1
|
Wang Z, Zhang Z, Liu R, Ren X, Liu S, Huang Y. Synthesis of Chiral 3-Piperidin-2-ones and 3-Piperidines via Ni-Catalyzed Reductive Coupling. Org Lett 2025; 27:5087-5093. [PMID: 40358021 DOI: 10.1021/acs.orglett.5c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Herein, an approach to a wide range of chiral 3-substituted δ-lactams from reductive coupling of Csp2-hybridized organohalides and 3-chloro-δ-lactams was described, and the products are versatile precursors for accessing enantioenriched 3-substituted piperidines. The utility of the reaction was highlighted by the economic synthesis of the chiral precursors of Preclamol and Niraparib. Notably, the modified chiral Bilm ligands were found to be the key factor for the reactivity and enantioselectivity.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhuo Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rui Liu
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaolin Ren
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Song Liu
- Department of Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Huang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Zhang X, Hong Y, Zou G. Liquid-Assisted Grinding Enables Efficient Ni-Catalyzed, Mn-Mediated Denitrogenative Cross-Electrophile Coupling of Benzotriazinones with Benzyl Chlorides. Molecules 2025; 30:1060. [PMID: 40076285 PMCID: PMC11901950 DOI: 10.3390/molecules30051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
An efficient and air-tolerant Ni-catalyzed denitrogenative cross-electrophile coupling of benzotriazinones with benzyl chlorides has been developed via liquid-assisted grinding by using Mn powders as reductant and DMF as assisting liquid in the presence of anhydrous calcium chloride. Scope and limitations of the protocol to access diarylmethanes have been demonstrated with more than 20 examples, showing acceptable tolerance to functional group and steric hindrance. Although electron-withdrawing substituents on benzotriazinone or benzyl counterparts decrease the yields significantly, a series of N-alkyl-2-benzylbenzamides, diarylmethanes bearing an ortho-carbamoyl aryl group, could be obtained in modest to good yields.
Collapse
Affiliation(s)
| | | | - Gang Zou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China; (X.Z.); (Y.H.)
| |
Collapse
|
3
|
Hernández-Mejías Á, Shimozono AM, Hazra A, Richter S, Tong Z, Langille NF, Quasdorf K, Parsons AT, Sigman MS, Reisman SE. Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions. J Am Chem Soc 2025; 147:3468-3477. [PMID: 39807561 PMCID: PMC11783535 DOI: 10.1021/jacs.4c14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of meso-anhydrides. When secondary benzylic electrophiles are employed, doubly stereoselective acyl cross-coupling proceeds to give ketone products with catalyst control over three newly formed stereogenic centers. Alternatively, the use of primary alkyl halides in the presence of an additional halogen atom transfer catalyst results in decarbonylative alkylation to give enantioenriched β-alkyl acids. Analysis of reaction rates for a range of both catalysts and substrates supports the notion that tuning the different electrophile activation steps with the two catalysts is required for enhanced reaction performance. These studies illustrate how reaction design can diverge a common Ni-acyl intermediate to either acyl or decarbonylative coupling products and highlight how dual ligand systems can be used to engage unactivated alkyl halides in Ni-catalyzed asymmetric reductive coupling.
Collapse
Affiliation(s)
- Ángel
D. Hernández-Mejías
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander M. Shimozono
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Avijit Hazra
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sven Richter
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhengjia Tong
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Neil F. Langille
- Drug
Substance Technologies − Synthetics, Amgen, Inc., 360 Binney
St, Cambridge, Massachusetts 02142, United States
| | - Kyle Quasdorf
- Drug
Substance Technologies − Synthetics, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320 United States
| | - Andrew T. Parsons
- Drug
Substance Technologies − Synthetics, Amgen, Inc., 360 Binney
St, Cambridge, Massachusetts 02142, United States
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Wang YZ, Sun B, Guo JF, Zhu XY, Gu YC, Han YP, Ma C, Mei TS. Enantioselective reductive cross-couplings to forge C(sp 2)-C(sp 3) bonds by merging electrochemistry with nickel catalysis. Nat Commun 2025; 16:1108. [PMID: 39875390 PMCID: PMC11775263 DOI: 10.1038/s41467-025-56377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability. The combination of cyclic voltammetry analysis with electrode potential studies suggests that NiI species activate aryl halides via oxidative addition and alkyl chlorides via single electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
5
|
Kadarauch M, Moss TA, Phipps RJ. Intermolecular Asymmetric Arylative Dearomatization of 1-Naphthols. J Am Chem Soc 2024; 146:34970-34978. [PMID: 39631941 DOI: 10.1021/jacs.4c14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arylative dearomatization forms quaternary stereocenters in cyclic systems with the concomitant introduction of an aromatic ring. Pd-catalyzed arylative dearomatization, which uses conditions analogous to cross-coupling, has emerged as a powerful method in an intramolecular context. But translating this from intramolecular cyclizations to an intermolecular process has proven extremely challenging: examples are scarce, and those that exist have not been rendered enantioselective, despite the potential for broad application in medicinal chemistry and natural product synthesis. We describe a strategy that utilizes attractive interactions between the ligand and substrate to overcome this challenge and promote intermolecular, highly enantioselective arylative dearomatization of naphthols using a broad range of aryl bromide electrophiles. Crucial to success is the use of the readily accessed sulfonated chiral phosphine sSPhos, which we believe engages in attractive electrostatic interactions with the substrate. Not only does sSPhos control enantioselectivity but it also drastically accelerates the reaction, most likely by facilitating the challenging palladation step that initiates dearomatization.
