –(CH2OCH2)3CH2OMe groups substantially increase cage solubility in both water and in organic solvents, allowing binding constants of cavity-binding guests to be measured under an increased range of conditions.
Collapse
|
12
|
Ludden MD, Taylor CGP, Ward MD. Orthogonal binding and displacement of different guest types using a coordination cage host with cavity-based and surface-based binding sites. Chem Sci 2021; 12:12640-12650. [PMID: 34703549 PMCID: PMC8494021 DOI: 10.1039/d1sc04272f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The octanuclear Co(ii) cubic coordination cage system H (or HW if it bears external water-solubilising substituents) has two types of binding site for guests. These are (i) the partially-enclosed central cavity where neutral hydrophobic organic species can bind, and (ii) the six 'portals' in the centres of each of the faces of the cubic cage where anions bind via formation of a network of CH⋯X hydrogen bonds between the anion and CH units on the positively-charged cage surface, as demonstrated by a set of crystal structures. The near-orthogonality of these guest binding modes provides the basis for an unusual dual-probe fluorescence displacement assay in which either a cavity-bound fluorophore (4-methyl-7-amino-coumarin, MAC; λem = 440 nm), or a surface-bound anionic fluorophore (fluorescein, FLU; λem = 515 nm), is displaced and has its emission ‘switched on’ according to whether the analyte under investigation is cavity-binding, surface binding, or a combination of both. A completely orthogonal system is demonstrated based using a Hw/MAC/FLU combination: addition of the anionic analyte ascorbate displaced solely FLU from the cage surface, increasing the 515 nm (green) emission component, whereas addition of a neutral hydrophobic guest such as cyclooctanone displaced solely MAC from the cage central cavity, increasing the 440 nm (blue) emission component. Addition of chloride results in some release of both components, and an intermediate colour change, as chloride is a rare example of a guest that shows both surface-binding and cavity-binding behaviour. Thus we have a colourimetric response based on differing contributions from blue and green emission components in which the specific colour change signals the binding mode of the analyte. Addition of a fixed red emission component from the complex [Ru(bipy)3]2+ (Ru) provides a baseline colour shift of the overall colour of the luminescence closer to neutral, meaning that different types of guest binding result in different colour changes which are easily distinguishable by eye. Orthogonal binding of neutral or anionic fluorophores to the cavity or surface, respectively, of a coordination cage host allows a dual-probe displacement assay which gives a different fluorescence colorimetric response according to where analyte species bind.![]()
Collapse
Affiliation(s)
- Michael D Ludden
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Michael D Ward
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
13
|
Ashbaugh HS, Gibb BC, Suating P. Cavitand Complexes in Aqueous Solution: Collaborative Experimental and Computational Studies of the Wetting, Assembly, and Function of Nanoscopic Bowls in Water. J Phys Chem B 2021; 125:3253-3268. [PMID: 33651614 PMCID: PMC8040017 DOI: 10.1021/acs.jpcb.0c11017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Water is the dominant liquid on Earth. Despite this, the main focus of supramolecular chemistry research has been on binding and assembly events in organic solvents. This arose because it is more straightforward to synthesize organic-media-soluble hosts and because of the relative simplicity of organic solvents compared to water. Nature, however, relies on water as a solvent, and spurred by this fact, supramolecular chemists have recently been making forays into the aqueous domain to understand water-mediated non-covalent interactions. These studies can benefit from the substantial understanding of the hydrophobic effect and electrostatic interactions developed by physical chemists. Nearly 20 years ago, the Gibb group first synthesized a class of water-soluble host molecules, the deep-cavity cavitands, that possess non-polar pockets that readily bind non-polar moieties in aqueous solution and are capable of assembling into a wide range of complexes with distinct stoichiometries. As such, these amphipathic host species are ideal platforms for studying the role of negatively curved features on guest complexation and the structural requirements for guided assembly processes driven by the hydrophobic effect. Here we review the collaborative experimental and computational investigations between Gibb and Ashbaugh over the past 10 years exploring questions including the following: How does water wet/solvate the non-polar surfaces of non-polar pockets? How does this wetting control the binding of non-polar guests? How does wetting affect the binding of anionic species? How does the nature and size of a guest size impact the assembly of cavitand hosts into multimeric capsular complexes? What are the conformational motifs of guests packed within the confines of capsular complexes? How might the electrostatic environment engendered by hosts impact the properties and reactivity of internalized guests?
