1
|
Wang YC, Lee KM, Weng CY, Lin SR, Liu CY. From Step-Saving New Synthesis to Photovoltaic Applications of Triindenotrithiophene (TITT) and Related π-Extended Oligoaryls. Chem Asian J 2025:e202401830. [PMID: 40091799 DOI: 10.1002/asia.202401830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Truxenes, the π-conjugated small molecules with a C3h-symmetry, have been extensively investigated in synthesis and application as organic optoelectronic materials. Compared to truxenes, triindenotrithiophene (TITT), a thienyl congener of truxene, was much less explored in the field of synthetic chemistry as well as photovoltaic applications. Different from the reported synthesis requiring at least 14 steps to access TITT-related small molecules, in this work, we have successfully developed a seven-step new synthetic route to TITT and its π-extended oligoaryls (YCW01-04). Our synthetic strategy involved two direct C─H/C─Br coupling reactions, avoiding tedious protection/deprotection chemical transformations. Essential reaction conditions including ligand, base, and solvent for direct C─H arylations were well-optimized, thus affording target products in yields up to 87% (YCW02). In addition, for the first time, the TITT core-based oligoaryls were fabricated as hole-transporting material (HTM) in perovskite solar cells (PSC), giving the highest power conversion efficiency (PCE) of 15.3% (YCW01).
Collapse
Affiliation(s)
- Yin-Chi Wang
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering / Department of Pediatrics, Chang Gung University / Chang Gung Memorial Hospital, Guishan District, Taoyuan City, 333, Taiwan
- College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Chen-Yu Weng
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Shan-Ru Lin
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| |
Collapse
|
2
|
Cao ML, Lee KM, Wu XW, Yu WL, Liu CY. Regio- and Chemo-selective C-H Arylation of 3-Bromothiophene: A Synthesis Shortcut to Versatile π-Conjugated Building Blocks for Optoelectronic Materials. Chem Asian J 2025; 20:e202401116. [PMID: 39542844 DOI: 10.1002/asia.202401116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Unlike traditional multi-step synthetic approaches, we developed a single-step synthesis of versatile π-conjugated building blocks bearing post-functionalizable C-H and C-Br bonds. Direct C-H arylation of 3-bromothiophene with various iodo(hetero)aryls was successfully carried out with good regio- and chemo-selectivity. Under optimized reaction conditions, 20 new compounds were facilely prepared in yields up to 91 %. One of the obtained compounds was demonstrated to further extend its conjugation length using a succinct synthetic plan to create two symmetrical oligo(hetero)aryls (MLC01 and MLC02) that were fabricated as effective hole-transporting materials (HTM) for perovskite solar cells (PSC). PSC devices utilizing MLC01 as hole-transport layer displayed promising power conversion efficiencies of up to 17.01 %.
Collapse
Affiliation(s)
- Min-Ling Cao
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering & Center for Sustainability and Energy Technologies & Department of Pediatrics, Chang Gung University; Chang Gung Memorial Hospital, Guishan District, Taoyuan City, 333, Taiwan
- College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Xiao-Wei Wu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Wei-Lun Yu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| |
Collapse
|
3
|
Mou J, Ning XL, Wang XY, Hou SY, Meng FB, Zhou C, Wu JW, Li C, Jia T, Wu X, Wu Y, Chen Y, Li GB. X-ray Structure-Guided Discovery of a Potent Benzimidazole Glutaminyl Cyclase Inhibitor That Shows Activity in a Parkinson's Disease Mouse Model. J Med Chem 2024; 67:8730-8756. [PMID: 38817193 DOI: 10.1021/acs.jmedchem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The secretory glutaminyl cyclase (sQC) and Golgi-resident glutaminyl cyclase (gQC) are responsible for N-terminal protein pyroglutamation and associated with various human diseases. Although several sQC/gQC inhibitors have been reported, only one inhibitor, PQ912, is currently undergoing clinic trials for the treatment of Alzheimer's disease. We report an X-ray crystal structure of sQC complexed with PQ912, revealing that the benzimidazole makes "anchor" interactions with the active site zinc ion and catalytic triad. Structure-guided design and optimization led to a series of new benzimidazole derivatives exhibiting nanomolar inhibition for both sQC and gQC. In a MPTP-induced Parkinson's disease (PD) mouse model, BI-43 manifested efficacy in mitigating locomotor deficits through reversing dopaminergic neuronal loss, reducing microglia, and decreasing levels of the sQC/gQC substrates, α-synuclein, and CCL2. This study not only offers structural basis and new leads for drug discovery targeting sQC/gQC but also provides evidence supporting sQC/gQC as potential targets for PD treatment.
