1
|
Shillito GE, Preston D, Crowley JD, Wagner P, Harris SJ, Gordon KC, Kupfer S. Controlling Excited State Localization in Bichromophoric Photosensitizers via the Bridging Group. Inorg Chem 2024; 63:4947-4956. [PMID: 38437618 PMCID: PMC10951951 DOI: 10.1021/acs.inorgchem.3c04110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
A series of photosensitizers comprised of both an inorganic and an organic chromophore are investigated in a joint synthetic, spectroscopic, and theoretical study. This bichromophoric design strategy provides a means by which to significantly increase the excited state lifetime by isolating the excited state away from the metal center following intersystem crossing. A variable bridging group is incorporated between the donor and acceptor units of the organic chromophore, and its influence on the excited state properties is explored. The Franck-Condon (FC) photophysics and subsequent excited state relaxation pathways are investigated with a suite of steady-state and time-resolved spectroscopic techniques in combination with scalar-relativistic quantum chemical calculations. It is demonstrated that the presence of an electronically conducting bridge that facilitates donor-acceptor communication is vital to generate long-lived (32 to 45 μs), charge-separated states with organic character. In contrast, when an insulating 1,2,3-triazole bridge is used, the excited state properties are dominated by the inorganic chromophore, with a notably shorter lifetime of 60 ns. This method of extending the lifetime of a molecular photosensitizer is, therefore, of interest for a range of molecular electronic devices and photophysical applications.
Collapse
Affiliation(s)
- Georgina E. Shillito
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Dan Preston
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2600, Australia
| | - James D. Crowley
- Department
of Chemistry, University of Otago, 362 Leith Street, Dunedin 9016, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Pawel Wagner
- University
of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Samuel J. Harris
- Department
of Chemistry, University of Otago, 362 Leith Street, Dunedin 9016, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Keith C. Gordon
- Department
of Chemistry, University of Otago, 362 Leith Street, Dunedin 9016, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Stephan Kupfer
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
2
|
Wang Y, Huang Y, Chen S, Gao J, Zhang Y, Duan YC, Deng P. Construction of Robust Iridium(III) Complex-Based Photosensitizer for Boosting Hydrogen Evolution. Inorg Chem 2023; 62:7212-7219. [PMID: 37139601 DOI: 10.1021/acs.inorgchem.2c04471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing a photosensitizer with high efficiency and long-term stability for photocatalytic hydrogen evolution is highly desirable yet remains a challenge. Herein, a novel Ir(III) complex-based photosensitizer (Ir3) bearing coumarin and triphenylamine groups is designed. Ir3 exhibits record activity and durability among reported transition metal complexes for photocatalytic hydrogen evolution, with a TON of 198,363 and a duration of 214 h. The excellent photocatalytic performance of Ir3 can be attributed to the synergistic effect of coumarin and triphenylamine, which improves the visible light absorption, charge separation, and electron transfer capacity of photosensitizers. This is an efficient and long-lived Ir(III) photosensitizer constructed on the basis of a synergistic approach, which could provide a new insight for the development of high-performance Ir(III) photosensitizers at the molecular level.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yifan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ying-Chen Duan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
| | - Pengyang Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Yin CW, Tsai MK, Chen YJ. Low-Temperature Observation of the Excited-State Decay of Ruthenium-(Mono-2,2':6',2″-Terpyridine) Ions with Innocent Ligands: DFT Modeling of an 3MLCT- 3MC Intersystem Crossing Pathway. ACS OMEGA 2023; 8:11623-11633. [PMID: 37008138 PMCID: PMC10061511 DOI: 10.1021/acsomega.3c01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The synthesis, electrochemistry, and photophysical characterization of five 2,2':6',2″-terpyridine ruthenium complexes (Ru-tpy complexes) is reported. The electrochemical and photophysical behavior varied depending on the ligands, i.e., amine (NH3), acetonitrile (AN), and bis(pyrazolyl)methane (bpm), for this series of Ru-tpy complexes. The target [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ complexes were found to have low-emission quantum yields in low-temperature observations. To better understand this phenomenon, density functional theory (DFT) calculations were performed to simulate the singlet ground state (S0), Te, and metal-centered excited states (3MC) of these complexes. The calculated energy barriers between Te and the low-lying 3MC state for [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ provided clear evidence in support of their emitting state decay behavior. Developing a knowledge of the underlying photophysics of these Ru-tpy complexes will allow new complexes to be designed for use in photophysical and photochemical applications in the future.