Collapse
Affiliation(s)
- Henry S. Ashbaugh
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C. Gibb
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Paolo Suating
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
14
|
Strategies for the construction of supramolecular assemblies from poly-NHC ligand precursors. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9937-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Cheng HF, Paul MK, d'Aquino AI, Stern CL, Mirkin CA. Multi-State Dynamic Coordination Complexes Interconverted through Counterion-Controlled Phase Transfer. Inorg Chem 2021; 60:4755-4763. [PMID: 33719417 DOI: 10.1021/acs.inorgchem.0c03708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied a series of dynamic weak-link approach (WLA) complexes that can be shuttled between two immiscible solvents and switched between two structural states via ion exchange. Here, we established that hydrophobic anions transfer cationic, amphiphilic complexes from the aqueous phase to the organic phase, while a chloride source reverses the process. As a result of the dynamic metal coordination properties of WLA complexes, the denticity of these complexes (mono- to bi-) can be modulated as they partition into different phases. In addition, we discovered that heteroligated complexes bearing ligands of different donor strengths preferentially rearrange into two homoligated complexes that are phase-partitioned to maximize the number of stronger coordination bonds. This behavior is not observed in systems with one solvent, highlighting the dynamic and stimuli-responsive nature of hemilabile ligands in a multiphasic solvent environment. Taken together, this work shows that the highly reconfigurable WLA modality can enable the design of biphasic reaction networks or chemical separations driven by straightforward salt metathesis reactions.
Collapse
Affiliation(s)
- Ho Fung Cheng
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - McKinley K Paul
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Andrea I d'Aquino
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Charlotte L Stern
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
16
|
Ludden MD, Ward MD. Outside the box: quantifying interactions of anions with the exterior surface of a cationic coordination cage. Dalton Trans 2021; 50:2782-2791. [PMID: 33566043 DOI: 10.1039/d0dt04211k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a study of the binding of anions to the surface of an octanuclear coordination cage HW, which carries a 16+ charge, in aqueous solution. Anionic aromatic fluorophores such as fluorescein (and derivatives) and hydroxypyrene tris-sulfonate (HPTS) bind strongly to an extent depending on their charge and hydrophobicity. Job plots indicated binding of up to six such fluorescent anions to HW, implying that one anion can bind to each face of the cubic cage, as previously demonstrated crystallographically with small anions such as halides. The quenching of these fluorophores on association with the cage provides the basis of a fluorescence displacement assay to investigate binding of other anions: addition of analyte (organic or inorganic) anions in titration experiments to an HW/fluorescein combination results in displacement and restoration of the fluorescence from the bound fluorescein, allowing calculation of 1 : 1 binding constants for the HW/anion combinations. Relative binding affinities of simple anions for the cage surface can be approximately rationalised on the basis of ease of desolvation (e.g. F- < Cl- < Br-), electrostatic factors given the 16+ charge on the cage (monoanions < dianions), and extent of hydrophobic surface. The interaction of a di-anionic pH indicator (bromocresol purple) with HW results in a pKa shift, with the surface-bound di-anionic form stabilised by approximately 1 pKa unit compared to the non-bound neutral form due to the charge on the cage.
Collapse
Affiliation(s)
- Michael D Ludden
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
17
|
Mishra I, Bhol M, Kalimuthu P, Sathiyendiran M. Emerging Spacers-Based Ligands for Supramolecular Coordination Complexes. CHEM REC 2021; 21:594-614. [PMID: 33615668 DOI: 10.1002/tcr.202000150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/01/2023]
Abstract
The design and self-assembly of supramolecular coordination complexes (SCCs) i. e., discrete cyclic metalloarchitectures such as cycles, cages, mesocates, and helicates with desired size, shape, and properties have been increasing exponentially owing to their potential applications in molecular sensors, molecular cargos, molecular recognition, and catalysis. The introduction of the organic motifs and metal complexes as a spacer provides functionality to the metalloarchitecture. This review mainly focusses on newly evolving spacer based ligands employed to yield simple to high-order metallosupramolecular assemblies using straight-forward approaches. The new spacers including corannulene, organic cyclic framework, bicyclic organic motifs, aliphatic chain, metalloligands, triarylboron, BODIPY, azaphosphatrane, phosphine, and thio/selenophosphates offer a great set of properties and in-built functionalities to the metalloarchitectures which are discussed in this review.