Collapse
Affiliation(s)
- Jun Mou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang-Li Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yan Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan-Bo Meng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Hsu CC, Lee KM, Wu XW, Lin L, Yu WL, Liu CY. Hole-Transporting Materials based on Oligo(hetero)aryls with a Naphthodithiophene Core - Succinct Synthesis by Twofold Direct C-H Olefination. Chemistry 2024; 30:e202302552. [PMID: 37997029 DOI: 10.1002/chem.202302552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
This work demonstrated the first synthetic application of direct C-H olefinations in the step-saving preparation of various hole-transporting materials (HTM) for efficient perovskite solar cells (PSC). Cross-dehydrogenative couplings of naphthodithiophene (NDT) with vinyl arenes under palladium-catalysis facilely generated various new oligo(hetero)aryls with internal alkenes. Reaction conditions were optimized, which gave the product isolated yields of up to 71 % with high (E)-stereoselectivity. These readily accessible NDT core-based small molecules involving olefin as π-spacers displayed immediate power conversion efficiencies of up to 17.2 % without a device oxidation process that is required for the commercially available spiro-OMeTAD and most other existing HTMs while fabricated in corresponding PSC devices.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering/Department of Pediatrics, Chang Gung University/Chang Gung Memorial Hospital Guishan District, Taoyuan City, 333, Taiwan
- College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Xiao-Wei Wu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Li Lin
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Wei-Lun Yu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University Jhongli District, Taoyuan City, 320, Taiwan
| |
Collapse
|
5
|
Lin L, Chiu WH, Cao ML, Lee KM, Yu WL, Liu CY. New Molecular Design, Step-Saving Synthesis, and Applications of Indolocarbazole Core-Based Oligo(hetero)arenes. Chem Asian J 2023; 18:e202300681. [PMID: 37694942 DOI: 10.1002/asia.202300681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
In this work, we have successfully synthesized 15 new examples (LLA01-06; LinLi01-10) of small-molecule hole-transporting materials (HTM) using the less explored indolocarbazole (ICbz) as core moiety. Different from previously reported ICbz HTMs, LinLi01-10 exhibit new molecular designs in which 3,4-ethylenedioxythiophene (EDOT) units are inserted as crucial π-spacers and fluorine atoms are introdcued into end-group molecules. These substantially improve the materials solubility and device power conversion efficiencies (PCEs) while fabricated in perovskite solar cells (PSC). More importantly, LinLi01-10 are generated by a sustainable synthetic approach involving the use of straightforward C-H/C-Br couplings as key transformations, thus avoiding additional synthetic transformations including halogenation and borylation reactions called substrate prefunctionalizations usually required in Suzuki reactions. Most HTM molecules can be purified simply by reprecipitations instead of conducting column chromatography. In contrast to LLA01-06 without additional EDOT moieties, PSC devices using LinLi01-10 as hole-transport layers display promising PCEs of up to 17.5 %. Interestingly, PSC devices employing seven of the LinLi01-10 as hole-transport molecules, respectively, are all able to show an immediate >10 % PCE (t=0) without any device oxidation/aging process that is necessary for the commercial spiro-OMeTAD based PSCs.
Collapse
Affiliation(s)
- Li Lin
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Wei-Hao Chiu
- Department of Chemical and Materials Engineering & Center for Green Technology & Division of Neonatology, Department of Pediatrics, Chang Gung University & Chang Gung Memorial Hospital, Guishan District and Linkou, Taoyuan City, 333, Taiwan
| | - Ming-Ling Cao
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering & Center for Green Technology & Division of Neonatology, Department of Pediatrics, Chang Gung University & Chang Gung Memorial Hospital, Guishan District and Linkou, Taoyuan City, 333, Taiwan
- College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Wei-Lun Yu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| |
Collapse
|
6
|
Forti G, Pankow RM, Qin F, Cho Y, Kerwin B, Duplessis I, Nitti A, Jeong S, Yang C, Facchetti A, Pasini D, Marks TJ. Anthradithiophene (ADT)-Based Polymerized Non-Fullerene Acceptors for All-Polymer Solar Cells. Chemistry 2023; 29:e202300653. [PMID: 37191934 DOI: 10.1002/chem.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Realizing efficient all-polymer solar cell (APSC) acceptors typically involves increased building block synthetic complexity, hence potentially unscalable syntheses and/or prohibitive costs. Here we report the synthesis, characterization, and implementation in APSCs of three new polymer acceptors P1-P3 using a scalable donor fragment, bis(2-octyldodecyl)anthra[1,2-b : 5,6-b']dithiophene-4,10-dicarboxylate (ADT) co-polymerized with the high-efficiency acceptor units, NDI, Y6, and IDIC. All three copolymers have comparable photophysics to known polymers; however, APSCs fabricated by blending P1, P2 and P3 with donor polymers PM5 and PM6 exhibit modest power conversion efficiencies (PCEs), with the champion P2-based APSC achieving PCE=5.64 %. Detailed morphological and microstructural analysis by AFM and GIWAXS reveal a non-optimal APSC active layer morphology, which suppresses charge transport. Despite the modest efficiencies, these APSCs demonstrate the feasibility of using ADT as a scalable and inexpensive electron rich/donor building block for APSCs.
Collapse
Affiliation(s)
- Giacomo Forti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Robert M Pankow
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Fei Qin
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Yongjoon Cho
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Brendan Kerwin
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Isaiah Duplessis
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Seonghun Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 44919, Ulsan, South Korea
| | - Antonio Facchetti
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, 30332, Atlanta, Georgia, USA
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Tobin J Marks
- Department of Chemistry, Center for Light Energy-Activated Redox Processes and the, Materials Research Center, Northwestern University, 2145 Sheridan Road, 60208, Evanston, Illinois, USA
| |
Collapse
|
7
|
Catenazzi M, Nitti A, Boiocchi M, Bianchi G, Po R, Pasini D. Supramolecular Weaving by Halogen-Bonding in Functionality-Rich Hexasubstituted Aromatic Synthons. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1678. [PMID: 36837309 PMCID: PMC9967865 DOI: 10.3390/ma16041678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Hexasubstituted benzenes are interesting platforms for the generation of functional materials, whose applications span from supramolecular recognition to organic electronics. Their synthesis is difficult to achieve by controlling multiple substitution steps of all hydrogen atoms on the aromatic benzene skeleton, so, often, cycloaddition reactions from disubsituted alkynes are used. In this work, we report a novel, straightforward route to C3-symmetrical hexasubstituted aromatic synthons with a diverse and rich pattern of functionalities, and we report about their packing mode in the crystals, in which, unprecedentedly, directional, strong halogen bonding interactions are capable of forming bidimensional supramolecular weaving.
