1
|
Ou YF, Chen S, Lei Q, Shen Y, Tang N, Zhou Y, Yin SF, Kambe N, Yuan L, Qiu R. Mechanism-Driven Bioactive Indazole Frameworks: Photoinitiated Demethylation-Aromatization Synthesis and Biosensing Applications. Angew Chem Int Ed Engl 2025:e202507163. [PMID: 40397525 DOI: 10.1002/anie.202507163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/23/2025]
Abstract
Indazole frameworks are pivotal in medicinal chemistry and fluorescent conjugate design. Herein, we reported a photochemical strategy enabling efficient N-demethylation and aromatic cyclization of N-methyl amines via UV-induced nitroso intermediates, offering an environmentally benign route to structurally diverse 2H-indazole scaffolds. Diverging from conventional methods, this protocol demonstrates exceptional substrate compatibility with various alkyl/aryl amines, facilitating streamlined assembly of functionalized 2H-indazole modules. The methodology has been successfully applied to synthesize modified drugs and tumor-specific fluorescent probes targeting G-quadruplexes. Preliminary evaluations of physiological toxicity and cellular fluorescence imaging highlight their biomedical potential, establishing these strategies as potential tools for pharmacological development and bioimaging research.
Collapse
Affiliation(s)
- Yi-Feng Ou
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Songhua Chen
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Qian Lei
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yang Shen
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Niu Tang
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yongbo Zhou
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Shuang-Feng Yin
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Nobuaki Kambe
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Lin Yuan
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Renhua Qiu
- State Key laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
2
|
Zhang Z, Li K, Huang M, Chen T, Zhou J. The Outstanding Ambiphilicity of Trialkylstibines among Trialkylpnictines: Power for Stepwise Deoxygenation and N-N Coupling of Nitroarenes. J Am Chem Soc 2025; 147:10066-10072. [PMID: 40073218 DOI: 10.1021/jacs.5c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The ongoing discovery of highly reactive ambiphilic main-group species has significantly advanced the development of main-group chemistry, particularly in the realms of small molecule activation and catalysis. Theoretically, compounds featuring smaller HOMO-LUMO gaps gain stronger ambiphilicity and higher reactivity. In this work, we fundamentally demonstrate that Me3Sb holds the smallest HOMO-LUMO gap among trimethylpnictines, indicating its outstanding ambiphilicity. Correspondingly, the superior reactivity of Me3Sb toward deoxygenation of electron-deficient nitroarenes has been unambiguously revealed through control experiments. Furthermore, unprecedented SbIII/SbVO cycling between trialkylstibines and their oxides has been established for the catalytic transformation of nitroarenes into azoxyarenes/azoarenes. This study opens a new chapter for organoantimony derivatives in the fields of ambiphilic reactivity and redox catalysis.
Collapse
Affiliation(s)
- Zichen Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Kunlong Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Minghao Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ting Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Jiliang Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Kaneko T, Ito R, Okamura T, Sato T. Photoinduced Reductive [4 + 2] Cycloaddition of Nitroarenes. Org Lett 2025; 27:2042-2048. [PMID: 40008726 DOI: 10.1021/acs.orglett.4c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Direct C-N bond formation from nitroarenes is a valuable synthetic tool for quick access to aniline derivatives. Transformation via nitroso intermediates could be useful due to their unique properties, but the generation of nitrosoarenes in situ from nitroarenes is challenging due to the tendency for various side reactions. Herein we report the photoinduced reductive [4 + 2] cycloaddition of nitroarenes. The method begins with the photoinduced reduction of nitroarenes to give nitrosoarenes by hydrogen atom abstraction (HAA). The generated nitrosoarenes undergo a nitroso Diels-Alder (NDA) reaction. The key to success is the use of N-heterocyclic carbene (NHC) borane, which promotes efficient HAA, enabling the NDA reaction to proceed without the need for transition metals, strong bases, or elevated temperatures. The developed conditions allow high functional group tolerance, enabling late-stage functionalization and further derivatization of biologically active compounds.
Collapse
Affiliation(s)
- Taiki Kaneko
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Rin Ito
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Zhou Y, He Y, Huang H, Deng GJ. Visible-light-induced aerobic oxidative cyclization of nitroarenes with triethylamine using an organophotocatalyst. Org Biomol Chem 2025; 23:1338-1341. [PMID: 39751402 DOI: 10.1039/d4ob01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Isoxazolidines are structurally important scaffolds in many natural products and bioactive compounds. Herein, we report a novel synthetic method for isoxazolidine derivatives through visible-light-induced photoredox cascade cyclization of nitroarenes with triethylamine under aerobic conditions. The resultant 5-hydroxyl isoxazolidine compounds were generally obtained in moderate yields with a broad range of compatible functionalities.
Collapse
Affiliation(s)
- Yazheng Zhou
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Yutong He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- College of Chemistry, Xiangtan University, Xiangtan 411105, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
5
|
Ghosh A, Van Nguyen TH, Bellanger C, Chelli S, Ahmad M, Saffon-Merceron N, Taillier C, Dalla V, Mayer RJ, Dixon IM, Lakhdar S. Unraveling C-Selective Ring-Opening of Phosphiranes with Carboxylic Acids and Other Nucleophiles: A Mechanistically-Driven Approach. Angew Chem Int Ed Engl 2025; 64:e202414172. [PMID: 39140616 DOI: 10.1002/anie.202414172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Phosphiranes are weak Lewis bases reacting with only a limited number of electrophiles to produce the corresponding phosphiranium ions. These salts are recognized for their propensity to undergo reactions with oxygen pronucleophiles at the phosphorus site, leading to the formation of phosphine oxide adducts. Building on a thorough mechanistic understanding, we have developed an unprecedented approach that enables the selective reaction of carboxylic acids, and other nucleophiles, at the carbon site of phosphiranes. This method involves the photochemical generation of highly reactive carbenes, which react with 1-mesitylphosphirane to yield ylides. The latter undergoes a stepwise reaction with carboxylic acids, resulting in the production of the desired phosphines. In addition to DFT calculations, we have successfully isolated and fully characterized the key intermediates involved in the reaction.