Collapse
Affiliation(s)
- Chi-Wei Yin
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Ming-Kang Tsai
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, ROC
| | - Yuan Jang Chen
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| |
Collapse
|
4
|
Cotic A, Cerfontaine S, Slep LD, Elias B, Troian-Gautier L, Cadranel A. Anti-Dissipative Strategies toward More Efficient Solar Energy Conversion. J Am Chem Soc 2023; 145:5163-5173. [PMID: 36790737 DOI: 10.1021/jacs.2c11593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In natural and artificial photosynthesis, light absorption and catalysis are separate processes linked together by exergonic electron transfer. This leads to free energy losses between the initial excited state, formed after light absorption, and the active catalyst formed after the electron transfer cascade. Additional deleterious processes, such as internal conversion (IC) and vibrational relaxation (VR), also dissipate as much as 20-30% of the absorbed photon energy. Minimization of these energy losses, a holy grail in solar energy conversion and solar fuel production, is a challenging task because excited states are usually strongly coupled which results in negligible kinetic barriers and very fast dissipation. Here, we show that topological control of oligomeric {Ru(bpy)3} chromophores resulted in small excited-state electronic couplings, leading to activation barriers for IC by means of inter-ligand electron transfer of around 2000 cm-1 and effectively slowing down dissipation. Two types of excited states are populated upon visible light excitation, that is, a bridging-ligand centered metal-to-ligand charge transfer [MLCT(Lm)], and a 2,2'-bipyridine-centered MLCT [MLCT(bpy)], which lies 800-1400 cm-1 higher in energy. As a proof-of-concept, bimolecular electron transfer with tri-tolylamine (TTA) as electron donor was performed, which mimics catalyst activation by sacrificial electron donors in typical photocatalytic schemes. Both excited states were efficiently quenched by TTA. Hence, this novel strategy allows to trap higher energy excited states before IC and VR set in, saving between 100 and 170 meV. Furthermore, transient absorption spectroscopy suggests that electron transfer reactions with TTA produced the corresponding Lm•--centered and bpy•--centered reduced photosensitizers, which involve different reducing abilities, that is, -0.79 and -0.93 V versus NHE for Lm•- and bpy•-, respectively. Thus, this approach probably leads in fine to a 140 meV more potent reductant for energy conversion schemes and solar fuel production. These results lay the first stone for anti-dissipative energy conversion schemes which, in bimolecular electron transfer reactions, harness the excess energy saved by controlling dissipative conversion pathways.
Collapse
Affiliation(s)
- Agustina Cotic
- Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina.,Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, CONICET─Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Simon Cerfontaine
- Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Leonardo D Slep
- Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina.,Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, CONICET─Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Benjamin Elias
- Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alejandro Cadranel
- Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EHA Buenos Aires, Argentina.,Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, CONICET─Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.,Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany.,Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Li B, Huang X, Lu Y, Fan Z, Li B, Jiang D, Sojic N, Liu B. High Electrochemiluminescence from Ru(bpy) 3 2+ Embedded Metal-Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204715. [PMID: 36328787 PMCID: PMC9762315 DOI: 10.1002/advs.202204715] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Indexed: 05/04/2023]
Abstract
Direct imaging of single-molecule and its movement is of fundamental importance in biology, but challenging. Herein, aided by the nanoconfinement effect and resultant high reaction activity within metal-organic frameworks (MOFs), the designed Ru(bpy)3 2+ embedded MOF complex (RuMOFs) exhibits bright electrochemiluminescence (ECL) emission permitting high-quality imaging of ECL events at single molecule level. By labeling individual proteins of living cells with single RuMOFs, the distribution of membrane tyrosine-protein-kinase-like7 (PTK7) proteins at low-expressing cells is imaged via ECL. More importantly, the efficient capture of ECL photons generated inside the MOFs results in a stable ECL emission up to 1 h, allowing the in operando visualization of protein movements at the cellular membrane. As compared with the fluorescence observation, near-zero ECL background surrounding the target protein with the ECL emitter gives a better contrast for the dynamic imaging of discrete protein movement. This achievement of single molecule ECL dynamic imaging using RuMOFs will provide a more effective nanoemitter to observe the distribution and motion of individual proteins at living cells.