Collapse
Affiliation(s)
- Matteo Catenazzi
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Massimo Boiocchi
- Centro Grandi Strumenti, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Gabriele Bianchi
- New Energies, Renewable Energies and Material Science Research Center, Eni SpA, Via Fauser 4, 28100 Novara, Italy
| | - Riccardo Po
- New Energies, Renewable Energies and Material Science Research Center, Eni SpA, Via Fauser 4, 28100 Novara, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
8
|
Nguyen HY, Tran TMC, Nguyen VH, Retailleau P, Mac DH, Nguyen TB. Reaction of 1-acetonaphthones with anilines and elemental sulfur: rapid construction of 1-anilinonaphtho[2,1- b]thiophenes. Org Biomol Chem 2023; 21:503-507. [PMID: 36519810 DOI: 10.1039/d2ob01898e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1-Anilinonaphtho[2,1-b]thiophenes could be conveniently synthesized from a three-component reaction of 1-acetonaphthones with anilines and elemental sulfur under catalyst-free simple heating conditions.
Collapse
Affiliation(s)
- Hoang Yen Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Thi Minh Chau Tran
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Van Ha Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Dinh Hung Mac
- Faculty of Chemistry, VNU University of Science, Vietnam National University in Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Lin L, Hsu C, Lee K, Lin M, Peng Y, Liu C. New Benzotrithiophene‐Based Hole‐Transporting Materials for Perovskite Solar Cells: Succinct Synthesis and PCE Improvement. ChemistrySelect 2022. [DOI: 10.1002/slct.202202472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Lin
- Department of Chemical and Materials Engineering National Central University Jhongli District Taoyuan City 320 Taiwan
| | - Chia‐Chi Hsu
- Department of Chemical and Materials Engineering National Central University Jhongli District Taoyuan City 320 Taiwan
| | - Kun‐Mu Lee
- Department of Chemical & Materials Engineering, Chang Gung University/Department of Pediatrics Chang Gung Memorial Hospital, Linkou Taoyuan City 333 Taiwan
| | - Mei‐Yu Lin
- Department of Chemical and Materials Engineering National Central University Jhongli District Taoyuan City 320 Taiwan
| | - Yi‐Kai Peng
- Department of Chemical and Materials Engineering National Central University Jhongli District Taoyuan City 320 Taiwan
| | - Ching‐Yuan Liu
- Department of Chemical and Materials Engineering National Central University Jhongli District Taoyuan City 320 Taiwan
| |
Collapse
|
10
|
A Sustainable Synthetic Approach to the Indaceno[1,2-b:5,6-b′]dithiophene (IDT) Core through Cascade Cyclization–Deprotection Reactions. CHEMISTRY 2022. [DOI: 10.3390/chemistry4010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bulk heterojunction organic solar cells (BHJs) are competitive within the emerging photovoltaic technologies for solar energy conversion because of their unique advantages. Their development has been boosted recently by the introduction of nonfullerene electron acceptors (NFAs), to be used in combination with a polymeric electron donor in the active layer composition. Many of the recent advances in NFAs are attributable to the class of fused-ring electron acceptors (FREAs), which is now predominant, with one of the most notable examples being formed with a fused five-member-ring indaceno[1,2-b:5,6-b′]dithiophene (IDT) core. Here, we propose a novel and more sustainable synthesis for the IDT core. Our approach bypasses tin derivatives needed in the Stille condensation, whose byproducts are toxic and difficult to dispose of, and it makes use of cascade reactions, effectively reducing the number of synthetic steps.
Collapse
|
11
|
Tomar R, Jain S, Yadav P, Bajaj T, Mohajer F, Ziarani GM. Conversion of Limonene over Heterogeneous Catalysis: An Overview. Curr Org Synth 2022; 19:414-425. [PMID: 34429049 DOI: 10.2174/1570179418666210824101837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
The natural terpene limonene is widely found in nature. The (R)-limonene (the most abundant enantiomer) is present in the essential oils of lemon, orange, and other citrus fruits, while the (S)- limonene is found in peppermint and the racemate in turpentine oil. Limonene is a low-cost, low toxicity biodegradable terpene present in agricultural wastes derived from citrus peels. The products obtained from the conversion of limonene are valuable compounds widely used as additives for food, cosmetics, or pharmaceuticals. The conversion of limonene to produce different products has been the subject of intense research, mainly with the objective of improving catalytic systems. This review focused on the application of heterogeneous catalysts in the catalytic conversion of limonene.