Collapse
Affiliation(s)
- Avisek Ghosh
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Thi Hong Van Nguyen
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Corentin Bellanger
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Saloua Chelli
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Mohammad Ahmad
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT- UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| | - Catherine Taillier
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Vincent Dalla
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Robert J Mayer
- School of Natural Sciences, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, F-31062, Toulouse, France
| | - Sami Lakhdar
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
6
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
7
|
Jana R, Pradhan K. Shining light on the nitro group: distinct reactivity and selectivity. Chem Commun (Camb) 2024; 60:8806-8823. [PMID: 39081204 DOI: 10.1039/d4cc02582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The nitro moiety is an indispensable functional group in organic synthesis due to its facile introduction and reduction to the corresponding amines for a plethora of organic transformations. Owing to its distinct electronegative and conventional properties, it has been used for activated aromatic nucleophilic substitution (SNAr) reactions, Smiles reactions, Henry reactions, acyl anion equivalents, etc. Recently, the excellent photochemical properties of nitroarenes have been rediscovered by several groups, and their untapped potential in organic synthesis under UV or visible light irradiation has been exploited. Photoexcited nitroarenes can undergo facile reduction to amines, azo-coupling, metal-free reductive C-N coupling with boronic acids via a 1,2-boronate shift, hydrogen atom transfer (HAT), oxygen atom transfer for anaerobic oxidation of organic molecules, molecular editing via nitrene intermediates, denitrative coupling of β-nitrostyrene, radical α-alkylation of nitroalkanes, etc. They have also been used as a photolabile protecting group in medicinal chemistry and chemical biology applications. Here, we summarise the recent findings on visible-light-mediated transformations involving nitro-containing organic molecules.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
8
|
Li A, Gao A, Chen K, Li H. Electrochemical Cyclization of o-Aminyl Azobenzenes: Roles of Aldehydes in N-N Bond Cleavage. Org Lett 2024; 26:6324-6329. [PMID: 39038427 DOI: 10.1021/acs.orglett.4c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Direct functionalization of azobenzenes provides an approach to obtaining valuable molecules in synthetic chemistry. However, an efficient method for the cleavage of the N═N bond of azobenzenes, which is a key process for this transformation, is still lacking. We herein disclose an electrochemical reduction-induced cyclization of azobenzenes with aldehydes via N═N bond cleavage. This electrochemical cyclization of azobenzenes proceeds well in the absence of any transition metals or external chemical oxidants, leading to the formation of N-protected benzimidazoles in moderate to good yields.
Collapse
Affiliation(s)
- Anni Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Anna Gao
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Kangjia Chen
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
9
|
Krishna Atikala V, Akber Ansari S, Aamer Ansari I, Kapavarapu R, Babu Bollikolla H. Synthesis of 2-Aryl Indazole: Synthesis, Biological Evaluationand In-Silico Studies. Chem Biodivers 2024; 21:e202302085. [PMID: 38666662 DOI: 10.1002/cbdv.202302085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 06/13/2024]
Abstract
In this work, a highly effective synthesis technique for obtaining aryl indazole under mild circumstances is provided, using trimethyl phosphine as a powerful reagent. The procedure shows that a wide range of substrates can be investigated, yielding various 2-aryl indazole derivatives with acceptable to exceptional yields and a wide range of functional group tolerance. Additionally, based on In Silico studies tests were conducted to determine the anticancer activity In Vitro for all produced compounds (3 a-3 j) against A549, HT-29 and HepG2 cell lines. Compounds 3 c and 3 d, with IC50 values of 15, 53.55, 7.34, 7.10, 56.28, and 17.87 (μM) against A549, HT-29 and HepG2 respectively, showed significant anticancer activity.
Collapse
Affiliation(s)
- Vamshi Krishna Atikala
- Department of Chemistry, Acharya Nagarjuna University, Guntur, 522510, Andhra Pradesh, India
- Division of Forensic Chemistry, AP Forensic Science Laboratory, Mangalagiri, AP, India
| | - Siddique Akber Ansari
- Department of Pharmaceutical chemistry, College of Pharmacy, King Saud University, PO Box.2457, Riyadh, 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science & Technology, University of Turin, 10124, Turin, Italy
| | - Ravikumar Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy, Atmakur, Mangalagiri Mandal, Andhra Pradesh, India
| | - Hari Babu Bollikolla
- Department of Chemistry, Acharya Nagarjuna University, Guntur, 522510, Andhra Pradesh, India
- Department of Chemistry, Andhra Kesari University, Ongole, 523 001, Andhra Pradesh, India
| |
Collapse
|
10
|
Zhang J, Kong WY, Guo W, Tantillo DJ, Tang Y. Combined Computational and Experimental Study Reveals Complex Mechanistic Landscape of Brønsted Acid-Catalyzed Silane-Dependent P═O Reduction. J Am Chem Soc 2024; 146:13983-13999. [PMID: 38736283 DOI: 10.1021/jacs.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.
Collapse
Affiliation(s)
- Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Bolduc PN, Pfaffenbach M, Evans R, Xin Z, Henry KL, Gao F, Fang T, Silbereis J, Vera Rebollar J, Li P, Chodaparambil JV, Metrick C, Peterson EA. A Tiny Pocket Packs a Punch: Leveraging Pyridones for the Discovery of CNS-Penetrant Aza-indazole IRAK4 Inhibitors. ACS Med Chem Lett 2024; 15:714-721. [PMID: 38746903 PMCID: PMC11089553 DOI: 10.1021/acsmedchemlett.4c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/11/2025] Open
Abstract
We herein report the discovery, synthesis, and evolution of a series of indazoles and azaindazoles as CNS-penetrant IRAK4 inhibitors. Described is the use of structure-based and property-based drug design strategically leveraged to guide the property profile of a key series into a favorable property space while maintaining potency and selectivity. Our rationale that led toward functionalities with potency improvements, CNS-penetration, solubility, and favorable drug-like properties is portrayed. In vivo evaluation of an advanced analogue showed significant, dose-dependent modulation of inflammatory cytokines in a mouse model. In pursuit of incorporating a highly engineered bridged ether that was crucial to metabolic stability in this series, significant synthetic challenges were overcome to enable the preparation of the analogues.