Collapse
Affiliation(s)
- Binxiao Li
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Xuedong Huang
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Yanwei Lu
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Zihui Fan
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Bin Li
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210093China
| | - Neso Sojic
- Bordeaux INPInstitute of Molecular Science (ISM), and CNRS UMR 5255University of BordeauxPessac33607France
| | - Baohong Liu
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| |
Collapse
|
6
|
Camara F, Gavaggio T, Dautreppe B, Chauvin J, Pécaut J, Aldakov D, Collomb MN, Fortage J. Electrochemical Properties of a Rhodium(III) Mono-Terpyridyl Complex and Use as a Catalyst for Light-Driven Hydrogen Evolution in Water. Molecules 2022; 27:molecules27196614. [PMID: 36235152 PMCID: PMC9571878 DOI: 10.3390/molecules27196614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular hydrogen (H2) is considered one of the most promising fuels to decarbonize the industrial and transportation sectors, and its photocatalytic production from molecular catalysts is a research field that is still abounding. The search for new molecular catalysts for H2 production with simple and easily synthesized ligands is still ongoing, and the terpyridine ligand with its particular electronic and coordination properties, is a good candidate to design new catalysts meeting these requirements. Herein, we have isolated the new mono-terpyridyl rhodium complex, [RhIII(tpy)(CH3CN)Cl2](CF3SO3) (Rh-tpy), and shown that it can act as a catalyst for the light-induced proton reduction into H2 in water in the presence of the [Ru(bpy)3]Cl2 (Ru) photosensitizer and ascorbate as sacrificial electron donor. Under photocatalytic conditions, in acetate buffer at pH 4.5 with 0.1 M of ascorbate and 530 μM of Ru, the Rh-tpy catalyst produces H2 with turnover number versus catalyst (TONCat*) of 300 at a Rh concentration of 10 μM, and up to 1000 at a concentration of 1 μM. The photocatalytic performance of Ru/Rh-tpy/HA-/H2A has been also compared with that obtained with the bis-dimethyl-bipyridyl complex [RhIII(dmbpy)2Cl2]+ (Rh2) as a catalyst in the same experimental conditions. The investigation of the electrochemical properties of Rh-tpy in DMF solvent reveals that the two-electrons reduced state of the complex, the square-planar [RhI(tpy)Cl] (RhI-tpy), is quantitatively electrogenerated by bulk electrolysis. This complex is stable for hours under an inert atmosphere owing to the π-acceptor property of the terpyridine ligand that stabilizes the low oxidation states of the rhodium, making this catalyst less prone to degrade during photocatalysis. The π-acceptor property of terpyridine also confers to the Rh-tpy catalyst a moderately negative reduction potential (Epc(RhIII/RhI) = -0.83 V vs. SCE in DMF), making possible its reduction by the reduced state of Ru, [RuII(bpy)(bpy•-)]+ (Ru-) (E1/2(RuII/Ru-) = -1.50 V vs. SCE) generated by a reductive quenching of the Ru excited state (*Ru) by ascorbate during photocatalysis. A Stern-Volmer plot and transient absorption spectroscopy confirmed that the first step of the photocatalytic process is the reductive quenching of *Ru by ascorbate. The resulting reduced Ru species (Ru-) were then able to activate the RhIII-tpy H2-evolving catalyst by reduction generating RhI-tpy, which can react with a proton on a sub-nanosecond time scale to form a RhIII(H)-tpy hydride, the key intermediate for H2 evolution.
Collapse
Affiliation(s)
- Fakourou Camara
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
- SyMMES, IRIG, CEA, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Gavaggio
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Jérôme Chauvin
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jacques Pécaut
- SyMMES, IRIG, CEA, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Dmitry Aldakov
- SyMMES, IRIG, CEA, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
| | - Marie-Noëlle Collomb
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
- Correspondence: (M.-N.C.); (J.F.)
| | - Jérôme Fortage
- DCM, CNRS, Université Grenoble Alpes, 38000 Grenoble, France
- Correspondence: (M.-N.C.); (J.F.)
| |
Collapse
|
7
|
Pei C, Empel C, Koenigs RM. Visible-Light-Induced, Single-Metal-Catalyzed, Directed C-H Functionalization: Metal-Substrate-Bound Complexes as Light-Harvesting Agents. Angew Chem Int Ed Engl 2022; 61:e202201743. [PMID: 35344253 PMCID: PMC9401074 DOI: 10.1002/anie.202201743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 12/05/2022]
Abstract
C-H functionalization represents one of the most rapidly advancing areas in organic synthesis and is regarded as one of the key concepts to minimize the ecological and economic footprint of organic synthesis. The ubiquity and low reactivity of C-H bonds in organic molecules, however, poses several challenges, and often necessitates harsh reaction conditions to achieve this goal, although it is highly desirable to achieve C-H functionalization reactions under mild conditions. Recently, several reports uncovered a conceptually new approach towards C-H functionalization, where a single transition-metal complex can be used as both the photosensitizer and catalyst to promote C-H bond functionalization in the absence of an exogeneous photosensitizer. In this Minireview, we will provide an overview on recent achievements in C-H functionalization reactions, with an emphasis on the photochemical modulation of the reaction mechanism using such catalysts.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Claire Empel
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- RWTH Aachen UniversityInstitute of Organic ChemistryLandoltweg 152074AachenGermany
| |
Collapse
|
8
|
Pei C, Empel C, Koenigs RM. Visible‐Light‐Induced, Sole‐Metal‐Catalyzed, Directed C–H Functionalization: Metal‐Substrate Bound Complexes as Light‐Harvesting Agents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Pei
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Organic Chemistry GERMANY
| | - Claire Empel
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Organic Chemistry GERMANY
| | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 52074 Aachen GERMANY
| |
Collapse
|
9
|
Lv C, Qin S, Lei Y, Li X, Huang J, Liu J. Direct Z-Scheme Heterojunction Catalysts Constructed by Graphitic-C 3N 4 and Photosensitive Metal-Organic Cages for Efficient Photocatalytic Hydrogen Evolution. NANOMATERIALS 2022; 12:nano12050890. [PMID: 35269378 PMCID: PMC8912648 DOI: 10.3390/nano12050890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
The demand for improving the activity, durability, and recyclability of metal-organic cages (MOCs) that work as photocatalytic molecular devices in a homogeneous system has promoted research to combine them with other solid materials. An M2L4 type photosensitive metal-organic cage MOC-Q2 with light-harvesting ligands and catalytic Pd2+ centers has been synthesized and further heterogenized with graphitic carbon nitride to prepare a robust direct Z-scheme heterojunction photocatalyst for visible-light-driven hydrogen generation. The optimized g-C3N4/MOC-Q2 (0.7 wt%) sample exhibits a high H2 evolution activity of 6423 μmol g−1 h−1 in 5 h, and a total turnover number of 39,695 after 10 h, significantly superior to the bare MOC-Q2 used in the homogeneous solution and the comparison sample Pd/g-C3N4/L-4. The enhanced performances of g-C3N4/MOC-Q2 can be ascribed to its direct Z-scheme heterostructure, which effectively improves the charge separation and transfer efficiency. This work presents a rational approach of designing a binary photocatalytic system through combing micromolecular MOCs with heterogeneous semiconductors for water splitting.