Collapse
Affiliation(s)
- Max Kadarauch
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Thomas A Moss
- Oncology Medicinal Chemistry, R&D AstraZeneca, The Discovery Centre (DISC), Trumpington, Cambridge CB2 0AA, U.K
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
6
|
Frank E, Park S, Harrer E, Flügel JL, Fischer M, Nuernberger P, Rehbein J, Breder A. Asymmetric Migratory Tsuji-Wacker Oxidation Enables the Enantioselective Synthesis of Hetero- and Isosteric Diarylmethanes. J Am Chem Soc 2024; 146:34383-34393. [PMID: 39644236 DOI: 10.1021/jacs.4c09405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Diarylmethanes play, in part, a pivotal role in the design of highly potent, chiral, nonracemic drugs whose bioactivity is typically affected by the substitution pattern of their arene units. In this context, certain arenes such as para-substituted benzenes or unsubstituted heteroarenes cause particular synthetic challenges, since such isosteric residues at the central methane carbon atom are typically indistinguishable for a chiral catalyst. Hence, the stereoselective incorporation of isosteric (hetero)arenes into chiral methane scaffolds requires the use of stoichiometrically differentiated building blocks, which is typically realized through preceding redox-modifying operations such as metalation or halogenation and thus associated with disadvantageous step- and redox-economic traits. As a counter-design, we report herein a generalized enantioselective synthesis of chiral diarylmethanes by means of an asymmetric migratory Tsuji-Wacker oxidation of simple stilbenes. The title protocol relies on the well-adjusted interplay of aerobic photoredox and selenium-π-acid catalysis to allow for the installation of a broad variety of arenes, including isosteric ones, into the methane core. Facial differentiation and regioselectivity are solely controlled by the selenium catalyst, which (a) renders the E/Z-configuration of the stilbene substrates inconsequential and (b) permits the stereodivergent synthesis of both product enantiomers from a single catalyst enantiomer, simply by employing constitutionally isomeric starting materials. Altogether, this multicatalytic platform offers the target structures with high levels of enantioselectivity in up to 97% ee, which has also been successfully exploited in expedited syntheses of antihistaminic (R)- and (S)-neobenodine.
Collapse
Affiliation(s)
- Eduard Frank
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sooyoung Park
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Elias Harrer
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jana L Flügel
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Marcel Fischer
- Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Patrick Nuernberger
- Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Julia Rehbein
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Alexander Breder
- Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Michel NWM, Gabbey AL, Edjoc RK, Fagbola E, Hughes JME, Campeau LC, Rousseaux SAL. Nickel-Catalyzed Reductive Arylation of Redox Active Esters for the Synthesis of α-Aryl Nitriles: Investigation of a Chlorosilane Additive. J Org Chem 2024; 89:16161-16169. [PMID: 38197128 DOI: 10.1021/acs.joc.3c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A nickel-catalyzed reductive cross-coupling of redox active N-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted α-aryl nitriles, an important scaffold in the pharmaceutical sciences. The reaction exhibits a broad scope, and many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents. Mechanistic studies reveal that reduction and decarboxylation of the NHP ester to the reactive radical intermediate are accomplished by a combination of a chlorosilane additive and Zn dust. We demonstrate that stoichiometric chlorosilane is essential for product formation and that chlorosilane plays a role beyond activation of the metal reductant.
Collapse
Affiliation(s)
- Nicholas W M Michel
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L Gabbey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Racquel K Edjoc
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Emmanuel Fagbola
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Department of Process Research and Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
9
|
Wesenberg LJ, Sivo A, Vilé G, Noël T. Ni-Catalyzed Electro-Reductive Cross-Electrophile Couplings of Alkyl Amine-Derived Radical Precursors with Aryl Iodides. J Org Chem 2024; 89:16121-16125. [PMID: 37220023 PMCID: PMC11574849 DOI: 10.1021/acs.joc.3c00859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 05/25/2023]
Abstract
In recent years, the "Escape-from-Flatland" trend has prompted the synthetic community to develop a set of cross-coupling strategies to introduce sp3-carbon-based fragments in organic compounds. This study presents a novel nickel-catalyzed electrochemical methodology for reductive cross-electrophile coupling. The method enables C(sp2)-C(sp3) linkages using inexpensive amine-derived radical precursors and aryl iodides. The use of electrochemistry as a power source reduces waste and avoids chemical reductants, making this approach a more sustainable alternative to traditional cross-coupling methods.
Collapse
Affiliation(s)
- Lars J Wesenberg
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Amsterdam 1098 XH, The Netherlands
| | - Alessandra Sivo
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, IT-20133 Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, IT-20133 Milano, Italy
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
10
|
Preinfalk A, Oost R, Menger MFSJ, Simaan M, Lemouzy S, Senoner S, Shaaban S, Maryasin B, González L, Maulide N. Enantioconvergent Negishi Cross-Couplings of Racemic Secondary Organozinc Reagents to Access Privileged Scaffolds: A Combined Experimental and Theoretical Study. Angew Chem Int Ed Engl 2024:e202414868. [PMID: 39511853 DOI: 10.1002/anie.202414868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 11/15/2024]
Abstract
An enantioconvergent palladium-catalyzed Negishi cross-coupling with racemic secondary organozinc reagents has been developed, enabling access to enantioenriched 1,1-diarylalkane motifs in high yields and enantioselectivities. Computational data indicates that the racemization of organozinc compounds most likely occurs through a bridged bimolecular mechanism.
Collapse
Affiliation(s)
- Alexander Preinfalk
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Rik Oost
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Maximilian F S J Menger
- Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090, Vienna, Austria
| | - Marwan Simaan
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Sébastien Lemouzy
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Samuel Senoner
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Saad Shaaban
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090, Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
11
|
Fohn N, Gao Y, Sproules S, Nichol GS, Brennan CM, Robinson AJ, Lloyd-Jones GC. Kinetics and Mechanism of PPh 3/Ni-Catalyzed, Zn-Mediated, Aryl Chloride Homocoupling: Antagonistic Effects of ZnCl 2/Cl . J Am Chem Soc 2024; 146:29913-29927. [PMID: 39420638 PMCID: PMC11528415 DOI: 10.1021/jacs.4c12088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The Ni/PPh3-catalyzed homocoupling of aryl chlorides in DMF using Zn as the stochiometric reducing agent is one of a general class of Ni-catalyzed processes, where the mechanism has been a matter of long-standing debate. This study re-evaluates prior conclusions and insights. NMR spectroscopy is used to identify [(PPh3)2NiII(Ar)Cl] as a key intermediate and to explore the indirect roles of using Zn as the reductant. The [ZnCl2] coproduct is responsible for several features, including a sequential transmetalation pathway involving [ArZnCl]. [ZnCl2] also abstracts halide from [(PPh3)2NiCl2] to generate [NiIICl(DMF)5]+[ZnCl3(DMF)]-, and in doing so, affects the NiII + Ni0 ↔ 2 NiI speciation. [ZnCl2] thus acts as an accelerator and inhibitor, resulting in mildly sigmoidal reaction profiles. When the [ZnCl2] concentration becomes too high or the phosphine ligand concentration too low, catalysis stalls. Turnover is restored by the addition of further phosphine ligand, or chloride ion. In the presence of an exogenous chloride ion, turnover is rapid, again proceeding via [(PPh3)2NiII(Ar)Cl] but via dinuclear metathesis. The generation of [ZnCl3(DMF)]- results in mutually antagonistic effects between [ZnCl2] and [Cl]- such that turnover proceeds via one mechanism or the other, depending on which species is in excess. The intermediacy of [ArZnCl] suggests a solution to the long-standing anomaly that many other reductants were found to be much less effective than Zn in inducing turnover of Ni/PPh3 catalyzed aryl chloride homocoupling in DMF. The use of DMAc as a solvent in place of DMF inhibits stalling through the steric inhibition of mixed metalate generation.