Collapse
Affiliation(s)
- Isha Mishra
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Mamina Bhol
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Palanisamy Kalimuthu
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302, Tamil Nadu, India
| | | |
Collapse
|
18
|
Zhu J, Bošković F, Nguyen BNT, Nitschke JR, Keyser UF. Kinetics of Toehold-Mediated DNA Strand Displacement Depend on Fe II4L 4 Tetrahedron Concentration. NANO LETTERS 2021; 21:1368-1374. [PMID: 33508195 PMCID: PMC7886027 DOI: 10.1021/acs.nanolett.0c04125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The toehold-mediated strand displacement reaction (SDR) is a powerful enzyme-free tool for molecular manipulation, DNA computing, signal amplification, etc. However, precise modulation of SDR kinetics without changing the original design remains a significant challenge. We introduce a new means of modulating SDR kinetics using an external stimulus: a water-soluble FeII4L4 tetrahedral cage. Our results show that the presence of a flexible phosphate group and a minimum toehold segment length are essential for FeII4L4 binding to DNA. SDRs mediated by toehold ends in different lengths (3-5) were investigated as a function of cage concentration. Their reaction rates all first increased and then decreased as cage concentration increased. We infer that cage binding on the toehold end slows SDR, whereas the stabilization of intermediates that contain two overhangs accelerates SDR. The tetrahedral cage thus serves as a versatile tool for modulation of SDR kinetics.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of
Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United
Kingdom
| | - Filip Bošković
- Cavendish Laboratory, University of
Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United
Kingdom
| | - Bao-Nguyen T. Nguyen
- Department of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of
Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United
Kingdom
| |
Collapse
|
19
|
Zhang D, Ronson TK, Zou YQ, Nitschke JR. Metal–organic cages for molecular separations. Nat Rev Chem 2021; 5:168-182. [PMID: 37117530 DOI: 10.1038/s41570-020-00246-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
Separation technology is central to industries as diverse as petroleum, pharmaceuticals, mining and life sciences. Metal-organic cages, a class of molecular containers formed via coordination-driven self-assembly, show great promise as separation agents. Precise control of the shape, size and functionalization of cage cavities enables them to selectively bind and distinguish a wide scope of physicochemically similar substances in solution. Extensive research has, thus, been performed involving separations of high-value targets using coordination cages, ranging from gases and liquids to compounds dissolved in solution. Enantiopure capsules also show great potential for the separation of chiral molecules. The use of crystalline cages as absorbents, or the incorporation of cages into polymer membranes, could increase the selectivity and efficiency of separation processes. This Review covers recent progress in using metal-organic cages to achieve separations, with discussion of the many methods of using them in this context. Challenges and potential future developments are also discussed.
Collapse
|
20
|
Ji C, Wang G, Wang H. Progress in Metal-Organic Supramolecular System Based on Subcomponent Self-Assembly. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Pilgrim BS, Champness NR. Metal-Organic Frameworks and Metal-Organic Cages - A Perspective. Chempluschem 2020; 85:1842-1856. [PMID: 32833342 DOI: 10.1002/cplu.202000408] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/31/2020] [Indexed: 12/20/2022]
Abstract
The fields of metal-organic cages (MOCs) and metal-organic frameworks (MOFs) are both highly topical and continue to develop at a rapid pace. Despite clear synergies between the two fields, overlap is rarely observed. This article discusses the peculiarities and similarities of MOCs and MOFs in terms of synthetic strategies and approaches to system characterisation. The stability of both classes of material is compared, particularly in relation to their applications in guest storage and catalysis. Lastly, suggestions are made for opportunities for each field to learn and develop in partnership with the other.
Collapse
Affiliation(s)
- Ben S Pilgrim
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Neil R Champness
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Interactions of Small-Molecule Guests with Interior and Exterior Surfaces of a Coordination Cage Host. CHEMISTRY 2020. [DOI: 10.3390/chemistry2020031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coordination cages are well-known to act as molecular containers that can bind small-molecule guests in their cavity. Such cavity binding is associated with interactions of the guests with the surrounding set of surfaces that define the cavity; a guest that is a good fit for the cavity will have many favourable interactions with the interior surfaces of the host. As cages have exterior as well as interior surfaces, possibilities also exist for ‘guests’ that are not well-bound in the cavity to interact with the exterior surface of the cage where spatial constraints are fewer. In this paper, we report a combined solid-state and solution study using an octanuclear cubic M8L12 coordination cage which illustrates the occurrence of both types of interaction. Firstly, crystallographic studies show that a range of guests bind inside the cavity (either singly or in stacked pairs) and/or interact with the cage exterior surface, depending on their size. Secondly, fluorescence titrations in aqueous solution show how some flexible aromatic disulfides show two separate types of interaction with the cage, having different spectroscopic consequences; we ascribe this to separate interactions with the exterior surface and the interior surface of the host cage with the former having a higher binding constant. Overall, it is clear that the idea of host/guest interactions in molecular containers needs to take more account of external surface interactions as well as the obvious cavity-based binding.