Collapse
Affiliation(s)
- Philippe N. Bolduc
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Magnus Pfaffenbach
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ryan Evans
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zhili Xin
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kate L. Henry
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fang Gao
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Terry Fang
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - John Silbereis
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jorge Vera Rebollar
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pei Li
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Claire Metrick
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Emily A. Peterson
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
12
|
Sun G, Yu YH, Kai H, Meng FY, Yuan H, Wen X, Liu L, Xu QL. P III/P V-Catalyzed Beckmann Reaction and Sequential [2,3]-Sigmatropic Rearrangement to Construct 2-Amidopyridines. Org Lett 2024; 26:3536-3540. [PMID: 38683189 DOI: 10.1021/acs.orglett.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
An organophosphorus catalytic method for the synthesis of substituted 2-amidopyridines is reported. The method employs a small-ring organophosphorus-based catalyst and a hydrosilane reductant to drive the conversion of ketoximes and pyridine-N-oxides into 2-amidopyridines through sequential Beckmann rearrangement followed by [2,3]-sigmatropic rearrangement. The readily available ketoximes could be activated to nitrilium ions in PIII/PV redox catalysis and could efficiently participate in the domino reaction of pyridine-N-oxides, thus providing various substituted 2-amidopyridines in moderate to excellent yields. This presented strategy features excellent functional group tolerance and a broad substrate scope.
Collapse
Affiliation(s)
- Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yi-Han Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Han Kai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Fan-Ying Meng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
13
|
Xue J, Zhang YS, Huan Z, Luo HT, Dong L, Yang JD, Cheng JP. Phosphonium-Catalyzed Monoreduction of Bisphosphine Dioxides: Origin of Selectivity and Synthetic Applications. J Am Chem Soc 2024; 146:9335-9346. [PMID: 38501695 DOI: 10.1021/jacs.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Controlling product selectivity in successive reactions of the same type is challenging owing to the comparable thermodynamic and kinetic properties of the reactions involved. Here, the synergistic interaction of the two phosphoryl groups in bisphosphine dioxides (BPDOs) with a bromo-phosphonium cation was studied experimentally to provide a practical tool for substrate-catalyst recognition. As the eventual result, we have developed a phosphonium-catalyzed monoreduction of chiral BPDOs to access an array of synthetically useful bisphosphine monoxides (BPMOs) with axial, spiro, and planar chirality, which are otherwise challenging to synthesize before. The reaction features excellent selectivity and impressive reactivity. It proceeds under mild conditions, avoiding the use of superstoichiometric amounts of additives and metal catalysts to simplify the synthetic procedure. The accessibility and scalability of the reaction allowed for the rapid construction of a ligand library for optimization of asymmetric Heck-type cyclization, laying the foundation for a broad range of applications of chiral BPMOs in catalysis.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai-Tian Luo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
14
|
Gleim F, Schnakenburg G, Ferao AE, Streubel R. Arbuzov meets 1,2-oxaphosphetanes: transient 1,2-oxaphosphetan-2-iums as an entry point to beta-halo phosphane oxides and P-containing oligomers. Chem Commun (Camb) 2024; 60:2625-2628. [PMID: 38334361 DOI: 10.1039/d4cc00254g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Herein, we describe the synthesis of a 1,2σ3λ3-oxaphosphetane from ethylene oxide and its reactions with alkyl halides to form β-halo phosphane oxides in an Arbuzov-type reaction. When methyl triflate was used as a hard electrophile, cationic oligomerisation of 1,2-oxaphosphetanes was observed. DFT calculations indicate 1,2-oxaphosphetan-2-iums as intermediates and reveal differences between the Arbuzov and the potential Perkow reaction pathway.
Collapse
Affiliation(s)
- Florian Gleim
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhardt-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhardt-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Arturo Espinosa Ferao
- Facultad de Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain.
| | - Rainer Streubel
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhardt-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
15
|
Zhang J, Liu T, Zhang G, Cai J, Wang Y, Tong J, Ma Y, Szostak R, Szostak M. Indazolin-3-ylidenes (Indy*): easily accessible, sterically-hindered indazole-derived N-heterocyclic carbenes and their application in gold catalysis. Dalton Trans 2024; 53:4260-4265. [PMID: 38344761 DOI: 10.1039/d4dt00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Sterically-hindered N-heterocyclic carbenes (NHCs) with functionalized N-wingtips are a pivotal class of ligands in organic synthesis. Herein, we report the first class of sterically-hindered N-heterocyclic carbenes based on the indazole framework. These ligands combine the strong σ-donation of the carbene center due to the carbene placement at the C3-indazole position with the sterically-hindered and flexible N-substitution with the versatile 2,6-bis(diphenylmethyl)aryl moiety that extends beyond the metal centre for the first time in non-classical N-heterocyclic carbenes. The ligands are readily accessible by the rare Cadogan indazole synthesis of sterically-hindered N-aryl-1-(2-nitrophenyl)methanimines. Steric and electronic characterization as well as catalytic studies in the synthesis of oxazolines are described. Considering the unique properties of indazole-derived carbenes, we anticipate that this class of compounds will find broad application in organic synthesis and catalysis.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Ting Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Gaopeng Zhang
- Kaili Catalyst & New Materials Co., Ltd, Xi'an 710299, China
| | - Jianglong Cai
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yue Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jianbo Tong
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| |
Collapse
|
16
|
Liu Q, Chu H, Mai J, Yang H, Shen MH, Xu HD. Molybdenum-catalyzed deoxygenative heterocyclization of 2-nitroazobenzenes: a novel strategy for catalytic synthesis of 2-aryl-2 H-benzo[ d][1,2,3]triazoles. Org Biomol Chem 2024; 22:954-958. [PMID: 38205622 DOI: 10.1039/d3ob01969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A novel strategy for the catalytic synthesis of 2-aryl-2H-benzo[d][1,2,3]triazoles bearing a wide range of functional groups in good to excellent yields by non-noble molybdenum-catalyzed deoxygenative heterocyclization of 2-nitroazobenzenes is described. The salient features of the transformation include the use of readily available substrates, valuable products and ease of scale-up. The mechanistic study indicates that the reaction occurred via double deoxygenation by the Mo(VI)/Mo(IV) catalytic cycle from 2-nitroazobenzene, through the formation of 2-aryl-2H-benzo[d][1,2,3]triazole-N1-oxide or nitrene intermediates.
Collapse
Affiliation(s)
- Quanyun Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haoke Chu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Junju Mai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haobing Yang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
17
|
Sun G, Zhan SP, Zhao YF, Du X, Shi MY, Li J, Yuan H, Wen X, Sun H, Xu QL. Organophosphorus-Catalyzed Direct Dehydroxylative Thioetherification of Alcohols with Hypervalent Organosulfur Compounds. J Org Chem 2024. [PMID: 38173188 DOI: 10.1021/acs.joc.3c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A metal-free and thiol-free organophosphorus-catalyzed method for forming thioethers was disclosed, driven by PIII/PV═O redox cycling. In this work, one-step dehydroxylative thioetherification of alcohols was fulfilled with various hypervalent organosulfur compounds. This established strategy features an excellent functional group tolerance and broad substrate scope, especially inactivated alcohols. The scale-up reaction and further transformation of the product were also successful. Additionally, this method offers a protecting-group-free and step-efficient approach for synthesizing peroxisome proliferator-activated receptor agonists which exhibited promising potential for treating osteoporosis in mammals.