Collapse
Affiliation(s)
- Nicole
A. Fohn
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Yuan Gao
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Stephen Sproules
- University
of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K.
| | - Gary S. Nichol
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Colin M. Brennan
- Jealott’s
Hill International Research Centre, Berkshire, Bracknell RG42
6EY, U.K.
| | - Alan J. Robinson
- Syngenta
Crop Protection, Research and Development Centre, Stein 4332, Switzerland
| | - Guy C. Lloyd-Jones
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| |
Collapse
|
12
|
Yang T, Xiong W, Sun G, Yang W, Lu M, Koh MJ. Multicomponent Construction of Tertiary Alkylamines by Photoredox/Nickel-Catalyzed Aminoalkylation of Organohalides. J Am Chem Soc 2024; 146:29177-29188. [PMID: 39394998 DOI: 10.1021/jacs.4c11602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Tertiary alkylamines are privileged structural motifs widely present in natural products, pharmaceutical agents, and bioactive molecules, and their efficient synthesis has been a longstanding goal in organic chemistry. The functionalization of α-amino radicals derived from abundant precursors represents an emerging approach to accessing alkylamines, but application of this strategy to obtain tertiary alkylamines remains challenging. Here, we show that dual photoredox/nickel catalysis enables aminoalkylation of organohalides (sp2- and sp3-hybridized) in combination with secondary alkylamines and aldehydes. The multicomponent process proceeds through selective generation of α-amino radicals from the reduction of in situ-generated iminium ions by photoredox catalysis, followed by nickel-catalyzed cross-coupling to build a wide array of functionally diverse tertiary alkylamines. This strategy could also be extended to unprecedented four-component reactions and their asymmetric variants to deliver enantioenriched α-aryl-substituted γ-amino acid derivatives. Taken together, this work offers a streamlined synthetic route to aliphatic tertiary amines.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Wenhui Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Guangyu Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Mandi Lu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore
| |
Collapse
|
13
|
Han XW, He Y, Gui C, Chu XQ, Zhao XF, Hu XH, Zhou X, Rao W, Shen ZL. Magnesium-Mediated Cross-Electrophile Couplings of Aryl 2-Pyridyl Esters with Aryl Bromides for Ketone Synthesis through In Situ-Formed Arylmagnesium Intermediates. J Org Chem 2024; 89:13661-13668. [PMID: 39250179 DOI: 10.1021/acs.joc.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Aryl 2-pyridyl esters could efficiently undergo cross-electrophile couplings with aryl bromides with the aid of magnesium as a reducing metal in the absence of a transition-metal catalyst, leading to the unsymmetrical diaryl ketones in modest to good yields with wide functionality compatibility. In addition, the reaction could be easily scaled up and applied in the late-stage modification of biologically active molecules. Preliminary mechanistic study showed that the coupling reaction presumably proceeds through the in situ formation of arylmagnesium reagents as key intermediates.
Collapse
Affiliation(s)
- Xiao-Wei Han
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan He
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Gui
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Fei Zhao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
14
|
Pan XH, Hou YP, Shi CX, Wang YP, Niu RQ, Guo L. Intermolecular Regioselective Alkylarylation of Vinylarenes via Photoredox/Nickel Dual Catalysis. Org Lett 2024; 26:7291-7296. [PMID: 39172514 DOI: 10.1021/acs.orglett.4c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A novel photoredox/nickel dual catalytic intermolecular alkylarylation of vinylarenes with tertiary and secondary alkyltrifluoroborates and aryl bromides is described, which affords 1,1-diarylalkane frameworks that are found in various natural products as well as functionalized molecules in good to excellent yield and regioselectivity through a radical relay process. Notably, this redox-neutral reaction could proceed efficiently with good tolerance of various substrates, including a great diversity of commercially available (hetero)aryl bromides, alkyltrifluoroborates, and vinylarenes.
Collapse
Affiliation(s)
- Xian-Hua Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Hou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chang-Xin Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Wang
- Shanghai BIOS Technology Co., Ltd., 659 Maoyuan Road, Fengxian District, Shanghai 201408, China
| | - Rui-Qi Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lei Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
15
|
Li B, Bunescu A, Drazen D, Rolph K, Michalland J, Gaunt MJ. A Modular Dual-Catalytic Aryl-Chlorination of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202405939. [PMID: 39041421 DOI: 10.1002/anie.202405939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 07/24/2024]
Abstract
Alkyl chlorides are a class of versatile building blocks widely used to generate C(sp3)-rich scaffolds through transformation such as nucleophilic substitution, radical addition reactions and metal-catalyzed cross-coupling processes. Despite their utility in the synthesis of high-value functional molecules, distinct methods for the preparation of alkyl chlorides are underrepresented. Here, we report a visible-light-mediated dual catalysis strategy for the modular synthesis of highly functionalized and structurally diverse arylated chloroalkanes via the coupling of diaryliodonium salts, alkenes and potassium chloride. A distinctive aspect of this transformation is a ligand-design-driven approach for the development of a copper(II)-based atom-transfer catalyst that enables the aryl-chlorination of electron-poor alkenes, complementing its iron(III)-based counterpart that accommodates non-activated aliphatic alkenes and styrene derivatives. The complementarity of the two dual catalytic systems allows the efficient aryl-chlorination of alkenes bearing different stereo-electronic properties and a broad range of functional groups, maximizing the structural diversity of the 1-aryl, 2-chloroalkane products.