Collapse
Affiliation(s)
- Ravi Tomar
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505, India
| | - Swati Jain
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Purnima Yadav
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Tanima Bajaj
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505, India
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | | |
Collapse
|
12
|
Ahmad S, Akhtar R, Zahoor AF. Comprehensive Account on the Synthesis of (-)-Balanol and its Analogues. Curr Org Synth 2022; 19:56-85. [PMID: 34370642 DOI: 10.2174/1570179418666210809131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A variety of diseases have been associated with hyperactivation of protein kinase C (PKC) enzymes such as cancer, diabetes, asthma, cardiovascular and central nervous system disorders. There is a dire need to selectively inhibit these enzymes by synthesizing new potent inhibitors. Balanol, a fungal metabolite belonging to the PKC inhibitor family, is especially included in this aspect. Tremendous effort has been put towards the synthesis of balanol by different research groups. OBJECTIVES The aim of this review is to provide a detailed description of synthetic approaches adopted for the synthesis of key fragments of balanol (azepane and benzophenone). All the factors that resulted in excellent yield and high enantioselectivity have also been mentioned. CONCLUSION It has been shown throughout this review that the synthesis of hexahydroazepine and benzophenone cores of balanol was achieved by employing a variety of important key steps with commercially available starting precursors, which make this total synthesis more valuable. Moreover, this article provides ideas to the synthetic as well as pharmaceutical chemists for the synthesis of (-)-balanol and its analogues.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, 38000-Faisalabad, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University, 38000, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, 38000, Faisalabad, Pakistan
| |
Collapse
|
13
|
Elattar KM, El-Mekabaty A. Bicyclic 5-6 Systems: Comprehensive Synthetic Strategies for the Annulations of Pyrazolo[ 1,5-a]pyrimidines. Curr Org Synth 2021; 18:547-586. [PMID: 33966620 DOI: 10.2174/1570179418666210509015108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
Pyrazolopyrimidines are a privileged class of 5-6 bicyclic systems with three or four nitrogen atoms, including four possible isomeric structures. The significance of this class of compounds is that they can be applied in medical and pharmaceutical fields due to their unlimited biological aptitude, hence it is the basic skeleton of several synthetic drugs. The current review aimed to highlight all the synthetic routes that have been applied to construct the pyrazolo[1,5-a]pyrimidine ring systems up to date. The sections in this study included the synthesis of pyrazolo[1,5- a]pyrimidines by condensation reactions of 5-aminopyrazoles with each of β-diketones, 1,5-diketones, β- ketoaldehydes, α-cyanoaldehydes, β-enaminones, enamines, enaminonitriles, ethers, with unsaturated ketones, unsaturated thiones, unsaturated esters, unsaturated dienones "1,2-allenic", unsaturated aldehydes, unsaturated imines, and unsaturated nitriles. The routes adopted to synthesize this class of heterocyclic compounds were extended for ring construction from acyclic reagents and multicomponent reactions under catalytic or catalyst-free conditions.
Collapse
Affiliation(s)
- Khaled M Elattar
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| |
Collapse
|
14
|
Dallemagne P, Zipfel P, Lalut J, Sopková-de Oliveira Santos J, Rochais C. Aminothiaindanone as an Accessible Scaffold for a Three-Point Chemical Diversity. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1523-1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractAminothiaindanone heterocycle appears to be a scaffold of interest in medicinal chemistry. To increase the chemical diversity in this series, the introduction of three-point chemical diversity on the cyclopenta[b]thiophen-4-one scaffold was explored. About thirty newly functionalized thiophene-containing bicycles were obtained using various chemical reactions, paving the way for novel possibilities in medicinal chemistry projects.
Collapse
|
15
|
Mishra A, Gupta S, Patra A. Synthesis and properties of 3,4‐dioxythiophene and 1,4‐dialkoxybenzene based copolymers via direct
CH
arylation: Dopant‐free hole transport material for perovskite solar cells. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anamika Mishra
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sonal Gupta
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Asit Patra
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division CSIR‐National Physical Laboratory Dr. K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
16
|
Invernizzi F, Nitti A, Pasini D. Regioselective Pummerer rearrangement in [2.2]paracyclophanes. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1825434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fabio Invernizzi
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
Forti G, Nitti A, Osw P, Bianchi G, Po R, Pasini D. Recent Advances in Non-Fullerene Acceptors of the IDIC/ITIC Families for Bulk-Heterojunction Organic Solar Cells. Int J Mol Sci 2020; 21:E8085. [PMID: 33138257 PMCID: PMC7662271 DOI: 10.3390/ijms21218085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.
Collapse
Affiliation(s)
- Giacomo Forti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
| | - Andrea Nitti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
| | - Peshawa Osw
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
- Department of Chemistry, College of Science, Salahaddin University, 44001 Erbil, Iraq
| | - Gabriele Bianchi
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy; (G.B.); (R.P.)
| | - Riccardo Po
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy; (G.B.); (R.P.)
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
- INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
18
|
Abstract
Rhododendrol (RD) is a naturally occurring phenolic compound found in many plants. Tyrosinase (Ty) converts RD to RD-catechol and subsequently RD-quinone via two-step oxidation reactions, after which RD-melanin forms spontaneously from RD-quinone. RD is cytotoxic in melanocytes and lung cancer cells, but not in keratinocytes and fibroblasts. However, the function of RD metabolites has not been possible to investigate due to the lack of available high purity metabolites. In this study, an enzymatic strategy for RD-catechol production was devised using engineered cytochrome P450 102A1 (CYP102A1) and Ty, and the product was analyzed using high-performance liquid chromatography (HPLC), LC-MS, and NMR spectroscopy. Engineered CYP102A1 regioselectively produced RD-catechol via hydroxylation at the ortho position of RD. Although RD-quinone was subsequently formed by two step oxidation in Ty catalyzed reactions, L-ascorbic acid (LAA) inhibited RD-quinone formation and contributed to regioselective production of RD-catechol. When LAA was present, the productivity of RD-catechol by Ty was 5.3-fold higher than that by engineered CYP102A1. These results indicate that engineered CYP102A1 and Ty can be used as effective biocatalysts to produce hydroxylated products, and Ty is a more cost-effective biocatalyst for industrial applications than engineered CYP102A1.