Collapse
Affiliation(s)
- Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Shi-Ping Zhan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yi-Feng Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xingyi Du
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Mao-Ying Shi
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
18
|
Qian J, Zhou L, Peng R, Tong X. (3+2) Annulation of 4-Acetoxy Allenoate with Aldimine Enabled by AgF-Assisted P(III)/P(V) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315188. [PMID: 37985927 DOI: 10.1002/anie.202315188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A phosphine-catalyzed (3+2) annulation of 4-acetoxy allenoate and aldimine with the assistance of AgF is described. The success of this reaction hinges on the metathesis between the enolate-phosphonium zwitterion and AgF, leading to a key intermediate comprising of silver enolate and a fluorophosphorane P(V)-moiety. The former is able to undergo a Mannich reaction with aldimine, whereas the latter initiates a cascade sequence of AcO-elimination/aza-addition, thus furnishing the P(III)/P(V) catalysis. By taking advantage of the silver enolate, a preliminary attempt at an asymmetric variant was conducted with the combination of an achiral phosphine catalyst and a chiral bis(oxazolinyl)pyridine ligand (PyBox), giving moderate enantioselectivity.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Rouxuan Peng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
19
|
Tönjes J, Kell L, Werner T. Organocatalytic Stereospecific Appel Reaction. Org Lett 2023; 25:9114-9118. [PMID: 38113448 DOI: 10.1021/acs.orglett.3c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein we report a new method for the catalytic Appel reaction by P(III)/P(V) redox cycling at very low catalyst loadings of 1-2 mol % using low amounts of hexachloroacetone as the halogen source and phenylsilane as the terminal reductant. Twenty-six alcohols and nine epoxides containing a wide variety of functional groups were converted to the respective chlorides and dichlorides in yields of up to 97%, enantiospecificities of up to >99%, and enantiomeric ratios of up to >99:1.
Collapse
Affiliation(s)
- Jan Tönjes
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Lukas Kell
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz Institute for Catalysis at the University of Rostock (LIKAT Rostock), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
- Department of Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| |
Collapse
|
20
|
Xue J, Zhang YS, Huan Z, Yang JD, Cheng JP. Deoxygenation of Phosphine Oxides by P III/P V═O Redox Catalysis via Successive Isodesmic Reactions. J Am Chem Soc 2023. [PMID: 37410888 DOI: 10.1021/jacs.3c05270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Deoxygenation of phosphine oxides is of great significance to synthesis of phosphorus ligands and relevant catalysts, as well as to the sustainability of phosphorus chemistry. However, the thermodynamic inertness of P═O bonds poses a severe challenge to their reduction. Previous approaches in this regard rely primarily on a type of P═O bond activation with either Lewis/Brønsted acids or stoichiometric halogenating reagents under harsh conditions. Here, we wish to report a novel catalytic strategy for facile and efficient deoxygenation of phosphine oxides via successive isodesmic reactions, whose thermodynamic driving force for breaking the strong P═O bond was compensated by a synchronous formation of another P═O bond. The reaction was enabled by PIII/P═O redox sequences with the cyclic organophosphorus catalyst and terminal reductant PhSiH3. This catalytic reaction avoids the use of the stoichiometric activator as in other cases and features a broad substrate scope, excellent reactivities, and mild reaction conditions. Preliminary thermodynamic and mechanistic investigations disclosed a dual synergistic role of the catalyst.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
21
|
Sun G, Li J, Liu X, Liu Y, Wen X, Sun H, Xu QL. Organophosphorus-Catalyzed "Dual-Substrate Deoxygenation" Strategy for C-S Bond Formation from Sulfonyl Chlorides and Alcohols/Acids. J Org Chem 2023. [PMID: 37296496 DOI: 10.1021/acs.joc.3c00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A green method to construct C-S bonds using sulfonyl chlorides and alcohols/acids via a PIII/PV═O catalytic system is reported. The organophosphorus-catalyzed umpolung reaction promotes us to propose the "dual-substrate deoxygenation" strategy. Herein, we adopt the "dual-substrate deoxygenation" strategy, which achieves the deoxygenation of sulfonyl chlorides and alcohols/acids to synthesize thioethers/thioesters driven by PIII/PV═O redox cycling. The catalytic method represents an operationally simple approach using stable phosphine oxide as a precatalyst and shows broad functional group tolerance. The potential application of this protocol is demonstrated by the late-stage diversification of drug analogues.
Collapse
Affiliation(s)
- Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xin Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yiting Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
22
|
Hannah TJ, McCarvell WM, Kirsch T, Bedard J, Hynes T, Mayho J, Bamford KL, Vos CW, Kozak CM, George T, Masuda JD, Chitnis SS. Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis. Chem Sci 2023; 14:4549-4563. [PMID: 37152250 PMCID: PMC10155930 DOI: 10.1039/d3sc00917c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 05/09/2023] Open
Abstract
Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth(iii) complexes (cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters ε-caprolactone and rac-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.
Collapse
Affiliation(s)
- Tyler J Hannah
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - W Michael McCarvell
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Tamina Kirsch
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Joseph Bedard
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Toren Hynes
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Jacqueline Mayho
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Karlee L Bamford
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Cyler W Vos
- Department of Chemistry, Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Christopher M Kozak
- Department of Chemistry, Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Tanner George
- Department of Chemistry, Saint Mary's University 923 Robie St. Halifax NS B3H 3C3 Canada
| | - Jason D Masuda
- Department of Chemistry, Saint Mary's University 923 Robie St. Halifax NS B3H 3C3 Canada
| | - S S Chitnis
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| |
Collapse
|
23
|
Kawajiri T, Kijima A, Iimuro A, Ohashi E, Yamakawa K, Agura K, Masuda K, Kouki K, Kasamatsu K, Yanagisawa S, Nakashima S, Shibahara S, Toyota T, Higuchi T, Suto T, Oohara T, Maki T, Sahara N, Fukui N, Wakamori H, Ikemoto H, Murakami H, Ando H, Hosoya M, Sato M, Suzuki Y, Nakagawa Y, Unoh Y, Hirano Y, Nagasawa Y, Goda S, Ohara T, Tsuritani T. Development of a Manufacturing Process toward the Convergent Synthesis of the COVID-19 Antiviral Ensitrelvir. ACS CENTRAL SCIENCE 2023; 9:836-843. [PMID: 37122445 PMCID: PMC10108738 DOI: 10.1021/acscentsci.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 05/03/2023]
Abstract
We describe the development of the practical manufacturing of Ensitrelvir, which was discovered as a SARS-CoV-2 antiviral candidate. Scalable synthetic methods of indazole, 1,2,4-triazole and 1,3,5-triazinone structures were established, and convergent couplings of these fragments enabled the development of a concise and efficient scale-up process to Ensitrelvir. In this process, introducing a meta-cresolyl moiety successfully enhanced the stability of intermediates. Compared to the initial route at the early research and development stage, the overall yield of the longest linear sequence (6 steps) was improved by approximately 7-fold. Furthermore, 9 out of the 12 isolated intermediates were crystallized directly from each reaction mixture without any extractive workup (direct isolation). This led to an efficient and environmentally friendly manufacturing process that minimizes waste of organic solvents, reagents, and processing time. This practical process for manufacturing Ensitrelvir should contribute to protection against COVID-19.