Collapse
|
23
|
Nguyen BNT, Grommet AB, Tron A, Georges MCA, Nitschke JR. Heat Engine Drives Transport of an Fe II 4 L 4 Cage and Cargo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907241. [PMID: 32236986 DOI: 10.1002/adma.201907241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The directed motion of species against a chemical potential gradient is a fundamental feature of living systems, underpinning processes that range from transport through cell membranes to neurotransmission. The development of artificial active cargo transport could enable new modes of chemical purification and pumping. Here, a heat engine is described that drives chemical cargo between liquid phases to generate a concentration gradient. The heat engine, composed of a functionalized FeII 4 L4 coordination cage, is grafted with oligoethylene glycol imidazolium chains. These chains undergo a conformational change upon heating, causing the cage and its cargo to reversibly transfer between aqueous and organic phases. Furthermore, sectional heating and cooling allow for the cage to traverse multiple phase boundaries, allowing for longer-distance transport than would be possible using a single pair of phases.
Collapse
Affiliation(s)
| | - Angela B Grommet
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Arnaud Tron
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
24
|
Fulong CRP, Guardian MGE, Aga DS, Cook TR. A Self-Assembled Iron(II) Metallacage as a Trap for Per- and Polyfluoroalkyl Substances in Water. Inorg Chem 2020; 59:6697-6708. [DOI: 10.1021/acs.inorgchem.9b03405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cressa Ria P. Fulong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mary Grace E. Guardian
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
25
|
Lu Z, Ronson TK, Nitschke JR. Reversible reduction drives anion ejection and C 60 binding within an Fe II 4L 6 cage. Chem Sci 2019; 11:1097-1101. [PMID: 34084365 PMCID: PMC8146419 DOI: 10.1039/c9sc05728e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FeII4L6 tetrahedral cage 1 was prepared from a redox-active dicationic naphthalenediimide (NDI) ligand. The +20 charge of the cage makes it a good host for anionic guests, with no binding observed for neutral aromatic molecules. Following reduction by Cp2Co, the cage released anionic guests; subsequent oxidation by AgNTf2 led to re-uptake of anions. In its reduced form, however, 1 was observed to bind neutral C60. The fullerene guest was subsequently ejected following cage re-oxidation. The guest release process was found to be facilitated by anion-mediated transport from organic to aqueous solution. Cage 1 thus employs electron transfer as a stimulus to control the uptake and release of both neutral and charged guests, through distinct pathways. FeII4L6 cage 1 binds anionic guests but not neutral guests. In its reduced form, the cage can bind neutral C60. Reduction and oxidation of the cage could thus be used as a stimulus to control the uptake and release of both neutral and charged guests.![]()
Collapse
Affiliation(s)
- Zhenpin Lu
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
26
|
Zhang D, Ronson TK, Lavendomme R, Nitschke JR. Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages. J Am Chem Soc 2019; 141:18949-18953. [PMID: 31729877 PMCID: PMC6900757 DOI: 10.1021/jacs.9b10741] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Here we report a new supramolecular strategy for the
selective
separation of specific polycyclic aromatic hydrocarbons (PAHs) from
mixtures. The use of a triethylene glycol-functionalized formylpyridine
subcomponent allowed the construction of an FeII4L4 tetrahedron 1 that was capable of transferring
between water and nitromethane layers, driven by anion metathesis.