Collapse
Affiliation(s)
- Bo Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Ala Bunescu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Daniel Drazen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Katherine Rolph
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Jean Michalland
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Compound Synthesis & Management, Discovery Sciences, Biopharmaceuticals R&D, The Discovery Centre, AstraZeneca Biomedical Campus, 1 Francis Crick Avenue, Cambridge, United Kingdom, CB2 0AA
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| |
Collapse
|
16
|
Surgenor RR, Lee H. Synthesis of (Hetero)biaryls via Nickel Catalyzed Reductive Cross-Electrophile Coupling Between (Hetero)aryl Iodides and Bromides. Chemistry 2024; 30:e202401552. [PMID: 38723102 DOI: 10.1002/chem.202401552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 07/19/2024]
Abstract
(Hetero)biaryls are fundamental building blocks in the pharmaceutical industry and rapid access to these scaffolds is imperative for the success of numerous medicinal chemistry campaigns. Herein, a highly general, mild, and chemoselective reductive cross-electrophile coupling between (hetero)aryl iodides and heteroaryl bromides is reported. By employing more reactive (hetero)aryl halides, a broad range of successful substrates (45 examples) were identified. The reaction was also found to be chemoselective for C(sp2)-C(sp2) bond formation between (hetero)aryl iodides and bromides over (hetero)aryl chlorides, which were generally inert under the described reaction conditions. The efficiency of the procedure is also further demonstrated in parallel synthesis library format, on gram scale, as well as in the formal synthesis of Ruxolitinib, a potent JAK inhibitor. As such, we anticipate this method will find widespread utility in the assembly of (hetero)biaryls for medicinal chemistry efforts.
Collapse
Affiliation(s)
| | - Hyelee Lee
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Tang DD, Wang YZ, Liu C, Xia Y, Li Y. Photoredox-Catalyzed Amino-Radical-Transfer-Mediated Three-Component Alkylarylation of Alkenes. Org Lett 2024; 26:6477-6481. [PMID: 39041703 DOI: 10.1021/acs.orglett.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We herein reported a novel photoredox-catalyzed three-component alkylarylation of vinyl arenes with alkylboronic pinacol esters (APEs) and cyanoarenes via radical addition/cross-coupling to construct 1,1-diarylalkanes. In this transformation, alkyl radicals were easily available by visible-light-induced oxidative N-H cleavage of morpholine, which used APEs as a radical precursor. Furthermore, this protocol exhibited a broad substrate scope, enabling various styrenes, APEs, and cyanoarenes, as well as bioactive molecule derivatives.
Collapse
Affiliation(s)
- Di-Di Tang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yu-Zhao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yan Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
18
|
Xu W, Xu T. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Acc Chem Res 2024; 57:1997-2011. [PMID: 38961540 DOI: 10.1021/acs.accounts.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
ConspectusIn recent years, nickel-catalyzed asymmetric coupling reactions have emerged as efficient methods for constructing chiral C(sp3) carbon centers. Numerous novel approaches have been reported to rapidly construct chiral carbon-carbon bonds through nickel-catalyzed asymmetric couplings between electrophiles and nucleophiles or asymmetric reductive cross-couplings of two different electrophiles. Building upon these advances, our group has been devoted to interrogating dual nickel- and photoredox-catalyzed asymmetric reductive cross-coupling reactions.In our endeavors over the past few years, we have successfully developed several dual Ni-/photoredox-catalyzed asymmetric reductive cross-coupling reactions involving organohalides. While some probably think that this system is just a change of the reduction system from traditional metal reductants to a photocatalysis system, a question that we also pondered at the beginning of our studies, both the achievable reaction types and mechanisms suggest a different conclusion: that this dual catalysis system has its own advantages in the chiral carbon-carbon bond formation. Even in certain asymmetric reactions where the photocatalysis regime functions only as a reducing system, the robust reducing capability of photocatalysts can effectively accelerate the regeneration of low-valent nickel species, thus expanding the selectable scope of chiral ligands. More importantly, in many transformations, besides reducing nickel catalysts, the photocatalysis system can also undertake the responsibility of alkyl radical formation, thereby establishing two coordinated, yet independent catalytic cycles. This catalytic mode has been proven to play a crucial role in achieving diverse asymmetric coupling reactions with great challenges.In this Account, we elucidate our understanding of this system based on our experience and findings. In the Introduction, we provide an overview of the main distinctions between this system and traditional Ni-catalyzed asymmetric reductive cross-couplings with metal reductants and the potential opportunities arising from these differences. Subsequently, we outline various chiral carbon-carbon bond-forming types obtained by this dual Ni/photoredox catalysis system and their mechanisms. In terms of chiral C(sp3)-C(sp2) bond formation, extensive discussion focuses on the asymmetric arylations of α-chloroboronates, α-trifluoromethyl alkyl bromides, α-bromophosphonates, and so on. In the realm of chiral C(sp3)-C(sp) bond formation, asymmetric alkynylations of α-bromophosphonates and α-trifluoromethyl alkyl bromides have been presented herein. Regarding C(sp3)-C(sp3) bond formation, we take the asymmetric alkylation of α-chloroboronates as a compelling example to illustrate the great efficiency of this dual catalysis system. This summary would enable a better grasp of the advantages of this dual catalysis system and clarify how the photocatalysis regime facilitates enantioselective transformations. We anticipate that this Account will offer valuable insights and contribute to the development of new methodologies in this field.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
19
|
Kim RS, Kgoadi LO, Hayes JC, Rainboth DP, Mudd CM, Yap GPA, Watson DA. Nickel-Catalyzed Atroposelective Cross-Electrophile Coupling of Aryl Halides: A General and Practical Route to Diverse MOP-Type Ligands. J Am Chem Soc 2024; 146:17606-17612. [PMID: 38780663 PMCID: PMC11222061 DOI: 10.1021/jacs.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We report a highly cross- and atroposelective coupling between ortho-(chloro)arylphosphine oxides and ortho-(bromo)aryl ethers. This previously unknown asymmetric nickel-catalyzed reaction offers a direct route to highly enantioenriched axially chiral biaryl monophosphine oxides that are difficult to access by other means. These products can be readily reduced to generate chiral MOP-type ligands bearing complex skeletal backbones. The utility of these chiral ligands in asymmetric catalysis is also demonstrated.