Collapse
Affiliation(s)
- Chuying Lv
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
| | - Su Qin
- School of Chemical Engineering and New Energy Materials, Zhuhai College of Science and Technology, Zhuhai 519041, China;
| | - Yang Lei
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
| | - Xinao Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
| | - Jianfeng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
- Correspondence: (J.H.); (J.L.)
| | - Junmin Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (C.L.); (Y.L.); (X.L.)
- Correspondence: (J.H.); (J.L.)
| |
Collapse
|
10
|
Scalambra F, Díaz-Ortega IF, Romerosa-Nievas AM. Photo-generation of H2 by Heterometallic Complexes. Dalton Trans 2022; 51:14022-14031. [DOI: 10.1039/d2dt01870e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple and different metals in a complex can accomplish single and sequential multi-step reactions, providing valuable procedures to obtain chemicals in one-pot synthetic routes. Biology has shown how cooperative catalysis...
Collapse
|
11
|
Hou CP, Chen XL, Huang ZJ, Lei Y, Xiao LM, Huang JF, Li SY, Liu JM. Robust Heterogeneous Photocatalyst for Visible-Light-Driven Hydrogen Evolution Promotion: Immobilization of a Fluorescein Dye-Encapsulated Metal-Organic Cage on TiO 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57230-57240. [PMID: 34841847 DOI: 10.1021/acsami.1c17400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of artificial photocatalytic devices that simulates the ingenious and efficient photosynthetic systems in nature is promising. Herein, a metal-organic cage [Pd6(NPyCzPF)12]12+ (MOC-PC6) integrating 12 organic ligands NPyCzBP and 6 Pd2+ catalytic centers is designed, which is well defined to include organic dye fluorescein (FL) for constructing a supramolecular photochemical molecular device (SPMD) FL@MOC-PC6. Photoinduced electron transfer (PET) between MOC-PC6 and the encapsulated FL has been observed by steady-state and time-resolved emission spectroscopy. FL@MOC-PC6 is successfully heterogenized with TiO2 by a facile sol-gel method to achieve a robust heterogeneous FL@MOC-PC6-TiO2. The close proximity between the Pd2+ catalytic site and FL included in the cage enables PET from the photoexcited FL to Pd2+ sites through a powerful intramolecular pathway. The photocatalytic hydrogen production assessments of the optimized 4 wt % FL@MOC-PC6-TiO2 demonstrate an initial H2 production rate of 2402 μmol g-1 h-1 and a turnover number of 4356 within 40 h, enhanced by 15-fold over that of a homogeneous FL@MOC-PC6. The effect of the MOC content on photocatalytic H2 evolution (PHE) is investigated and the inefficient comparison systems, such as MOC-PC6, MOC-PC6-TiO2, FL-sensitized MOC-PC6/FL-TiO2, and analogue FL/MOC-PC6-TiO2 with free FL, are evaluated. This study provides a creative and distinctive approach for the design and preparation of novel heterogeneous SPMD catalysts based on MOCs.