Collapse
|
19
|
Preda G, Nitti A, Pasini D. Chiral Triptycenes in Supramolecular and Materials Chemistry. ChemistryOpen 2020; 9:719-727. [PMID: 32547902 PMCID: PMC7290281 DOI: 10.1002/open.202000077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Triptycenes are an intriguing class of organic molecules with several unusual characteristics, such as a propeller-like shape, saddle-like cavities around a symmetrical scaffold, a rigid π-framework. They have been extensively studied and proposed as key synthons for a variety of applications in supramolecular chemistry and materials science. When decorated with an appropriate substitution pattern, triptycenes can be chiral, and, similarly to other popular chiral π-extended synthons, can express chirality robustly, efficiently, and with relevance to chiroptical spectroscopies. This minireview highlights and encompasses recent advances in the synthesis of chiral triptycenes and in their introduction as molecular scaffolds for the assembly of functional supramolecular materials.
Collapse
Affiliation(s)
- Giovanni Preda
- Department of Chemistry and INSTM Research UnitUniversity of Pavia – ItalyVia Taramelli 1227100PaviaItaly
| | - Andrea Nitti
- Department of Chemistry and INSTM Research UnitUniversity of Pavia – ItalyVia Taramelli 1227100PaviaItaly
| | - Dario Pasini
- Department of Chemistry and INSTM Research UnitUniversity of Pavia – ItalyVia Taramelli 1227100PaviaItaly
| |
Collapse
|
20
|
Nitti A, Osw P, Calcagno G, Botta C, Etkind SI, Bianchi G, Po R, Swager TM, Pasini D. One-Pot Regiodirected Annulations for the Rapid Synthesis of π-Extended Oligomers. Org Lett 2020; 22:3263-3267. [PMID: 32255355 PMCID: PMC7997634 DOI: 10.1021/acs.orglett.0c01043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate the broad applicability of the annulation protocol combining, in one pot, a direct arylation and cross aldol condensation for the straightforward synthesis at gram-scale of π-extended thiophene-based scaffolds. The regiospecific direct arylation drives the subsequent cross-aldol condensation proceed under the same basic conditions, and the overall protocol has broad applicability in the synthesis of extended aromatics wherein the thiophene ring is annulated with furans, pyridines, indoles, benzothiophenes, and benzofurans. These scaffolds can be further elaborated into π-extended, highly fluorescent oligomers with a central deficient benzothiadiazole unit with up to nine aromatic rings through coupling reactions.
Collapse
Affiliation(s)
- Andrea Nitti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.,INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Peshawa Osw
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.,Department of Chemistry, College of Science, Salahaddin University, 44001 Erbil, Kurdistan Iraq
| | - Giuseppe Calcagno
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Chiara Botta
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Via Corti 12, 20133 Milano, Italy
| | - Samuel I Etkind
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gabriele Bianchi
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy
| | - Riccardo Po
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.,INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
21
|
Osw P, Nitti A, Abdullah MN, Etkind SI, Mwaura J, Galbiati A, Pasini D. Synthesis and Evaluation of Scalable D-A-D π-Extended Oligomers as p-Type Organic Materials for Bulk-Heterojunction Solar Cells. Polymers (Basel) 2020; 12:E720. [PMID: 32213915 PMCID: PMC7183272 DOI: 10.3390/polym12030720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/27/2023] Open
Abstract
The synthesis and characterization of four novel donor-acceptor-donor π-extended oligomers, incorporating naphtha(1-b)thiophene-4-carboxylate or benzo(b)thieno(3,2-g) benzothiophene-4-carboxylate 2-octyldodecyl esters as end-capping moieties, and two different conjugated core fragments, is reported. The end-capping moieties are obtained via a cascade sequence of sustainable organic reactions, and then coupled to benzo(c)(1,2,5)thiadiazole and its difluoro derivative as the electron-poor π-conjugated cores. The optoelectronic properties of the oligomers are reported. The novel compounds revealed good film forming properties, and when tested in bulk-heterojunction organic photovoltaic cell devices in combination with PC61BM, revealed good fill factors, but low efficiencies, due to their poor absorption profiles.
Collapse
Affiliation(s)
- Peshawa Osw
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (P.O.); (A.N.)
- Department of Chemistry, College of Science, Salahaddin University, 44001 Erbil, Kurdistan, Iraq;
| | - Andrea Nitti
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (P.O.); (A.N.)
| | - Media N. Abdullah
- Department of Chemistry, College of Science, Salahaddin University, 44001 Erbil, Kurdistan, Iraq;
| | - Samuel I. Etkind
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Jeremiah Mwaura
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Alessandro Galbiati
- New Polyurethane Technologies s.r.l., Via Stazione 12, 27030 Villanova D’ardenghi, Pavia, Italy;
| | - Dario Pasini
- Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (P.O.); (A.N.)
| |
Collapse
|
22
|
Sassi M, Mattiello S, Beverina L. Syntheses of Organic Semiconductors in Water. Recent Advancement in the Surfactants Enhanced Green Access to Polyconjugated Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mauro Sassi
- Department of Materials Science and INSTM; University of Milano-Bicocca; Via R. Cozzi 55 20125 Milano Italy
| | - Sara Mattiello
- Department of Materials Science and INSTM; University of Milano-Bicocca; Via R. Cozzi 55 20125 Milano Italy
| | - Luca Beverina
- Department of Materials Science and INSTM; University of Milano-Bicocca; Via R. Cozzi 55 20125 Milano Italy
| |
Collapse
|
23
|
Ahsan MJ, Hassan MZ, Jadav SS, Geesi MH, Bakht MA, Riadi Y, Salahuddin, Akhtar MS, Mallick MN, Akhter MH. Synthesis and Biological Potentials of 5-aryl-N-[4-(trifluoromethyl) phenyl]-1,3,4-oxadiazol-2-amines. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190401193928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxadiazoles are an important class of heterocyclic compounds, having broad-spectrum activity.