Collapse
Affiliation(s)
- Raphael S Kim
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lebogang O Kgoadi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob C Hayes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Derek P Rainboth
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine M Mudd
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Pan Q, Wang K, Xu W, Ai Y, Ping Y, Liu C, Wang M, Zhang J, Kong W. Ligand-Controlled, Nickel-Catalyzed Stereodivergent Construction of 1,3-Nonadjacent Stereocenters. J Am Chem Soc 2024; 146:15453-15463. [PMID: 38795043 DOI: 10.1021/jacs.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
In contrast to the asymmetric synthesis of molecules with a single stereocenter or 1,2-adjacent stereocenters, the simultaneous construction of acyclic 1,3-nonadjacent stereocenters via a single catalyst in an enantioselective and diastereoselective manner remains a formidable challenge. Here, we demonstrate the enantioselective and diastereodivergent construction of 1,3-nonadjacent stereocenters through Ni-catalyzed reductive cyclization/cross-coupling of alkene-tethered aryl bromides and α-bromoamides, which represents the major remaining stereochemical challenge of cyclization/difunctionalization of alkenes. Using Ming-Phos as ligand, a diverse set of oxindoles containing 1,3-nonadjacent stereocenters were obtained with high levels of enantio- and diastereoselectivity. Mechanistic experiments and density functional theory calculations indicate that magnesium salt plays a key role in controlling the diastereoselectivity. Furthermore, another set of complementary stereoisomeric products were constructed from the same set of starting materials using Ph-Phox as ligand.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kuai Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqi Ai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chuhan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
22
|
Chen LM, Reisman SE. Enantioselective C(sp 2)-C(sp 3) Bond Construction by Ni Catalysis. Acc Chem Res 2024; 57:751-762. [PMID: 38346006 PMCID: PMC10918837 DOI: 10.1021/acs.accounts.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
ConspectusAfter decades of palladium dominating the realm of transition-metal-catalyzed cross-coupling, recent years have witnessed exciting advances in the development of new nickel-catalyzed cross-coupling reactions to form C(sp3) centers. Nickel possesses distinct properties compared with palladium, such as facile single-electron transfer to C(sp3) electrophiles and rapid C-C reductive elimination from NiIII. These properties, among others, make nickel particularly well-suited for reductive cross-coupling (RCC) in which two electrophiles are coupled and an exogenous reductant is used to turn over the metal catalyst. Ni-catalyzed RCCs use readily available and stable electrophiles as starting materials and exhibit good functional group tolerance, which makes them appealing for applications in the synthesis of complex molecules. Building upon the foundational work in Ni-catalyzed RCCs by the groups of Kumada, Durandetti, Weix, and others, as well as the advancements in Ni-catalyzed enantioselective redox-neutral cross-couplings led by Fu and co-workers, we initiated a program to explore the feasibility of developing highly enantioselective Ni-catalyzed RCCs. Our research has also been driven by a keen interest in unraveling the factors contributing to enantioinduction and electrophile activation as we seek new avenues for advancing our understanding and further developing these reactions.In the first part of this Account, we organize our reported methods on the basis of the identity of the C(sp3) electrophiles, including benzylic chlorides, N-hydroxyphthalimide (NHP) esters, and α-chloro esters and nitriles. We highlight how the selection of specific chiral ligands plays a pivotal role in achieving high cross-selectivity and enantioselectivity. In addition, we show that reduction can be accomplished not only with heterogeneous reductants, such as Mn0, but also with the soluble organic reductant tetrakis(dimethylamino)ethylene (TDAE), as well as electrochemically. The use of homogeneous reductants, such as TDAE, is well suited for studying the mechanism of the transformation. Although this Account primarily focuses on RCCs, we also highlight our work using trifluoroborate (BF3K) salts as radical precursors for enantioselective dual-Ni/photoredox systems.At the end of this Account, we summarize the relevant mechanistic studies of two closely related asymmetric reductive alkenylation reactions developed in our laboratory and provide a context between our work and related mechanistic studies by others. We discuss how the ligand properties influence the rates and mechanisms of electrophile activation and how understanding the mode of C(sp3) radical generation can be used to optimize the yield of an RCC. Our research endeavors to offer insights on the intricate mechanisms at play in asymmetric Ni-catalyzed RCCs with the goal of using the rate of electrophile activation to improve the substrate scope of enantioselective RCCs. We anticipate that the insights we share in this Account can provide guidance for the development of new methods in this field.
Collapse
Affiliation(s)
- Li-Ming Chen
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Liu W, Xing Y, Yan D, Kong W, Shen K. Nickel-catalyzed electrophiles-controlled enantioselective reductive arylative cyclization and enantiospecific reductive alkylative cyclization of 1,6-enynes. Nat Commun 2024; 15:1787. [PMID: 38413585 PMCID: PMC10899222 DOI: 10.1038/s41467-024-45617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Transition metal-catalyzed asymmetric cyclization of 1,6-enynes is a powerful tool for the construction of chiral nitrogen-containing heterocycles. Despite notable achievements, these transformations have been largely limited to the use of aryl or alkenyl metal reagents, and stereoselective or stereospecific alkylative cyclization of 1,6-enynes remains unexploited. Herein, we report Ni-catalyzed enantioselective reductive anti-arylative cyclization of 1,6-enynes with aryl iodides, providing enantioenriched six-membered carbo- and heterocycles in good yields with excellent enantioselectivities. Additionally, we have realized Ni-catalyzed enantiospecific reductive cis-alkylative cyclization of 1,6-enynes with alkyl bromides, furnishing chiral five-membered heterocycles with high regioselectivity and stereochemical fidelity. Mechanistic studies reveal that the arylative cyclization of 1,6-enynes is initiated by the oxidative addition of Ni(0) to aryl halides and the alkylative cyclization is triggered by the oxidative addition of Ni(0) to allylic acetates. The utility of this strategy is further demonstrated in the enantioselective synthesis of the antiepileptic drug Brivaracetam.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yunxin Xing
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Denghong Yan
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| | - Kun Shen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
24
|
Wu B, Ye N, Zhao K, Shi M, Liao J, Zhang J, Chen W, Li X, Han Y, Cortes-Clerget M, Regnier ML, Parmentier M, Mathes C, Rampf F, Gallou F. Implementation of micelle-enabled C(sp 2)-C(sp 3) cross-electrophile coupling in pharmaceutical synthesis. Chem Commun (Camb) 2024; 60:2349-2352. [PMID: 38284323 DOI: 10.1039/d3cc05916b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A sustainable C(sp2)-C(sp3) cross-electrophile coupling was developed between readily available 5-bromophthalide and 1-benzyl-4-iodopiperidine under micellar conditions, leading to a key intermediate of one of our development compounds. Copper was found to play a crucial role as a co-catalyst in this dual catalysis system. The chemistry and process were successfully demonstrated in a kilo scale to deliver sufficient drug substance to the clinical campaigns. This is the first reported scale-up of such a challenging cross-electrophilic coupling that uses an aqueous medium, and not undesirable reprotoxic polar aprotic solvents (e.g. DMF, DMAc, and NMP).