Cage 1 selectively encapsulated coronene from among a
mixture of eight different types of PAHs in nitromethane, bringing
it into a new nitromethane phase by transiting through an intermediate
water phase. The bound coronene was released from 1 upon
addition of benzene, and both the cage and the purified coronene could
be separated via further phase separation.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Roy Lavendomme
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
27
|
Grancha T, Carné-Sánchez A, Hernández-López L, Albalad J, Imaz I, Juanhuix J, Maspoch D. Phase Transfer of Rhodium(II)-Based Metal–Organic Polyhedra Bearing Coordinatively Bound Cargo Enables Molecular Separation. J Am Chem Soc 2019; 141:18349-18355. [DOI: 10.1021/jacs.9b10403] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thais Grancha
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jorge Albalad
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Judith Juanhuix
- ALBA Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
28
|
Measuring ion-pairing and hydration in variable charge supramolecular cages with microwave microfluidics. Commun Chem 2019. [DOI: 10.1038/s42004-019-0157-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
29
|
Zhang SY, Kochovski Z, Lee HC, Lu Y, Zhang H, Zhang J, Sun JK, Yuan J. Ionic organic cage-encapsulating phase-transferable metal clusters. Chem Sci 2019; 10:1450-1456. [PMID: 30809362 PMCID: PMC6354838 DOI: 10.1039/c8sc04375b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 01/11/2023] Open
Abstract
Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal-ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min-1.
Collapse
Affiliation(s)
- Su-Yun Zhang
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Zdravko Kochovski
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
| | - Hui-Chun Lee
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Hemin Zhang
- School of Energy and Chemical Engineering , Ulsan National Institute of Science & Technology (UNIST) , Ulsan 689-798 , Republic of Korea
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science , Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , P. R. China .
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry , Stockholm University , 10691 Stockholm , Sweden .
| |
Collapse
|
30
|
Reuther JF, Dahlhauser SD, Anslyn EV. Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly. Angew Chem Int Ed Engl 2019; 58:74-85. [PMID: 30098086 PMCID: PMC10851707 DOI: 10.1002/anie.201808371] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 11/08/2022]
Abstract
Dynamic assembly of macromolecules in biological systems is one of the fundamental processes that facilitates life. Although such assembly most commonly uses noncovalent interactions, a set of dynamic reactions involving reversible covalent bonding is actively being exploited for the design of functional materials, bottom-up assembly, and molecular machines. This Minireview highlights recent implementations and advancements in the area of tunable orthogonal reversible covalent (TORC) bonds for these purposes, and provides an outlook for their expansion, including the development of synthetically encoded polynucleotide mimics.
Collapse
Affiliation(s)
- James F. Reuther
- Department of Chemistry, University of Texas at Austin Austin, TX (USA)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA (USA)
| | | | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin Austin, TX (USA)
| |
Collapse
|
31
|
McConnell AJ, Haynes CJE, Grommet AB, Aitchison CM, Guilleme J, Mikutis S, Nitschke JR. Orthogonal Stimuli Trigger Self-Assembly and Phase Transfer of Fe II4L 4 Cages and Cargoes. J Am Chem Soc 2018; 140:16952-16956. [PMID: 30465601 DOI: 10.1021/jacs.8b11324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two differently protected aldehydes, A and B, were demonstrated to deprotect selectively through the application of light and heat, respectively. In the presence of iron(II) and a triamine, two distinct FeII4L4 cages, 1 and 2, were thus observed to form from the deprotected A and B, respectively. The alkyl tails of B and 2 render them preferentially soluble in cyclopentane, whereas A and 1 remain in acetonitrile. The stimulus applied (either light or heat) thus determines the outcome of self-assembly and dictates whether the cage and its ferrocene cargo remain in acetonitrile, or transport into cyclopentane. Cage self-assembly and cargo transport between phases can in this fashion be programmed using orthogonal stimuli.