Collapse
Affiliation(s)
- Takahiro Kawajiri
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Akihito Kijima
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Atsuhiro Iimuro
- Laboratory
for Medicinal Chemistry Research, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Eisaku Ohashi
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Katsuya Yamakawa
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Kazushi Agura
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Kengo Masuda
- Laboratory
for Medicinal Chemistry Research, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Kensuke Kouki
- Laboratory
for Medicinal Chemistry Research, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Koji Kasamatsu
- Laboratory
for Medicinal Chemistry Research, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Shuichi Yanagisawa
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Sho Nakashima
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Setsuya Shibahara
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Takashi Toyota
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Takafumi Higuchi
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Takahiro Suto
- Laboratory
for Medicinal Chemistry Research, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Tadashi Oohara
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Toshikatsu Maki
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Naoto Sahara
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Nobuaki Fukui
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Hisayuki Wakamori
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Hidaka Ikemoto
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Hiroaki Murakami
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Hiroyasu Ando
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Masahiro Hosoya
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Mizuki Sato
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Yusuke Suzuki
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Yuta Nakagawa
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Yuto Unoh
- Laboratory
for Medicinal Chemistry Research, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Yoichi Hirano
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Yoshitomo Nagasawa
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Satoshi Goda
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Takafumi Ohara
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| | - Takayuki Tsuritani
- API
R&D Laboratory, Research Division, Shionogi
& Co., Ltd., 1-3, Kuise Terajima 2-Chome, Amagasaki, Hyogo 660-0813, Japan
| |
Collapse
|
24
|
Daher A, Bousfiha A, Tolbatov I, Mboyi CD, Cattey H, Roisnel T, Fleurat-Lessard P, Hissler M, Hierso JC, Bouit PA, Roger J. Tetrazo[1,2-b]indazoles: Straightforward Access to Nitrogen-Rich Polyaromatics from s-Tetrazines. Angew Chem Int Ed Engl 2023; 62:e202300571. [PMID: 36710261 DOI: 10.1002/anie.202300571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The straightforward access to a new class of aza-polyaromatics is reported. Starting from readily available fluorinated s-tetrazine, a cyclization process with azide leads to the formation of an unprecedented tetrazo[1,2-b]indazole or a bis-tetrazo[1,2-b]indazole (cis and trans conformers). Based on the new nitrogen core, further N-directed palladium-catalyzed ortho-C-H bond functionalization allows the introduction of halides or acetates. The physicochemical properties of these compounds were studied by a joint experimental/theoretical approach. The tetrazo[1,2-b]indazoles display solid-state π-stacking, low reduction potential, absorption in the visible range up to the near-infrared, and intense fluorescence, depending on the molecular structure.
Collapse
Affiliation(s)
- Ahmad Daher
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Asmae Bousfiha
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Iogann Tolbatov
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Clève D Mboyi
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| | | | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302 -, Université Bourgogne (UB) 9, avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
25
|
Zou D, Wang W, Hu Y, Jia T. Nitroarenes and nitroalkenes as potential amino sources for the synthesis of N-heterocycles. Org Biomol Chem 2023; 21:2254-2271. [PMID: 36825326 DOI: 10.1039/d3ob00064h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Nitro-compounds are one of the cheapest and most readily available materials in the chemical industry and are commonly utilized as versatile building blocks. Previously, the synthesis of N-heterocycles was largely based on anilines. The utilization of nitroarenes and nitroalkenes for the synthesis of N-heterocyclic compounds can save at least one step, however, as compared to anilines. Thus, considerable attention has been paid to nitroarenes and nitroalkenes as new potential amino sources. Significant progress has been made in the reductive cyclization of nitroarenes or nitroalkenes to access various N-heterocycles in recent years. Herein, we comprehensively summarize the recent progress in the construction of N-heterocycles using nitroarenes and nitroalkenes as potential amino sources. The compatibility of the reaction substrate, its mechanism, applications, advantages, and limitations in this field are also discussed in detail.
Collapse
Affiliation(s)
- Dong Zou
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang, University, Hangzhou, Zhejiang, 310016, China.
| | - Wei Wang
- Department of Pharmacy, Qiantang Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310018, China
| | - Yaqin Hu
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang, University, Hangzhou, Zhejiang, 310016, China.
| | - Tingting Jia
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
26
|
Xue J, Zhang YS, Huan Z, Yang JD, Cheng JP. Catalytic Vilsmeier-Haack Reactions for C1-Deuterated Formylation of Indoles. J Org Chem 2022; 87:15539-15546. [PMID: 36348629 DOI: 10.1021/acs.joc.2c02085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Vilsmeier-Haack reaction is a powerful tool to introduce formyl groups into electron-rich arenes, but its wide application is significantly restricted by stoichiometric employment of caustic POCl3. Herein, we reported a catalytic version of the Vilsmeier-Haack reaction enabled by a P(III)/P(V)═O cycle. This catalytic reaction provides a facile and efficient route for the direct construction of C1-deuterated indol-3-carboxaldehyde under mild conditions with stoichiometric DMF-d7 as the deuterium source. The products feature a remarkably higher deuteration level (>99%) than previously reported ones and are not contaminated by the likely unselective deuteration at other sites. The present transformation can also be used to transfer other carbonyl groups. Further downstream derivatizations of these deuterated products manifested their potential applications in the synthesis of deuterated bioactive molecules. Mechanistic insight was disclosed from studies of kinetics and intermediates.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| |
Collapse
|
27
|
Boyarskaya DV, Ongaro A, Piemontesi C, Wang Q, Zhu J. Synthesis of 3-Acyloxyindolenines by TiCl 3-Mediated Reductive Cyclization of 2-( ortho-Nitroaryl)-Substituted Enol Esters. Org Lett 2022; 24:7004-7008. [PMID: 36121329 DOI: 10.1021/acs.orglett.2c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of TiCl3, the reductive cyclization of tetrasubstituted enol esters bearing a 2-(ortho-nitroaryl) substituent affords 3-acyloxy-2,3-disubstituted indolenines in good yields. A domino process involving the partial reduction of nitro to a nitroso group followed by 5-center-6π-electrocyclization, 1,2-acyloxy migration, and the further reduction of the resulting nitrone intermediate accounts for the reaction outcome. The so-obtained indolenines are converted smoothly to 2,2-disubstituted oxindoles via a sequence of saponification and semipinacol rearrangement.