Collapse
Affiliation(s)
- Chao-Ping Hou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin-Lun Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Jian Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Lei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Min Xiao
- School of Computer Science and Engineering, Beihang University, Beijing 100191, China
| | - Jian-Feng Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shao-Yong Li
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jun-Min Liu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Ohyama R, Mishima M, Inagaki A. Syntheses and structure of dinuclear metal complexes containing naphthyl-Ir bichromophore. Dalton Trans 2021; 50:12716-12722. [PMID: 34545880 DOI: 10.1039/d1dt01853a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel metal complexes were synthesized containing an Ir-cyclometalated bichromophore as a visible-light sensitizer. A new bichromophoric unit containing a naphthyl substituent and methyl substituents on the 2-phenylpyridine chelating ligand was synthesized and characterized for the first time. According to the increased crystallinity of the bichromophoric unit, novel Ir-M metal complexes (M = Pd, Mn, and Ir) were synthesized and fully characterized. The novel Ir-Pd complex maintained photocatalytic activity toward styrenes under visible-light irradiation, and polymerization with p-chlorostyrene, copolymerization with styrene and p-chlorostyrene furnished corresponding polymers.
Collapse
Affiliation(s)
- Ryo Ohyama
- Department of Chemistry, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan.
| | - Masaki Mishima
- Department of Molecular Biophysics, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akiko Inagaki
- Department of Chemistry, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan.
| |
Collapse
|
13
|
Qin S, Lei Y, Guo J, Huang JF, Hou CP, Liu JM. Constructing Heterogeneous Direct Z-Scheme Photocatalysts Based on Metal-Organic Cages and Graphitic-C 3N 4 for High-Efficiency Photocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25960-25971. [PMID: 34036785 DOI: 10.1021/acsami.1c03617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of artificial devices that mimic the highly efficient and ingenious photosystems in nature is worthy of in-depth study. A metal-organic cage (MOC) Pd2(M-4)4(BF4)4, denoted as MOC-Q1, integrating four organic photosensitized ligands M-4 and two Pd2+ catalytic centers is designed for a photochemical molecular device (PMD). MOC-Q1 is successfully immobilized on graphitic carbon nitride (g-C3N4) by hydrogen bonds to obtain a robust heterogeneous direct Z-scheme g-C3N4/MOC-Q1 photocatalyst for H2 generation under visible light. The optimized g-C3N4/MOC-Q1 (2 wt %) system shows high hydrogen evolution activity (4495 μmol g-1 h-1 based on the catalyst mass) and exhibits stable performances for 25 h (a turnover number of 19,268 based on MOC-Q1), significantly outperforming pure MOC-Q1, g-C3N4, and comparsion materials Pd/g-C3N4/M-4, which is the highest one of all reported heterogeneous MOC-based photocatalysts under visible irradiation. This enhancement can be ascribed to the synergistic effects of high-efficient electron transfer, extended visible-light response region, and good protective environment for MOC-Q1 arising from an efficient direct Z-scheme heterostructure of g-C3N4/MOC-Q1. This rationally designed and synthesized MOC/g-C3N4-based heterogeneous PMD is expected to have great potential in photocatalytic water splitting.
Collapse
Affiliation(s)
- Su Qin
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Lei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao-Ping Hou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun-Min Liu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
El Harakeh N, Morais ACP, Rani N, Gomez JAG, Cousino A, Lanznaster M, Mazumder S, Verani CN. Reactivity and Mechanisms of Photoactivated Heterometallic [Ru
II
Ni
II
] and [Ru
II
Ni
II
Ru
II
] Catalysts for Dihydrogen Generation from Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nour El Harakeh
- Department of Chemistry Wayne State University Detroit MI 48202 USA
| | - Ana C. P. Morais
- Instituto de Química Universidade Federal Fluminense 24020-141 Niterói RJ Brazil
| | - Neha Rani
- Department of Chemistry Indian Institute of Technology Jammu Jammu 181221 India
| | - Javier A. G. Gomez
- Instituto de Química Universidade Federal Fluminense 24020-141 Niterói RJ Brazil
| | - Abigail Cousino
- Department of Chemistry Wayne State University Detroit MI 48202 USA
| | - Mauricio Lanznaster
- Instituto de Química Universidade Federal Fluminense 24020-141 Niterói RJ Brazil
| | - Shivnath Mazumder
- Department of Chemistry Indian Institute of Technology Jammu Jammu 181221 India
| | | |
Collapse
|
15
|
El Harakeh N, de Morais ACP, Rani N, Gomez JAG, Cousino A, Lanznaster M, Mazumder S, Verani CN. Reactivity and Mechanisms of Photoactivated Heterometallic [Ru II Ni II ] and [Ru II Ni II Ru II ] Catalysts for Dihydrogen Generation from Water. Angew Chem Int Ed Engl 2021; 60:5723-5728. [PMID: 33319451 DOI: 10.1002/anie.202013678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 11/07/2022]
Abstract
Two heterometallic photocatalysts were designed and probed for water reduction. Both [(bpy)2 RuII NiII (L1 )](ClO4 )2 (1) and [(bpy)2 RuII NiII (L2 )2 RuII (bpy)2 ](ClO4 )2 (2) can generate the low-valent precursor involved in hydride formation prior to dihydrogen generation. However, while the bimetallic [RuII NiII ] (1) requires the presence of an external photosensitizer to trigger catalytic activity, the trimetallic [RuII NiII RuII ] (2) displays significant coupling between the catalytic and light-harvesting units to promote intramolecular multielectron transfer and perform photocatalysis at the Ni center. A concerted experimental and theoretical effort proposes mechanisms to explain why 1 is unable to achieve self-supported catalysis, while 2 is fully photocatalytic.