They were also reported as anticancer, and antioxidant agents, hence it is of significant importance
to explore new oxadiazoles. A series of eleven (5-aryl-N-[4-(trifluoromethyl)phenyl]-1,3,4-
oxadiazol-2-amines (6a-k) was synthesized based on the structures of reported compounds, SU-101,
IMC38525, and FTAB. All these oxadiazoles were synthesized, characterized by spectral data, and further
tested against melanoma, leukemia, colon, lung, CNS, ovarian, renal, breast and prostate cancer
cell lines’ panels at a single dose of 10 μM drug concentrations. N-(4-(Trifluoromethyl)phenyl)-5-(3,4-
dimethoxyphenyl)-1,3,4-oxadiazol-2-amine (6h) showed significant anticancer activity, and the most
sensitive five cell lines were NCI-H522 (% GI = 53.24), K-562 (% GI = 47.22), MOLT-4 (% GI =
43.87), LOX-IMVI (% GI = 43.62), and HL-60(TB) (% GI = 40.30). The compound, 6h revealed better
%GIs than imatinib, against 36 cell lines, taking 54 cell lines in common. The maximum sensitivity
was recorded against cancer cell line CCRF-CEM (% GI = 68.89) by 2-(5-(4-(trifluoromethyl)
phenylamino)-1,3,4-oxadiazol-2-yl)phenol (6f). The antioxidant activity of 4-(5-(4-(trifluoromethyl)
phenylamino)-1,3,4-oxadiazol-2-yl)-2-methoxyphenol (6i) was promising with an IC50 of 15.14 μM. It
was observed that the oxadiazoles reported herein showed significant anticancer and antioxidant activities.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohd. Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Surender Singh Jadav
- Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education & Research, Narsapur 502313, India
| | - Mohammed H. Geesi
- Department of Chemistry, College of Science & Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 11323, Saudi Arabia
| | - Mohammed Afroz Bakht
- Department of Chemistry, College of Science & Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 11323, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 11323, Saudi Arabia
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida, Uttar Pradesh 201 306, India
| | - Md. Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad Nasar Mallick
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Md. Habban Akhter
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand 248 009, India
| |
Collapse
|
24
|
Nitti A, Bianchi G, Po R, Porta A, Galbiati A, Pasini D. Weiss‐Cook Condensations for the Synthesis of Bridged Bithiophene Monomers and Polymers. ChemistrySelect 2019. [DOI: 10.1002/slct.201904180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea Nitti
- Department of Chemistry and INSTM Research UnitUniversity of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Gabriele Bianchi
- Research Center for Renewable Energies and EnvironmentIstituto Donegani, Eni Spa Via Fauser 4 28100 Novara Italy
| | - Riccardo Po
- Research Center for Renewable Energies and EnvironmentIstituto Donegani, Eni Spa Via Fauser 4 28100 Novara Italy
| | - Alessio Porta
- Department of Chemistry and INSTM Research UnitUniversity of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Alessandro Galbiati
- New Polyurethane Technologies s.r.l. Via Stazione 12 27030 Villanova D'ardenghi, Pavia Italy
| | - Dario Pasini
- Department of Chemistry and INSTM Research UnitUniversity of Pavia Via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
25
|
Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants. ENERGIES 2019. [DOI: 10.3390/en12203832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A concentrated solar power (CSP) plant with energy storage systems has excellent scheduling flexibility and superiority to traditional thermal power generation systems. In this paper, the operation mechanism and operational constraints of the CSP plant are specified. Furthermore, the uncertainty of the solar energy received by the solar field is considered and a robust economic dispatch model with CSP plants and renewable energy resources is proposed, where uncertainty is adjusted by the automatic generation control (AGC) regulation in the day-ahead ancillary market, so that the system security is guaranteed under any realization of the uncertainty. Finally, the proposed robust economic dispatch has been studied on an improved IEEE 30-bus test system, and the results verify the proposed model.
Collapse
|
26
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019; 58:15675-15679. [DOI: 10.1002/anie.201908319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
27
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
28
|
Yan C, Du X, Li J, Ding X, Li Z, Tang Y. Effect of Excitation Wavelength on Optical Performances of Quantum-Dot-Converted Light-Emitting Diode. NANOMATERIALS 2019; 9:nano9081100. [PMID: 31374836 PMCID: PMC6723292 DOI: 10.3390/nano9081100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022]
Abstract
Light-emitting diode (LED) combined with quantum dots (QDs) is an important candidate for next-generation high-quality semiconductor devices. However, the effect of the excitation wavelength on their optical performance has not been fully explored. In this study, green and red QDs are applied to LEDs of different excitation wavelengths from 365 to 455 nm. The blue light is recommended for exciting QDs from the perspective of energy utilization. However, QD LEDs excited at 365 nm have unique advantages in eliminating the original peaks from the LED chip. Moreover, the green or red light excited by ultraviolet light has an advantage in colorimetry. Even for the 455 nm LED with the highest QD concentration at 7.0 wt%, the color quality could not compete with the 365 nm LED with the lowest QD concentration at 0.2 wt%. A 117.5% (NTSC1953) color gamut could be obtained by the 365 nm-excited RGB system, which is 32.6% higher than by the 455 nm-excited solution, and this can help expand the color gamut of LED devices. Consequently, this study provides an understanding of the properties of QD-converted LEDs under different wavelength excitations, and offers a general guide to selecting a pumping source for QDs.