Collapse
Affiliation(s)
- Bin Wu
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Ning Ye
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Kangming Zhao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Min Shi
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Jiayu Liao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Jing Zhang
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Wei Chen
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Xianzhong Li
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Yufeng Han
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | | | | | - Michael Parmentier
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Christian Mathes
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Florian Rampf
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
25
|
Guan YQ, Qiao JF, Liang YF. Nickel-catalysed chelation-assisted reductive defluorinative sulfenylation of trifluoropropionic acid derivatives. Chem Commun (Camb) 2024; 60:2405-2408. [PMID: 38323634 DOI: 10.1039/d3cc06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein we reported a directing-group assisted strategy for nickel-catalysed reductive defluorinative sulfenylation of trifluoropropionic acid derivatives with disulfides in the presence of Zn, involving triple C-F bond cleavage. This process yielded a diverse array of carbonyl-sulfide di-substituted alkenes in moderate to good yields with good functional group tolerance. Specifically, the reactions exhibited high E-selectivity with E/Z ratio up to >99 : 1.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
26
|
Kanwal A, Afzal U, Zubair M, Imran M, Rasool N. Synthesis of anti-depressant molecules via metal-catalyzed reactions: a review. RSC Adv 2024; 14:6948-6971. [PMID: 38410364 PMCID: PMC10895647 DOI: 10.1039/d3ra06391g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Depression is one of the most mutilating conditions in the world today. It has been difficult to make advancements toward better, more effective therapies since the introduction of antidepressant medicines in the late 1950s. One important field of medicinal chemistry is the synthesis of antidepressant molecules through metal-catalyzed procedures. The important role that different transition metals, including iron, nickel, ruthenium, and others, serve as catalysts in the synthesis of antidepressants is examined in this review. Key structural motifs included in antidepressant drugs such as tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and others can be synthesized in a variety of effective ways using metal-catalyzed steps. This review examines current developments in the catalytic synthesis of antidepressants and their potential application over the previous thirteen years.
Collapse
Affiliation(s)
- Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Uzma Afzal
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Muhammad Zubair
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad 38000 Pakistan +92-3085448384
| |
Collapse
|
27
|
Ding L, Zhao Y, Lu H, Shi Z, Wang M. Nickel-Catalyzed Asymmetric Propargyl-Aryl Cross-Electrophile Coupling. Angew Chem Int Ed Engl 2024; 63:e202313655. [PMID: 37985415 DOI: 10.1002/anie.202313655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Performing asymmetric cross-coupling reactions between propargylic electrophiles and aryl nucleophiles is a well-established method to build enantioenriched benzylic alkynes. Here, a catalytic enantioselective propargyl-aryl cross-coupling between two electrophiles was achieved for the first time in a stereoconvergent manner. Propargylic chlorides were treated with aryl iodides as well as heteroaryl iodides in the presence of a chiral nickel complex, and manganese metal was used as a stoichiometric reductant, allowing for the construction of a propargyl C-aryl bond under mild conditions. An alternative dual nickel/photoredox catalytic protocol was also developed for this cross-electrophile coupling in the absence of a metal reductant. The potential utility of this conversion is demonstrated in the facile construction of stereoenriched bioactive molecule derivatives and medicinal compounds based on the diversity of acetylenic chemistry. Detailed experimental studies have revealed the key mechanistic features of this transformation.
Collapse
Affiliation(s)
- Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
28
|
Long T, Zeng YL, Dong ZH, Li S, Zhan J, Zeng SM, Qiu JL, Chu WD, Liu QZ. Nickel-Catalyzed Three-Component Alkylarylation of Alkenyl N-Heteroarenes. Org Lett 2023; 25:8344-8349. [PMID: 37962415 DOI: 10.1021/acs.orglett.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A nickel-catalyzed three-component alkylarylation of alkenyl N-heteroarenes with α-bromocarboxylates and aryl boronic acids is reported. The protocol provides a new method to access a variety of N-heteroarene substituted diarylalkanes in moderate to good yields. It features mild reaction conditions, cheap nickel catalyst, readily available substrates, and broad substrate scope.
Collapse
Affiliation(s)
- Teng Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Ya-Li Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Zhi-Hong Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Shu Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jie Zhan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Sheng-Min Zeng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Jia-Li Qiu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, No. 1, Shida Road, Nanchong 637002, P.R. China
| |
Collapse
|
29
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
30
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
31
|
Sun B, Wang ZH, Wang YZ, Gu YC, Ma C, Mei TS. Parallel paired electrolysis-enabled asymmetric catalysis: simultaneous synthesis of aldehydes/aryl bromides and chiral alcohols. Sci Bull (Beijing) 2023; 68:2033-2041. [PMID: 37507259 DOI: 10.1016/j.scib.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Metal-catalyzed asymmetric electro-reductive couplings have emerged as a powerful tool for organic synthesis, wherein a sacrificial anode is typically required. Herein, a parallel paired electrolysis (PPE)-enabled asymmetric catalysis has been developed, and the alcohols and ketones could be simultaneously converted to the corresponding aldehydes and chiral tertiary alcohols with high yields and enantioselectivity in an undivided cell. Additionally, this Ni-catalyzed asymmetric reductive coupling can well match the anodic oxidative C-H bond bromination of (hetero)arenes. This protocol opens an alternative avenue for organic synthesis.
Collapse
Affiliation(s)
- Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
32
|
DeCicco EM, Berritt S, Knauber T, Coffey SB, Hou J, Dowling MS. Decarboxylative Cross-Electrophile Coupling of (Hetero)Aromatic Bromides and NHP Esters. J Org Chem 2023; 88:12329-12340. [PMID: 37609685 DOI: 10.1021/acs.joc.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aryl bromides are known to be challenging substrates in the decarboxylative cross-electrophile coupling with redox-active NHP esters-the majority of such processes utilize aryl iodides. Herein, we describe the development of conditions that are suitable for the decarboxylative cross-electrophile coupling of NHP esters and a wide range of (hetero)aryl bromides. The key advances that allowed for the use of aryl bromides in this reaction are (1) the identification of ligand L3 as an optimal ligand for the use of electron-neutral and deficient aryl bromides and (2) the significant improvement in yield that iodide salts and excess heterogenous zinc impart to this reaction. A wide variety of NHP esters perform well under the optimized conditions, including methyl, primary, secondary, and several strained tertiary systems. Likewise, a variety of aromatic and heteroaromatic bromides relevant to medicinal chemistry perform well in this transformation, including an aryl bromide precursor to the known drug dapagliflozin.