Collapse
Affiliation(s)
- Nour El Harakeh
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Ana C P de Morais
- Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Neha Rani
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Javier A G Gomez
- Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Abigail Cousino
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Shivnath Mazumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Cláudio N Verani
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
16
|
Kim J, Kim D, Chang S. Merging Two Functions in a Single Rh Catalyst System: Bimodular Conjugate for Light-Induced Oxidative Coupling. J Am Chem Soc 2020; 142:19052-19057. [PMID: 33124802 DOI: 10.1021/jacs.0c09982] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A single molecular rhodium catalyst system (PC2-Cp#RhIII) bearing two functional domains for both photosensitization and C-H carbometalation was designed to enable an intramolecular redox process. The hypothesized charge-transfer species (PC2•--Cp#RhIV) was characterized by spectroscopic and electrochemical analyses. This photoinduced internal oxidation allows a facile access to the triplet state of the key post-transmetalation intermediate that readily undergoes C-C bond-forming reductive elimination with a lower activation barrier than in its singlet state, thus enabling catalytic C-H arylation and methylation processes.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.,Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
17
|
Cerfontaine S, Duez Q, Troian-Gautier L, Barozzino-Consiglio G, Loiseau F, Cornil J, De Winter J, Gerbaux P, Elias B. Efficient Convergent Energy Transfer in a Stereoisomerically Pure Heptanuclear Luminescent Terpyridine-Based Ru(II)-Os(II) Dendrimer. Inorg Chem 2020; 59:14536-14543. [PMID: 32954720 DOI: 10.1021/acs.inorgchem.0c02336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stereoisomerically pure synthesis of a novel heptanuclear Ru(II)-Os(II) antenna bearing multitopic terpyridine ligands is reported. An unambiguous structural characterization was obtained by 1H NMR spectroscopy and ion mobility spectrometry (IMS-MS). The heptanuclear complex exhibits large molar absorption coefficients (77900 M-1 cm-1 at 497 nm) and undergoes unitary, downhill, convergent energy transfer from the peripheral Ru(II) subunits to the central Os(II) that displays photoluminescence with a lifetime (τ = 161 ns) competent for diffusional excited-state electron transfer reactivity in solution.
Collapse
Affiliation(s)
- Simon Cerfontaine
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium.,Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP) - University of Mons (UMONS), Place du Parc 23, B-7000 Mons, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), CP 160/06, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium
| | - Gabriella Barozzino-Consiglio
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | | | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP) - University of Mons (UMONS), Place du Parc 23, B-7000 Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Tachibana Y, Kalak T, Nogami M, Tanaka M. Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water. WATER RESEARCH 2020; 182:116032. [PMID: 32574820 DOI: 10.1016/j.watres.2020.116032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Tannic acid-type organic composite adsorbents (PA316TAS, AR-01TAS, PYRTAS, WA10TAS, WA20TAS, and WA30TAS), combined with hydrolyzed and sulfonated tannic acid (TAS) and porous-type strongly basic anion-exchange resin (PA316), benzimidazole-type anion-exchange resin embedded in high-porous silica beads (AR-01), pyridine-type anion-exchange resin (PYR), acrylic-type weakly basic anion-exchange resin (WA10), or styrene-type weakly basic anion-exchange resins (WA20 and WA30) for simultaneous removal of various kinds of radionuclides in river water were successfully synthesized. The adsorption behavior of twelve kinds of simulated radionuclides (Mn, Co, Sr, Y, Ru, Rh, Sb, Te, Cs, Ba, Eu, and I (I- and IO3-)) on these composite adsorbents has been studied in real river water at room temperature. PA316TAS adsorbents showed much higher distribution coefficients (Kd) for all metal ions. TAS structure has more selective adsorption ability for Mn, Co, Sr, Y, Cs, Ba, Eu, and IO3-. On the other hand, Y, Ru, Rh, Sb, Te, Eu, I (I- and IO3-) were adsorbed on both PA316 and TAS structures. To evaluate the validity of these mechanistic expectations, the respective chemical adsorption behaviors of Mn, Co, Sr, etc. and PA316TAS adsorbent were examined in river water ranging in temperature from 278 to 333 K. As was expected, one adsorption mechanism for Mn, Co, Sr, Cs, and Ba systems and two types of adsorption mechanisms for Y, Ru, Rh, Sb, Te, Eu, I (I- and IO3-) systems were observed. On the other hand, the precipitation of Mn, Co, Y, Ru, Rh, Te, and Eu was formed by ozonation for river water, that is, ozone can transform Mn, Co, Y, Ru, Rh, Te, and Eu ions into the insoluble precipitates. Hence, one straight line for Sr, Cs, Ba systems and two types of straight lines for Sb, I (I- and IO3-) systems were obtained in river water treated with ozone. The chromatography experiments of Cs, Sr, I (I- and IO3-) were carried out to calculate their maximum adsorption capacities. The obtained maximum adsorption capacities of Cs, Sr, and I- mixed with IO3- were 1.7 × 10-4 (Cs), 1.8 × 10-3 (Cs/O3), 7.8 × 10-5 (Sr), 5.6 × 10-4 (Sr/O3), 5.4 × 10-2 (I- and IO3-), 3.1 × 10-2 (I- and IO3-/O3) mol/g - PA316TAS. It was discovered that the maximum adsorption capacities of I- and IO3- for the composite adsorbent is unprecedented high and the capacity become much greater than an order of magnitude, compared with those of previous reports. This phenomenon suggests the formation of electron-donor-acceptor (EDA) complexes or pseudo EDA complex. Based on these results, it was concluded that the combined use of tannic acid-type organic composite adsorbents and ozone made it possible to remove simultaneously and effectively various kinds of radionuclides in river water in the wide pH and temperature ranges.