Collapse
Affiliation(s)
- Dina V Boyarskaya
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Alberto Ongaro
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, Lausanne 1015, Switzerland
| |
Collapse
|
28
|
Karnbrock SBH, Golz C, Mata RA, Alcarazo M. Ligand-Enabled Disproportionation of 1,2-Diphenylhydrazine at a P V -Center. Angew Chem Int Ed Engl 2022; 61:e202207450. [PMID: 35714171 PMCID: PMC9542402 DOI: 10.1002/anie.202207450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/02/2022]
Abstract
We present herein the synthesis of a nearly square-pyramidal chlorophosphorane supported by the tetradentate bis(amidophenolate) ligand, N,N'-bis(3,5-di-tert-butyl-2-phenoxy)-1,2-phenylenediamide. After chloride abstraction the resulting phosphonium cation efficiently promotes the disproportionation of 1,2-diphenylhydrazine to aniline and azobenzene. Mechanistic studies, spectroscopic analyses and theoretical calculations suggest that this unprecedented reactivity mode for PV -centres is induced by the high electrophilicity at the cationic PV -center, which originates from the geometry constraints imposed by the rigid pincer ligand, combined with the ability of the o-amidophenolate moieties to act as electron reservoir. This study illustrates the promising role of cooperativity between redox-active ligands and phosphorus for the design of organocatalysts able to promote redox processes.
Collapse
Affiliation(s)
- Simon B. H. Karnbrock
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Christopher Golz
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Ricardo A. Mata
- Institut für Physikalische ChemieGeorg-August-Universität GöttingenTammannstr. 637077GöttingenGermany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
29
|
Xiong N, Dong Y, Xu B, Li Y, Zeng R. Mild Amide Synthesis Using Nitrobenzene under Neutral Conditions. Org Lett 2022; 24:4766-4771. [PMID: 35758649 DOI: 10.1021/acs.orglett.2c01743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amide synthesis is one of the most important transformations in organic chemistry due to the broad application in pharmaceutical drugs and organic materials. In this report, we describe a mild protocol for amide formation using the readily available nitroarenes as nitrogen sources and an inexpensive iron complex as a catalyst. Because of the use of the pH-neutral conditions and the avoidance of the strong oxidant or reductant, a wide range of aromatic and aliphatic aldehydes as well as nitroarenes with various functional groups could be tolerated well. A plausible mechanism is proposed based on the detailed studies, in which iron catalyst initiates the radical process and the solvent plays a key role as O-atom acceptor.
Collapse
Affiliation(s)
- Ni Xiong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuanqi Dong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bin Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
30
|
Alcarazo M, Karnbrock SBH, Golz C, Mata RA. Ligand Enabled Disproportionation of 1,2‐Diphenylhydrazine at a P(V)‐Center. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manuel Alcarazo
- Georg-August-Universität Göttingen Organic chemistry Tammannstr 2 37007 Göttingen GERMANY
| | - Simon B. H. Karnbrock
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für organische und Biomolekulare Chemie GERMANY
| | - Christopher Golz
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institu für Organische und Biomolekulare Chemie GERMANY
| | - Ricardo A. Mata
- Georg-August-Universität Göttingen: Georg-August-Universitat Gottingen Institut für Physikalische Chemie GERMANY
| |
Collapse
|
31
|
1,2σ 3λ 3-Oxaphosphetanes and Their P-Chalcogenides-A Combined Experimental and Theoretical Study. Molecules 2022; 27:molecules27103345. [PMID: 35630822 PMCID: PMC9147792 DOI: 10.3390/molecules27103345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Although 1,2σ5λ5-oxaphosphetanes have been known for a long time, the “low-coordinate” 1,2σ3λ3-oxaphosphetanes have only been known since their first synthesis in 2018 via decomplexation. Apart from ligation of this P-heterocycle to gold(I)chloride and the oxidation using ortho-chloranil, nothing on their chemistry has been reported so far. Herein, we describe the synthesis of new 1,2σ3λ3-oxaphosphetane complexes (3a–e) and free derivatives (4a–e), as well as reactions of 4a with chalcogens and/or chalcogen transfer reagents, which yielded the P-chalcogenides (14–16a; Ch = O, S, Se). We also report on the theoretical results of the reaction pathways of C-phenyl-substituted 1,2 σ3λ3-oxaphosphetanes and ring strain energies of 1,2σ4λ5-oxaphosphetane P-chalcogenides.
Collapse
|
32
|
Hong SY, Radosevich AT. Chemoselective Primary Amination of Aryl Boronic Acids by P III/P V═O-Catalysis: Synthetic Capture of the Transient Nef Intermediate HNO. J Am Chem Soc 2022; 144:8902-8907. [PMID: 35549268 DOI: 10.1021/jacs.2c02922] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic approach to intercept the transient HNO for a chemoselective primary amination of arylboronic acids is reported. A phosphetane-based catalyst operating within PIII/PV═O redox cycling is shown to capture HNO, generated in situ by Nef decomposition of 2-nitropropane, to selectively install the primary amino group at aryl Csp2 centers. The method furnishes versatile primary arylamines from arylboronic acid substrates with the preservation of otherwise reactive functional groups.