Collapse
Affiliation(s)
- Caiman Yan
- Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, South China University of Technology, Guangzhou 510641, China
| | - Xuewei Du
- Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, South China University of Technology, Guangzhou 510641, China
| | - Jiasheng Li
- Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, South China University of Technology, Guangzhou 510641, China
| | - Xinrui Ding
- Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, South China University of Technology, Guangzhou 510641, China
| | - Zongtao Li
- Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, South China University of Technology, Guangzhou 510641, China.
- Foshan Nationstar Optoelectronics Company, Ltd., Foshan 528000, China.
| | - Yong Tang
- Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
29
|
Liu D, Wang F, Wang G, Lv C, Wang Z, Duan X, Li X. Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries. Molecules 2019; 24:E1680. [PMID: 31052152 PMCID: PMC6539556 DOI: 10.3390/molecules24091680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022] Open
Abstract
Layered lithium-rich manganese oxide (LLO) cathode materials have attracted much attention for the development of high-performance lithium-ion batteries. However, they have suffered seriously from disadvantages, such as large irreversible capacity loss during the first cycle, discharge capacity decaying, and poor rate performance. Here, a novel method was developed to coat the surface of 0.4Li2MnO3∙0.6LiNi1/3Co1/3Mn1/3O2 cathode material with reduced graphene-oxide (rGO) in order to address these drawbacks, where a surfactant was used to facilitate the well-wrapping of rGO. As a result, the modified LLO (LLO@rGO) cathode exhibits superior electrochemical performance including cycling stability and rate capability compared to the pristine LLO cathode. In particular, the LLO@rGO with a 0.5% rGO content can deliver a high discharge capacity of 166.3 mAh g-1 at a 5C rate. The novel strategy developed here can provide a vital approach to inhibit the undesired side reactions and structural deterioration of Li-rich cathode materials, and should be greatly useful for other cathode materials to improve their electrochemical performance.
Collapse
Affiliation(s)
- Di Liu
- Department of Physics and Electronic Information Engineering, Qinghai Nationalities University, No.3 Bayizhonglu, Chengdong District, Xining 810007, China.
| | - Fengying Wang
- Department of Physics and Electronic Information Engineering, Qinghai Nationalities University, No.3 Bayizhonglu, Chengdong District, Xining 810007, China.
| | - Gang Wang
- Department of Physics and Electronic Information Engineering, Qinghai Nationalities University, No.3 Bayizhonglu, Chengdong District, Xining 810007, China.
| | - Congjie Lv
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Zeyu Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Xiaochuan Duan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Xin Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
30
|
Wang Q, Xie M, Fang M, Wu X, Liu Y, Huang Z, Xi K, Min X. Synthesis and Luminescence Properties of a Novel Green-Yellow-Emitting Phosphor BiOCl:Pr 3+ for Blue-Light-Based w-LEDs. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24071296. [PMID: 30987075 PMCID: PMC6480924 DOI: 10.3390/molecules24071296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Abstract
The development of white-light-emitting diodes (w-LEDs) makes it meaningful to develop novel high-performance phosphors excited by blue light. Herein, BiOCl:Pr3+ green-yellow phosphors were prepared via a high-temperature solid-state reaction method. The crystal structure, luminescent properties, lifetime, thermal quenching behavior, and quantum yield were studied in detail. The BiOCl:Pr3+ phosphors presented several emission peaks located in green and red regions, under excitation at 453 nm. The CIE coordinates could be tuned along with the changed doping concentration with fair luminescence efficiency. The results also indicated that the optimized doping concentration of Pr3+ ions was at x = 0.0075 because of the concentration quenching behavior resulting from an intense exchange effect. When the temperature reached 150 °C, the intensity of the emission peak at 495 nm could remain at 78% of that at room temperature. The activation energy of 0.20 eV also confirmed that the BiOCl:Pr3+ phosphor exhibited good thermal stability. All these results indicate that the prepared products have potential to be used as a high-performance green-yellow-light-emitting phosphor for blue-light-based w-LEDs.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Meiling Xie
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Minghao Fang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Xiaowen Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Yan'gai Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Zhaohui Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Kai Xi
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
| | - Xin Min
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
| |
Collapse
|
31
|
Salunkhe PH, Patil YS, Kadam VN, Mahindrakar JN, Ubale VP, Ghanwat AA. Synthesis and characterization of processable polyamides containing polar quinoxaline unit in the main chain and evaluation of its hydrophilicity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1569469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- P. H. Salunkhe
- Polymer Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, India
| | - Y. S. Patil
- Polymer Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, India
| | - V. N. Kadam
- Polymer Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, India
| | - J. N. Mahindrakar
- Polymer Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, India
| | - V. P. Ubale
- D.B.F. Dayanand College of Arts and Science, Solapur, India
| | - A. A. Ghanwat
- Polymer Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, India
| |
Collapse
|
32
|
Sanzone A, Calascibetta A, Ghiglietti E, Ceriani C, Mattioli G, Mattiello S, Sassi M, Beverina L. Suzuki–Miyaura Micellar One-Pot Synthesis of Symmetrical and Unsymmetrical 4,7-Diaryl-5,6-difluoro-2,1,3-benzothiadiazole Luminescent Derivatives in Water and under Air. J Org Chem 2018; 83:15029-15042. [DOI: 10.1021/acs.joc.8b02204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alessandro Sanzone
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, Milano I-20125, Italy
| | - Adiel Calascibetta
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, Milano I-20125, Italy
| | - Erika Ghiglietti
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, Milano I-20125, Italy
| | - Chiara Ceriani
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, Milano I-20125, Italy
| | - Giuseppe Mattioli
- CNR - Istituto di Struttura Della Materia, Via Salaria Km 29,300, C.P. 10, I-00015 Monterotondo Scalo, Rome, Italy
| | - Sara Mattiello
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, Milano I-20125, Italy
| | - Mauro Sassi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, Milano I-20125, Italy
| | - Luca Beverina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, Milano I-20125, Italy
| |
Collapse
|
33
|
Zhao H, Liu L, Lei Y. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1707-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Tarnowicz-Ligus S, Trzeciak AM. Heck Transformations of Biological Compounds Catalyzed by Phosphine-Free Palladium. Molecules 2018; 23:E2227. [PMID: 30200476 PMCID: PMC6225119 DOI: 10.3390/molecules23092227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
The development and optimization of synthetic methods leading to functionalized biologically active compounds is described. Two alternative pathways based on Heck-type reactions, employing iodobenzene or phenylboronic acid, were elaborated for the arylation of eugenol and estragole. Cinnamyl alcohol was efficiently transformed to saturated arylated aldehydes in reaction with iodobenzene using the tandem arylation/isomerization sequential process. The arylation of cinnamyl alcohol with phenylboronic acid mainly gave unsaturated alcohol, while the yield of saturated aldehyde was much lower. Catalytic reactions were carried out using simple, phosphine-free palladium precursors and water as a cosolvent, following green chemistry rules as much as possible.