Collapse
Affiliation(s)
- Anna J McConnell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.,Otto Diels Institute of Organic Chemistry, Kiel University , Otto-Hahn-Platz 4 , Kiel D-24098 , Germany
| | - Cally J E Haynes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Angela B Grommet
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Catherine M Aitchison
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Julia Guilleme
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Sigitas Mikutis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
32
|
Reuther JF, Dahlhauser SD, Anslyn EV. Einstellbare orthogonale reversible kovalente Bindungen: dynamische Kontrolle über die molekulare Selbstorganisation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808371] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- James F. Reuther
- Department of Chemistry University of Texas at Austin Austin TX USA
- Department of Chemistry University of Massachusetts Lowell Lowell MA USA
| | | | - Eric V. Anslyn
- Department of Chemistry University of Texas at Austin Austin TX USA
| |
Collapse
|
33
|
Abstract
Coordination-driven self-assembly can produce large, symmetrical, hollow cages that are synthetically easy to access. The functions provided by these aesthetically attractive structures provide a driving force for their development, enabling practical applications. For instance, cages have provided new methods of molecular recognition, chirality sensing, separations, stabilization of reactive species, and catalysis. We have fruitfully employed subcomponent self-assembly to prepare metal-organic capsules from simple building blocks via the simultaneous formation of dynamic coordinative (N→metal) and covalent (N═C) bonds. Design strategies employ multidentate pyridyl-imine ligands to define either the edges or the faces of polyhedral structures. Octahedral metal ions, such as FeII, CoII, NiII, ZnII, and CdII, constitute the vertices. The generality of this technique has enabled the preparation of capsules with diverse three-dimensional structures. This Account highlights how fundamental investigations into the host-guest chemistry of capsules prepared through subcomponent self-assembly have led to the design of useful functions and new applications. We start by discussing simple host-guest systems involving a single capsule and continue to systems that include multiple capsules and guests, whose interactions give rise to complex functional behavior. Many of the capsules presented herein bind varied neutral guests, including aromatic or aliphatic molecules, biomolecules, and fullerenes. Binding selectivity is influenced by solvent effects, weak non-covalent interactions between hosts and guests, and the size, shape, flexibility, and degree of surface enclosure of the inner spaces of the capsules. Some hosts are able to adaptively rearrange structurally or express a different ratio of cage diastereomers to optimize the guest binding ability of the system. In other cases the bound guest can be either protected from degradation or catalytically transformed through encapsulation. Other capsules bind anions, most often in organic solvents and occasionally in water. Complexation is usually driven by a combination of electrostatic interactions, hydrogen bonding, and coordination to additional metal centers. Anion binding can also induce cage diastereomeric reconfiguration in a similar manner to some neutral guests, illustrating the general ability of subcomponent self-assembled capsules to respond to stimuli due to their dynamic nature. Capsules have been developed as supramolecular extractants for the selective removal of anions from water and as channels for transporting anions through planar lipid bilayers and into vesicles. Different capsules may work together, allowing for functions more complex than those achievable within single host-guest systems. Incorporation of stimuli-responsive capsules into multicage systems allows individual capsules within the network to be addressed and may allow signals to be passed between network members. We first present strategies to achieve selective guest binding and controlled guest release using mixtures of capsules with varied affinities for guests and different stabilities toward external stimuli. We then discuss strategies to separate capsules with encapsulated cargos via selective phase transfer, where the solvent affinities of capsules change as a result of anion exchange or post-assembly modification. The knowledge gained from these multicage systems may lead to the design of synthetic systems that can perform complex tasks in biomimetic fashion, paving the way for new supramolecular technologies to address practical problems.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
34
|
Grommet AB, Hoffman JB, Percástegui EG, Mosquera J, Howe DJ, Bolliger JL, Nitschke JR. Anion Exchange Drives Reversible Phase Transfer of Coordination Cages and Their Cargoes. J Am Chem Soc 2018; 140:14770-14776. [DOI: 10.1021/jacs.8b07900] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Angela B. Grommet
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jack B. Hoffman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Edmundo G. Percástegui
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jesús Mosquera
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Duncan J. Howe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeanne L. Bolliger
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
35
|
Bravin C, Badetti E, Puttreddy R, Pan F, Rissanen K, Licini G, Zonta C. Binding Profiles of Self-Assembled Supramolecular Cages from ESI-MS Based Methodology. Chemistry 2018; 24:2936-2943. [DOI: 10.1002/chem.201704725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Carlo Bravin
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| | - Elena Badetti
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| | - Rakesh Puttreddy
- Nanoscience Center; Department of Chemistry; University of Jyvaskyla; P.O. Box 35 40014 Jyvaskyla Finland
| | - Fangfang Pan
- Nanoscience Center; Department of Chemistry; University of Jyvaskyla; P.O. Box 35 40014 Jyvaskyla Finland
| | - Kari Rissanen
- Nanoscience Center; Department of Chemistry; University of Jyvaskyla; P.O. Box 35 40014 Jyvaskyla Finland
| | - Giulia Licini
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| | - Cristiano Zonta
- Department of Chemical Sciences; University of Padova; via Marzolo 1 35131 Padova (PD) Italy
| |
Collapse
|
36
|
Phan NM, Zakharov LN, Johnson DW. Copper(ii) serves as an efficient additive for metal-directed self-assembly of over 20 thiacyclophanes. Chem Commun (Camb) 2018; 54:13419-13422. [DOI: 10.1039/c8cc08095j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2+ salts are presented as an alternative to previously reported pnictogen additives in the self-assembly of 23 different thiacyclophanes.