Collapse
Affiliation(s)
- Seung Youn Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Patel G, Maurya RK, Tyagi S, Kant R, Yadav PP. PIDA‐Mediated Intramolecular N‐N Bond Formation to Access 2‐Aminoindazoles and 2,2′‐Biindazoles**. ChemistrySelect 2022. [DOI: 10.1002/slct.202201112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Girija Patel
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific & Innovative Research Ghaziabad 201002 India
| | - Rahul K. Maurya
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Shaifali Tyagi
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific & Innovative Research Ghaziabad 201002 India
| | - Ruchir Kant
- Molecular and Structural Biology CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Prem P. Yadav
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific & Innovative Research Ghaziabad 201002 India
| |
Collapse
|
34
|
BOUGHDIRI MA, MEJRI A, TANGOUR B. Pentavalent phosphorus formation mechanism. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Yamashita K, Hirokawa R, Ichikawa M, Hisanaga T, Nagao Y, Takita R, Watanabe K, Kawato Y, Hamashima Y. Mechanistic Details of Asymmetric Bromocyclization with BINAP Monoxide: Identification of Chiral Proton-Bridged Bisphosphine Oxide Complex and Its Application to Parallel Kinetic Resolution. J Am Chem Soc 2022; 144:3913-3924. [PMID: 35226811 DOI: 10.1021/jacs.1c11816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of our previously reported catalytic asymmetric bromocyclization reactions using 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) monoxide was examined in detail by the means of control experiments, NMR studies, X-ray structure analysis, and CryoSpray electrospray ionization mass spectrometry (ESI-MS) analysis. The chiral BINAP monoxide was transformed to a key catalyst precursor, proton-bridged bisphosphine oxide complex (POHOP·Br), in the presence of N-bromosuccinimide (NBS) and contaminating water. The thus-formed POHOP further reacts with NBS to afford BINAP dioxide and molecular bromine (Br2) simultaneously in equimolar amounts. While the resulting Br2 is activated by NBS to form a more reactive brominating reagent (Br2─NBS), BINAP dioxide serves as a bifunctional catalyst, acting as both a Lewis base that reacts with Br2─NBS to form a chiral brominating agent (P═O+─Br) and also as a Brønsted base for the activation of the substrate. By taking advantage of this novel concerted Lewis/Brønsted base catalysis by BINAP dioxide, we achieved the first regio- and chemodivergent parallel kinetic resolutions (PKRs) of racemic unsymmetrical bisallylic amides via bromocyclization.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Hirokawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mamoru Ichikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
36
|
Morris LJ, Ghana P, Rajeshkumar T, Carpentier A, Maron L, Okuda J. Ein Brønsted‐saures Galliumhydrid: Einfache Umwandlung von NNNN‐Makrocyclus‐geträgertem [Ga
I
]
+
in [Ga
III
H]
2+. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Louis J. Morris
- Institut für Anorganische Chemie RWTH Aachen University 52062 Aachen Deutschland
| | - Priyabrata Ghana
- Institut für Anorganische Chemie RWTH Aachen University 52062 Aachen Deutschland
| | - Thayalan Rajeshkumar
- CNRS INSA UPS UMR 5215 LPCNO Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse Frankreich
| | - Ambre Carpentier
- CNRS INSA UPS UMR 5215 LPCNO Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse Frankreich
| | - Laurent Maron
- CNRS INSA UPS UMR 5215 LPCNO Université de Toulouse 135 Avenue de Rangueil 31077 Toulouse Frankreich
| | - Jun Okuda
- Institut für Anorganische Chemie RWTH Aachen University 52062 Aachen Deutschland
| |
Collapse
|
37
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
38
|
Morris LJ, Ghana P, Rajeshkumar T, Carpentier A, Maron L, Okuda J. A Brønsted Acidic Gallium Hydride: Facile Interconversion of NNNN-Macrocycle Supported [GaI]+ and [GaIIIH]2. Angew Chem Int Ed Engl 2021; 61:e202114629. [PMID: 34932267 PMCID: PMC9304309 DOI: 10.1002/anie.202114629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/23/2022]
Abstract
Protonolysis of [Cp*M] (M=Ga, In, Tl) with [(Me4TACD)H][BAr4Me] (Me4TACD=N,N′,N′′,N′′′‐tetramethyl‐1,4,7,10‐tetraazacyclododecane; [BAr4Me]−=[B{C6H3‐3,5‐(CH3)2}4]−) provided monovalent salts [(Me4TACD)M][BAr4Me], whereas [Cp*Al]4 yielded trivalent [(Me4TACD)AlH][BAr4Me]2. Protonation of [(Me4TACD)Ga][BAr4Me] with [Et3NH][BAr4Me] gave an unusually acidic (pKa(CH3CN)=24.5) gallium(III) hydride dication [(Me4TACD)GaH][BAr4Me]2. Deprotonation with IMe4 (1,3,4,5‐tetramethyl‐imidazol‐ylidene) returned [(Me4TACD)Ga][BAr4Me]. These reversible processes occur with formal two‐electron oxidation and reduction of gallium. DFT calculations suggest that gallium(I) protonation is facilitated by strong coordination of the tetradentate ligand, which raises the HOMO energy. High nuclear charge of [(Me4TACD)GaH]2+ facilitates hydride‐to‐metal charge transfer during deprotonation. Attempts to prepare a gallium(III) dihydride cation resulted in spontaneous dehydrogenation to [(Me4TACD)Ga]+.
Collapse
Affiliation(s)
- Louis J Morris
- Aachen University of Technology: Rheinisch-Westfalische Technische Hochschule Aachen, Institute of Inorganic Chemistry, Landoltweg 1, 52062, Aachen, GERMANY
| | - Priyabrata Ghana
- Aachen University of Technology: Rheinisch-Westfalische Technische Hochschule Aachen, Institute of Inorganic Chemistry, Landoltweg 1, 52056, Aachen, GERMANY
| | - Thayalan Rajeshkumar
- Toulouse 3 University: Universite Toulouse III Paul Sabatier, CNRS, INSA, UPS, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, FRANCE
| | - Ambre Carpentier
- Toulouse 3 University: Universite Toulouse III Paul Sabatier, CNRS, INSA, UPS, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, FRANCE
| | - Laurent Maron
- Toulouse 3 University: Universite Toulouse III Paul Sabatier, CNRS, INSA, UPS, LPCNO, Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO,, 135 Avenue de Rangueil, 31077, Toulouse, FRANCE
| | - Jun Okuda
- RWTH Aachen, Institut für Anorganische Chemie, Landoltweg 1, 52074, Aachen, GERMANY
| |
Collapse
|
39
|
Lorton C, Roblin A, Retailleau P, Voituriez A. Synthesis of Functionalized Cyclobutenes and Spirocycles
via
Asymmetric P(III)/P(V) Redox Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Charlotte Lorton
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Antoine Roblin
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Arnaud Voituriez
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
40
|
Lipshultz JM, Radosevich AT. Uniting Amide Synthesis and Activation by P III/P V-Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. J Am Chem Soc 2021; 143:14487-14494. [PMID: 34478308 DOI: 10.1021/jacs.1c07608] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An organophosphorus (PIII/PV redox) catalyzed method for the three-component condensation of amines, carboxylic acids, and pyridine N-oxides to generate 2-amidopyridines via serial dehydration is reported. Whereas amide synthesis and functionalization usually occur under divergent reaction conditions, here a phosphetane catalyst (together with a mild bromenium oxidant and terminal hydrosilane reductant) is shown to drive both steps chemoselectively in an auto-tandem catalytic cascade. The ability to both prepare and functionalize amides under the action of a single organocatalytic reactive intermediate enables new possibilities for the efficient and modular preparation of medicinal targets.