Collapse
Affiliation(s)
- Ethan M DeCicco
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jie Hou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Matthew S Dowling
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
33
|
Gul R, Hu L, Liu Y, Xie Y. Synthesis of 1-Aryltetralins via Re 2O 7/HReO 4 Mediated Intramolecular Hydroarylations. J Org Chem 2023; 88:12079-12086. [PMID: 37559373 DOI: 10.1021/acs.joc.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Here, we describe highly efficient intramolecular hydroarylations mediated by Re2O7/HReO4. Styrene derivatives of different electronic properties have been activated to effect a challenging intramolecular hydroarylation for the facile access to various substituted 1-aryltetralin structures. This method is characterized by mild reaction conditions, broad substrate scope, high chemical yields, and 100% atom economy. The potential synthetic application of this methodology was exemplified by the efficient total synthesis of an isoCA-4 analogue.
Collapse
Affiliation(s)
- Rukhsar Gul
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yibing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
34
|
Huang G, Wu Y, Gong H, Chen Y. Expeditious preparation of β- sec-alkyl vicinal amino alcohols used for chiral ligand synthesis. Org Biomol Chem 2023; 21:6111-6114. [PMID: 37462436 DOI: 10.1039/d3ob00803g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
An economical route providing quick access to chiral β-amino alcohols bearing one β-sec-alkyl group was developed. This protocol starts with commercially available and cheap chiral sources such as derivatives of L-serine and L-threonine. A series of vicinal amino alcohols with high optical purity were prepared in good yields through 4 or 6 operationally simple steps. Two different strategies (three routes) were designed for the synthesis of amino alcohols bearing β-sec-alkyl groups with various steric hindrance.
Collapse
Affiliation(s)
- Guoqi Huang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
| | - Yu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
| | - Yunrong Chen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China.
| |
Collapse
|
35
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
36
|
Zhang Y, Sun X, Su JH, Li T, Du C, Li K, Sun Q, Zha Z, Wang Z. Switchable Direct Oxygenative Arylation of C(sp 3)-H Bonds via Electrophotocatalysis. Org Lett 2023; 25:5067-5072. [PMID: 37387463 DOI: 10.1021/acs.orglett.3c01751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A metal-free electrophotochemical C(sp3)-H arylation was developed under mild conditions. This method enables a switchable synthesis of diaryl alcohols and diaryl alkanes from inactive benzylic carbons. More importantly, a cheap and safe mediator N-chlorosuccinimide (NCS) was developed, which was employed for the hydrogen atom transfer (HAT) process of the benzylic C-H bond. In addition, this active radical was captured and identified by electron paramagnetic resonance (EPR).
Collapse
Affiliation(s)
- Yan Zhang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tong Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chengbin Du
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kuiliang Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qi Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenggen Zha
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyong Wang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Zhao WT, Shu W. Enantioselective Csp3-Csp3 formation by nickel-catalyzed enantioconvergent cross-electrophile alkyl-alkyl coupling of unactivated alkyl halides. SCIENCE ADVANCES 2023; 9:eadg9898. [PMID: 37418514 DOI: 10.1126/sciadv.adg9898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/01/2023] [Indexed: 07/09/2023]
Abstract
The pervasive occurrence of saturated stereogenic carbon centers in pharmaceuticals, agrochemicals, functional organic materials, and natural products has stimulated great efforts toward the construction of such saturated carbon centers. We report a reaction mode for the enantioselective construction of alkyl-alkyl bond to access saturated stereogenic carbon centers by asymmetric reductive cross-coupling between different alkyl electrophiles in good yields with great levels of enantioselectivity. This reaction mode uses only alkyl electrophiles for enantioselective Csp3-Csp3 bond-formation, rendering reductive alkyl-alkyl cross-coupling as an alternative to traditional alkyl-alkyl cross-coupling reactions between alkyl nucleophiles and alkyl electrophiles to access saturated stereogenic carbon centers without the use of organometallic reagents. The reaction displays a broad scope for two alkyl electrophiles with good functional group tolerance. Mechanistic studies reveal that the reaction undergoes a single electron transfer that enabled the reductive coupling pathway to form the alkyl-alkyl bond.
Collapse
Affiliation(s)
- Wen-Tao Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
38
|
Wang YZ, Wang ZH, Eshel IL, Sun B, Liu D, Gu YC, Milo A, Mei TS. Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides. Nat Commun 2023; 14:2322. [PMID: 37087477 PMCID: PMC10122672 DOI: 10.1038/s41467-023-37965-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
Here, we report an asymmetric electrochemical organonickel-catalyzed reductive cross-coupling of aryl aziridines with aryl iodides in an undivided cell, affording β-phenethylamines in good to excellent enantioselectivity with broad functional group tolerance. The combination of cyclic voltammetry analysis of the catalyst reduction potential as well as an electrode potential study provides a convenient route for reaction optimization. Overall, the high efficiency of this method is credited to the electroreduction-mediated turnover of the nickel catalyst instead of a metal reductant-mediated turnover. Mechanistic studies suggest a radical pathway is involved in the ring opening of aziridines. The statistical analysis serves to compare the different design requirements for photochemically and electrochemically mediated reactions under this type of mechanistic manifold.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Inbal L Eshel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, RE42 6EY, UK
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
39
|
Hu X, Cheng-Sánchez I, Cuesta-Galisteo S, Nevado C. Nickel-Catalyzed Enantioselective Electrochemical Reductive Cross-Coupling of Aryl Aziridines with Alkenyl Bromides. J Am Chem Soc 2023; 145:6270-6279. [PMID: 36881734 PMCID: PMC10037331 DOI: 10.1021/jacs.2c12869] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/09/2023]
Abstract
An electrochemically driven nickel-catalyzed enantioselective reductive cross-coupling of aryl aziridines with alkenyl bromides has been developed, affording enantioenriched β-aryl homoallylic amines with excellent E-selectivity. This electroreductive strategy proceeds in the absence of heterogeneous metal reductants and sacrificial anodes by employing constant current electrolysis in an undivided cell with triethylamine as a terminal reductant. The reaction features mild conditions, remarkable stereocontrol, broad substrate scope, and excellent functional group compatibility, which was illustrated by the late-stage functionalization of bioactive molecules. Mechanistic studies indicate that this transformation conforms with a stereoconvergent mechanism in which the aziridine is activated through a nucleophilic halide ring-opening process.