Collapse
Affiliation(s)
- Yu Tachibana
- Department of Nuclear System Safety Engineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka-shi, Niigata, 940-2188, Japan.
| | - Tomasz Kalak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, Poznań, 61-875, Poland
| | - Masanobu Nogami
- Department of Electric and Electronic Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka-shi, Osaka, 577-8502, Japan
| | - Masahiro Tanaka
- National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-shi, Gifu, 509-5292, Japan
| |
Collapse
|
19
|
Zhou X, Yin L, Dai K, Gao X, Feng Y, Zhao Y, Zhang B. Preparation of Ni2P on twinned Zn0.5Cd0.5S nanocrystals for high-efficient photocatalytic hydrogen production. J CHEM SCI 2020. [DOI: 10.1007/s12039-019-1727-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
21
|
Luo YC, Chu KL, Shi JY, Wu DJ, Wang XD, Mayor M, Su CY. Heterogenization of Photochemical Molecular Devices: Embedding a Metal-Organic Cage into a ZIF-8-Derived Matrix To Promote Proton and Electron Transfer. J Am Chem Soc 2019; 141:13057-13065. [PMID: 31343866 DOI: 10.1021/jacs.9b03981] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of a molecular catalyst in artificial photosynthesis is confronted with challenges such as rapid deactivation due to photodegradation or detrimental aggregation in harsh conditions. In this work, a metal-organic cage [Pd6(RuL3)8]28+ (MOC-16), characteristic of a photochemical molecular device (PMD) concurrently integrating eight Ru2+ light-harvesting centers and six Pd2+ catalytic centers for efficient homogeneous H2 production, is successfully heterogenized through incorporation into a metal-organic framework (MOF) of ZIF-8 and then transformed into a carbonate matrix of Znx(MeIm)x(CO3)x (CZIF), leading to hybridized MOC-16@CZIF. This MOC@MOF integrated photocatalyst inherits a highly efficient and directional electron transfer in the picosecond domain of MOC-16 and possesses one order increased microsecond magnitude of the triplet excited-state electron in comparison to that of the primitive MOC-16. The carbonate CZIF matrix endows MOC-16@CZIF with water wettability, serving as a proton relay to facilitate proton delivery by virtue of H2O as proton carriers. Electron transfer during the photocatalytic process is also enhanced by infiltration of a sacrificial agent of BIH into the CZIF matrix to promote conductivity, owing to its strong reducing ability to induce free charge carriers. These synergistic effects contribute to the extra high activity for H2 generation, making the turnover frequency of this heterogeneous MOC-16@CZIF photocatalyst maintain a level of ∼0.4 H2·s-1, increased by 50-fold over that of a homogeneous PMD. Meanwhile, it is robust enough to tolerate harsh reaction conditions, presenting an unprecedented heterogenization example of homogeneous PMD with a MOF-derived matrix to mimic catalytic features of a natural photosystem, which may shed light on the design of multifunctional PMD@MOF materials to expand the number of molecular catalysts for practical application in artificial photosynthesis.