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Li G, Miller SP, Radosevich AT. P III/P V═O-Catalyzed Intermolecular N-N Bond Formation: Cross-Selective Reductive Coupling of Nitroarenes and Anilines. J Am Chem Soc 2021; 143:14464-14469. [PMID: 34473484 DOI: 10.1021/jacs.1c07272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An organophosphorus-catalyzed method for the synthesis of unsymmetrical hydrazines by cross-selective intermolecular N-N reductive coupling is reported. This method employs a small ring phosphacycle (phosphetane) catalyst together with hydrosilane as the terminal reductant to drive reductive coupling of nitroarenes and anilines with good chemoselectivity and functional group tolerance. Mechanistic investigations support an autotandem catalytic reaction cascade in which the organophosphorus catalyst drives two sequential and mechanistically distinct reduction events via PIII/PV═O cycling in order to furnish the target N-N bond.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Steven P Miller
- Department of Process Research and Development, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Martin JS, Zeng X, Chen X, Miller C, Han C, Lin Y, Yamamoto N, Wang X, Yazdi S, Yan Y, Beard MC, Yan Y. A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events. J Am Chem Soc 2021; 143:11361-11369. [PMID: 34286970 DOI: 10.1021/jacs.1c00503] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heterogeneous photocatalysis is less common but can provide unique avenues for inducing novel chemical transformations and can also be utilized for energy transductions, i.e., the energy in the photons can be captured in chemical bonds. Here, we developed a novel heterogeneous photocatalytic system that employs a lead-halide perovskite nanocrystal (NC) to capture photons and direct photogenerated holes to a surface bound transition metal Cu-site, resulting in a N-N heterocyclization reaction. The reaction starts from surface coordinated diamine substrates and requires two subsequent photo-oxidation events per reaction cycle. We establish a photocatalytic pathway that incorporates sequential inner sphere electron transfer events, photons absorbed by the NC generate holes that are sequentially funneled to the Cu-surface site to perform the reaction. The photocatalyst is readily prepared via a controlled cation-exchange reaction and provides new opportunities in photodriven heterogeneous catalysis.
Collapse
Affiliation(s)
- Jovan San Martin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Xianghua Zeng
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States.,College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xihan Chen
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Collin Miller
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Chuang Han
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yixiong Lin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Xiaoming Wang
- Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, United States
| | - Sadegh Yazdi
- Renewable & Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yanfa Yan
- Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization (PVIC), University of Toledo, Toledo, Ohio 43606, United States
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
43
|
|
44
|
Phosphine‐Catalyzed Synthesis of Chiral
N
‐Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Synthesis, Antiprotozoal Activity, and Cheminformatic Analysis of 2-Phenyl-2 H-Indazole Derivatives. Molecules 2021; 26:molecules26082145. [PMID: 33917871 PMCID: PMC8068258 DOI: 10.3390/molecules26082145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Indazole is an important scaffold in medicinal chemistry. At present, the progress on synthetic methodologies has allowed the preparation of several new indazole derivatives with interesting pharmacological properties. Particularly, the antiprotozoal activity of indazole derivatives have been recently reported. Herein, a series of 22 indazole derivatives was synthesized and studied as antiprotozoals. The 2-phenyl-2H-indazole scaffold was accessed by a one-pot procedure, which includes a combination of ultrasound synthesis under neat conditions as well as Cadogan's cyclization. Moreover, some compounds were derivatized to have an appropriate set to provide structure-activity relationships (SAR) information. Whereas the antiprotozoal activity of six of these compounds against E. histolytica, G. intestinalis, and T. vaginalis had been previously reported, the activity of the additional 16 compounds was evaluated against these same protozoa. The biological assays revealed structural features that favor the antiprotozoal activity against the three protozoans tested, e.g., electron withdrawing groups at the 2-phenyl ring. It is important to mention that the indazole derivatives possess strong antiprotozoal activity and are also characterized by a continuous SAR.
Collapse
|
46
|
Wang P, Zhu Q, Wang Y, Zeng G, Zhu J, Zhu C. Carbon-halogen bond activation by a structurally constrained phosphorus(III) platform. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Dhote PS, Ramana CV. Interrupting the [Au]-Catalyzed Nitroalkyne Cycloisomerization: Trapping the Putative α-Oxo Gold Carbene with Benzo[c]isoxazole. Org Lett 2021; 23:2632-2637. [DOI: 10.1021/acs.orglett.1c00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pawan S. Dhote
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chepuri V. Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
48
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
|
50
|
Lipshultz JM, Fu Y, Liu P, Radosevich AT. Organophosphorus-catalyzed relay oxidation of H-Bpin: electrophilic C-H borylation of heteroarenes. Chem Sci 2020; 12:1031-1037. [PMID: 34163869 PMCID: PMC8179051 DOI: 10.1039/d0sc05620k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A nontrigonal phosphorus triamide (1, P{N[o-NMe-C6H4]2}) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C–H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P–N cooperative activation of HBpin by 1 to give P-hydrido diazaphospholene 2, which is diverted by Atherton–Todd oxidation with chloroalkane to generate P-chloro diazaphospholene 3. DFT calculations suggest subsequent oxidation of pinacolborane by 3 generates chloropinacolborane (ClBpin) as a transient electrophilic borylating species, consistent with observed substituent effects and regiochemical outcomes. These results illustrate the targeted diversion of established reaction pathways in organophosphorus catalysis to enable a new mode of main group-catalyzed C–H borylation. A nontrigonal phosphorus triamide (1, P{N[o-NMe-C6H4]2}) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent.![]()
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|