Collapse
Affiliation(s)
- Ngoc-Minh Phan
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon
- Eugene
- USA
| | - Lev N. Zakharov
- CAMCOR – Center for Advanced Materials Characterization in Oregon, University of Oregon
- Eugene
- USA
| | - Darren W. Johnson
- Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon
- Eugene
- USA
| |
Collapse
|
37
|
Wang H, Xu X, Jiang Y, Yao P, Li B, Zou H, Zhou J, Chen Z. Synthesis, structure and magnetic properties of two mixed-valence icosanuclear nanocages. Dalton Trans 2018; 47:15141-15147. [DOI: 10.1039/c8dt03444c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a new type of mixed-valence icosanuclear nanocages featuring cubic cage cores with sulphate anions over the cage windows.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xiaoling Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yimin Jiang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Pengfei Yao
- College of Chemistry and Environmental Engineering
- Baise University
- Baise
- P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- P. R. China
| | - Huahong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Jinglin Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zilu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
38
|
Struch N, Topić F, Schnakenburg G, Rissanen K, Lützen A. Electron-Deficient Pyridylimines: Versatile Building Blocks for Functional Metallosupramolecular Chemistry. Inorg Chem 2017; 57:241-250. [DOI: 10.1021/acs.inorgchem.7b02412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niklas Struch
- Kekulé-Institut
für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Filip Topić
- University of Jyväskylä, Department of
Chemistry, Nanoscience Center, P.O. Box
35, 40014 Jyväskylä, Finland
| | - Gregor Schnakenburg
- Institut
für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Kari Rissanen
- University of Jyväskylä, Department of
Chemistry, Nanoscience Center, P.O. Box
35, 40014 Jyväskylä, Finland
| | - Arne Lützen
- Kekulé-Institut
für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| |
Collapse
|
39
|
Zhang M, Xu H, Wang M, Saha ML, Zhou Z, Yan X, Wang H, Li X, Huang F, She N, Stang PJ. Platinum(II)-Based Convex Trigonal-Prismatic Cages via Coordination-Driven Self-Assembly and C 60 Encapsulation. Inorg Chem 2017; 56:12498-12504. [PMID: 28945436 DOI: 10.1021/acs.inorgchem.7b01967] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of three-dimensional (3D) supramolecular coordination complexes is of great interest from both fundamental and application points of view because these materials are useful in molecular catalysis, separation and purification, sensing, etc. Herein, we describe the synthesis of two Klärner's molecular-clip-based tetrapyridyl donors, which possess a C-shaped structure as shown by X-ray analysis, and subsequently use them to prepare four convex trigonal-prismatic cages via coordination-driven self-assembly with two 180° diplatinum(II) acceptors. The cages are fully characterized by multinuclear NMR (31P and 1H) analysis, diffusion-ordered spectroscopy, electrospray ionization time-of-flight mass spectrometry, and UV/vis absorption spectroscopy. Moreover, the incorporation of molecular-clip-based ligands provides these cages with free cavities to encapsulate fullerene C60 via aromatic interactions, which may be useful for fullerene separation and purification. The studies described herein enlarge the scope of the platinum(II)-based directional bonding approach in the preparation of curved 3D metallacages and their host-guest chemistry.
Collapse
Affiliation(s)
- Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, P. R. China.,Department of Chemistry, University of Utah , 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Hongchuang Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun, Jilin 130012, P. R. China
| | - Manik Lal Saha
- Department of Chemistry, University of Utah , 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah , 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Xuzhou Yan
- Department of Chemistry, University of Utah , 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Heng Wang
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University , Hangzhou 310027, P. R. China
| | - Nengfang She
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Peter J Stang
- Department of Chemistry, University of Utah , 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
40
|
Struch N, Frömbgen C, Schnakenburg G, Lützen A. Diastereoselective Formation of Homochiral Helicates through Subcomponent Self-Assembly. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niklas Struch
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Christopher Frömbgen
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Arne Lützen
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
41
|
Bravin C, Badetti E, Scaramuzzo FA, Licini G, Zonta C. Triggering Assembly and Disassembly of a Supramolecular Cage. J Am Chem Soc 2017; 139:6456-6460. [DOI: 10.1021/jacs.7b02341] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Carlo Bravin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Elena Badetti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | | | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| |
Collapse
|