Collapse
Affiliation(s)
| | - Anna M Trzeciak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
35
|
Synthesis of New C2-Symmetric Six-Membered NHCs and Their Application for the Asymmetric Diethylzinc Addition of Arylaldehydes. Catalysts 2018. [DOI: 10.3390/catal8020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Lu KM, Lee KM, Lai CH, Ting CC, Liu CY. One-pot synthesis of D–π–D–π–D type hole-transporting materials for perovskite solar cells by sequential C–H (hetero)arylations. Chem Commun (Camb) 2018; 54:11495-11498. [DOI: 10.1039/c8cc06791k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
D–π–D–π–D oligoaryls are facilely synthesized through consecutive C–H arylations, exhibiting up to 15.4% PCE when fabricated in perovskite solar cells as hole transporters.
Collapse
Affiliation(s)
- Kuan-Ming Lu
- Department of Chemical and Materials Engineering, National Central University
- Taoyuan 320
- Republic of China
| | - Kun-Mu Lee
- Department of Chemical & Materials Engineering, Chang Gung University/Department of Pediatrics, Chang Gung Memorial Hospital, Linkou
- Taoyuan 333
- Republic of China
| | - Chia-Hsin Lai
- Department of Chemical and Materials Engineering, National Central University
- Taoyuan 320
- Republic of China
| | - Chang-Chieh Ting
- Department of Chemical and Materials Engineering, National Central University
- Taoyuan 320
- Republic of China
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University
- Taoyuan 320
- Republic of China
| |
Collapse
|
37
|
Umeyama T, Igarashi K, Sakamaki D, Seki S, Imahori H. Unique cohesive nature of the β1-isomer of [70]PCBM fullerene on structures and photovoltaic performances of bulk heterojunction films with PffBT4T-2OD polymers. Chem Commun (Camb) 2018; 54:405-408. [DOI: 10.1039/c7cc08947c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Decreasing the amount of a diastereomer of β-[70]PCBM with high aggregation tendency improved the performances of OPV devices with PffBT4T-2OD:[70]PCBM films.
Collapse
Affiliation(s)
- Tomokazu Umeyama
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Nishikyo-ku
- Kyoto 615-8510
| | - Kensho Igarashi
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Nishikyo-ku
- Kyoto 615-8510
| | - Daisuke Sakamaki
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Nishikyo-ku
- Kyoto 615-8510
| | - Shu Seki
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Nishikyo-ku
- Kyoto 615-8510
| | - Hiroshi Imahori
- Department of Molecular Engineering
- Graduate School of Engineering
- Kyoto University
- Nishikyo-ku
- Kyoto 615-8510
| |
Collapse
|
38
|
Bianchi G, Po R, Sassi M, Beverina L, Chiaberge S, Spera S, Cominetti A. Synthesis of Dithienocyclohexanones (DTCHs) as a Family of Building Blocks for π-Conjugated Compounds in Organic Electronics. ACS OMEGA 2017; 2:4347-4355. [PMID: 31457727 PMCID: PMC6641726 DOI: 10.1021/acsomega.7b00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 06/10/2023]
Abstract
The development and widespread application of organic electronic devices require the availability of simple and cost-effective suitable materials. In this study, the preparation of a new class of conjugated compounds on the basis of a dithienocyclohexanone (DTCH) core is reported. Several synthetic strategies for the preparation of dialkyl DTCH derivatives are explored, with special emphasis on the establishment of a sustainable synthetic access. Two successful synthetic pathways, both consisting of five steps, are identified: the first one featuring readily available 3-thiophenecarboxaldeyde and the second one 3-ethynylthiophene as the starting materials. Both procedures are characterized by reasonably high overall yields (over 30%) and remarkably low E factors (<400). Preliminary evidences of the use of such building blocks in the micellar Suzuki-Miyaura cross-coupling reactions leading to promising molecular semiconductors are also given. Moreover, on a small molecule containing DTCH moiety, solar cell performance was investigated.
Collapse
Affiliation(s)
- Gabriele Bianchi
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Riccardo Po
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Mauro Sassi
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Luca Beverina
- Department
of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Stefano Chiaberge
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Silvia Spera
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| | - Alessandra Cominetti
- Renewable
Energies & Environmental R&D Center - Istituto Guido Donegani, Eni S.p.A., Via Giacomo Fauser 4, 28100 Novara, Italy
| |
Collapse
|