Collapse
Affiliation(s)
- Xia Hu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Sergio Cuesta-Galisteo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| |
Collapse
|
40
|
Li C, Ling L, Luo Z, Wang S, Zhang X, Zeng X. Deoxygenative Cross-Coupling of C(aryl)–O and C(amide)═O Electrophiles Enabled by Chromium Catalysis Using Bipyridine Ligand. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liang Ling
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Sha Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
41
|
Wang Y, Xu J, Pan Y, Wang Y. Recent advances in electrochemical deoxygenation reactions of organic compounds. Org Biomol Chem 2023; 21:1121-1133. [PMID: 36655598 DOI: 10.1039/d2ob01817a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As naturally abundant and recyclable industrial feedstock, alcohols and carboxylic acids have drawn tremendous attention in medicinal chemistry and polymer chemistry. The selective C-O cleavage of the hydroxyl group represents an appealing strategy to deliver alkyl and carbonyl moieties into organic molecules. Classical examples of hydroxyl activation include the Appel reaction, Mitsunobu reaction, and Barton-McCombie deoxygenation. However, these early approaches still require large amounts of oxidants or reductants, and suffer from harsh conditions and low atom economy. Electrosynthesis has proven to be an effective and mild way of the modern chemical industry, avoiding the use of chemical oxidants/reductants through the action of an electric current. In this review, we have summarized the recent advances in electrochemical deoxygenation reactions and categorized the deoxygenation methods by different functionalities.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jia Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
42
|
Wang Q, Qi Y, Gao X, Gong L, Wan R, Lei W, Wang Z, Mao J, Guan H, Li W, Walsh PJ. Recent trends and developments in the asymmetric synthesis of profens. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
43
|
Zhou J, Wang D, Xu W, Hu Z, Xu T. Enantioselective C(sp 3)-C(sp 3) Reductive Cross-Electrophile Coupling of Unactivated Alkyl Halides with α-Chloroboronates via Dual Nickel/Photoredox Catalysis. J Am Chem Soc 2023; 145:2081-2087. [PMID: 36688920 DOI: 10.1021/jacs.2c13220] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Substantial advances in enantioconvergent C(sp3)-C(sp3) bond formations have been made with nickel-catalyzed cross-coupling of racemic alkyl electrophiles with organometallic reagents or nickel-hydride-catalyzed hydrocarbonation of alkenes. Herein, we report an unprecedented enantioselective C(sp3)-C(sp3) reductive cross-coupling by the direct utilization of two different alkyl halides with dual nickel/photoredox catalysis system. This highly selective coupling of racemic α-chloroboronates and unactivated alkyl iodides furnishes chiral secondary alkyl boronic esters, which serve as useful and important intermediates in the realm of organic synthesis and enable a desirable protocol to fast construction of enantioenriched complex molecules.
Collapse
Affiliation(s)
- Jun Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Zihao Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
44
|
Liu YT, Fan YH, Mei Y, Li DJ, Jiang Y, Yu WH, Pan F. Chromium-Catalyzed Defluorinative Reductive Coupling of Aldehydes with gem-Difluoroalkenes. Org Lett 2023; 25:549-554. [PMID: 36637443 DOI: 10.1021/acs.orglett.3c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, a mild and convenient defluorinative reductive cross coupling of gem-difluoroalkenes with aliphatic aldehydes has been developed to afford diverse silyl-protected β-fluorinated allylic alcohols. The reaction is operationally simple and shows good functional group tolerance with moderate to excellent yields. The utility of this method is demonstrated by converting the products into various bioactive fluorinated compounds, showing its potential applications in drug discovery and biochemistry.
Collapse
Affiliation(s)
- Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yu-Hang Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Dong-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Wen-Hao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
45
|
Han D, Sun J, Jin J. Picolinamide Ligands: Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Bromocyclopropane and Beyond. Chem Asian J 2023; 18:e202201132. [PMID: 36479828 DOI: 10.1002/asia.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.
Collapse
Affiliation(s)
- Dongyang Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
46
|
Recent Advances in Nickel-Catalyzed C-C Cross-Coupling. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
47
|
Afzal U, Bilal M, Zubair M, Rasool N, Adnan Ali Shah S, Amiruddin Zakaria Z. Stereospecific/stereoselective Nickel catalyzed reductive cross-coupling: An efficient tool for the synthesis of biological active targeted molecules. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Lin Q, Gong H, Wu F. Ni-Catalyzed Reductive Coupling of Heteroaryl Bromides with Tertiary Alkyl Halides. Org Lett 2022; 24:8996-9000. [DOI: 10.1021/acs.orglett.2c03598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Fan Wu
- Institute of Drug Discovery Technology and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
49
|
Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides Using Bicobalt Complexes Absorbed on DFNS. Catal Letters 2022. [DOI: 10.1007/s10562-022-04130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Liu D, Liu ZR, Wang ZH, Ma C, Herbert S, Schirok H, Mei TS. Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides. Nat Commun 2022; 13:7318. [PMID: 36443306 PMCID: PMC9705544 DOI: 10.1038/s41467-022-35073-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Electrochemical asymmetric catalysis has emerged as a sustainable and promising approach to the production of chiral compounds and the utilization of both the anode and cathode as working electrodes would provide a unique approach for organic synthesis. However, precise matching of the rate and electric potential of anodic oxidation and cathodic reduction make such idealized electrolysis difficult to achieve. Herein, asymmetric cross-coupling between α-chloroesters and aryl bromides is probed as a model reaction, wherein alkyl radicals are generated from the α-chloroesters through a sequential oxidative electron transfer process at the anode, while the nickel catalyst is reduced to a lower oxidation state at the cathode. Radical clock studies, cyclic voltammetry analysis, and electron paramagnetic resonance experiments support the synergistic involvement of anodic and cathodic redox events. This electrolytic method provides an alternative avenue for asymmetric catalysis that could find significant utility in organic synthesis.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|