Collapse
Affiliation(s)
- Yu-Cheng Luo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Kun-Lin Chu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Jian-Ying Shi
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Dong-Jun Wu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Xu-Dong Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Marcel Mayor
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
22
|
Liu X, Su S, Zhu GY, Shu Y, Gao Q, Meng M, Cheng T, Liu CY. Making Use of the δ Electrons in K 4Mo 2(SO 4) 4 for Visible-Light-Induced Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24006-24017. [PMID: 31241882 DOI: 10.1021/acsami.9b03918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quadruply bonded dimolybdenum complexes with a σ2π4δ2 electronic configuration for the ground state have rich metal-centered photochemistry. An earlier study showed that stoichiometric or less amount of molecular hydrogen was produced upon irradiation by ultraviolet light (λ = 254 nm) of K4Mo2(SO4)4 in sulfuric acid solution, which was attributed to the reductive capability of the ππ* excited state. To make use of the δ electrons for visible-light-induced photocatalytic hydrogen evolution, a multicomponent heterogeneous photocatalytic system containing K4Mo2(SO4)4 photosensitizer, TiO2 electron relay, and MoS2 cocatalyst is designed and tested. With ascorbic acid added as a sacrificial reagent, irradiation by artificial sunlight (AM 1.5) on the reaction in 5 M H2SO4 has produced 13 400 μmol g-1 of molecular hydrogen (based on the Mo2 complex), which is 30 times higher than the hydrogen yield obtained from the reaction of bare K4Mo2(SO4)4 with H2SO4 under ultraviolet light irradiation. Further improvement of hydrogen evolution is achieved by addition of oxalic acid, along with an electron donor, which gives an additional 50% increase in H2 yield. Spectroscopic analyses indicate that, in this case, a junction between the Mo2 complex and TiO2 is built by the oxalate bridging ligand, which facilitates charge injection and separation from the Mo2 core. This Mo2-TiO2-MoS2 system has achieved a high hydrogen evolution rate up to 4570 μmol g-1 h-1. The efficiency of K4Mo2(SO4)4 as a metal-centered photosensitizer is also proved by parallel experiments with a dye chromophore, fluorescein, which presents comparable H2 yields and hydrogen evolution rates. Most importantly, in this study, detailed analyses illustrate that the photocatalytic cycle with hydrogen gas as an outcome of the reaction is established by involvement of the δδ* excited state generated by visible light irradiation. Therefore, this work shows the potential of quadruply bonded Mo2 complexes as photosensitizers for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Shaoyang Su
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Guang Yuan Zhu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Yijin Shu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Qingsheng Gao
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Miao Meng
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Tao Cheng
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| | - Chun Y Liu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China
| |
Collapse
|
23
|
Promoting solar-to-hydrogen evolution on Schottky interface with mesoporous TiO2-Cu hybrid nanostructures. J Colloid Interface Sci 2019; 545:116-127. [DOI: 10.1016/j.jcis.2019.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 11/19/2022]
|
24
|
Kohler L, Mulfort KL. Photoinduced electron transfer kinetics of linked Ru-Co photocatalyst dyads. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Chao D, Zhao M. A supramolecular assembly bearing an organic TADF chromophore: synthesis, characterization and light-driven cooperative acceptorless dehydrogenation of secondary amines. Dalton Trans 2019; 48:5444-5449. [DOI: 10.1039/c9dt00407f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A noble-metal-free chromophore–catalyst supramolecular assembly, which contains an organic thermally activated delayed fluorescence (TADF) chromophore and cobaloximes, has been designed and synthesized for efficient light-driven acceptorless dehydrogenation of secondary amines.
Collapse
Affiliation(s)
- Duobin Chao
- School of Materials Science and Chemical Engineering
- Ningbo University
- Zhejiang 315211
- China
| | - Mengying Zhao
- School of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin
- China
| |
Collapse
|
26
|
Luo GG, Pan ZH, Lin JQ, Sun D. Tethered sensitizer-catalyst noble-metal-free molecular devices for solar-driven hydrogen generation. Dalton Trans 2018; 47:15633-15645. [PMID: 30299443 DOI: 10.1039/c8dt02831a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inspired by natural photosynthesis in an organized assembly, compact H2-evolving molecular devices, which tether sensitizer and catalyst modules in one single molecule, present an opportunity to overcome the diffusion limit required for multi-component molecular systems, and increase intramolecular electron transfer rates from the photoactivated unit to the catalytic center to improve H2-evolving efficiency. Thereinto absolutely noble-metal free H2-evolving molecular devices are of particular interest because they don't contain precious and scarce noble-metal based components. This Frontier article focuses specifically on the recent advances in the design, synthesis, and photocatalytic properties of all-abundant-element molecular devices for photoinduced H2 generation via intramolecular processes. Some challenges and suggestions for future directions in this field are also illustrated.
Collapse
Affiliation(s)
- Geng-Geng Luo
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China.
| | | | | | | |
Collapse
|
27
|
Yamamoto K, Call A, Sakai K. Photocatalytic H2Evolution Using a Ru Chromophore Tethered to Six Viologen Acceptors. Chemistry 2018; 24:16620-16629. [DOI: 10.1002/chem.201803662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Keiya Yamamoto
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Arnau Call
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Sakai
- Department of Chemistry; Faculty of Science; Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research; (WPI-I CNER); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS); Kyushu University; Motooka 744, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
28
|
Guo S, Chen KK, Dong R, Zhang ZM, Zhao J, Lu TB. Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02226] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai-Kai Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ru Dong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|