1
|
Chen Z, Vornholt SM, Bryant JT, Uribe-Romo F, Chapman KW. Metal-Organic Frameworks at the Edge of Stability: Mediating Node Distortion to Access Metastable Nanoparticle Polymorphs. Angew Chem Int Ed Engl 2025:e202501813. [PMID: 40240299 DOI: 10.1002/anie.202501813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging as unconventional precursors for nanoparticle synthesis, with potential to leverage their tunable structures and chemistry to achieve nanomaterials with structures and compositions inaccessible via traditional synthetic routes. Here, we use in situ synchrotron X-ray diffraction and pair distribution function (PDF) measurements to investigate how the dynamic structure of MOFs at the edge of stability influences their transformation into different metastable polymorphs. Our study reveals that the local structural features of metal-oxo MOF nodes at elevated temperatures are linked to the resulting nanoparticle structures formed under mild conditions. Focusing on the titanium-based MOF MIL-125, we demonstrate that manipulating the chemical environment to facilitate transformation of the Ti8 node geometry promotes formation of metastable, nanometer-scale TiO2 brookite rather than the more common anatase and rutile TiO2 polymorphs typically produced through MOF pyrolysis at high temperature. These findings highlight the potential to harness the MOF topology and chemical environment to design and control node distortions and enable access to exotic metastable nanoparticle states.
Collapse
Affiliation(s)
- Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Jacob T Bryant
- Department of Chemistry and REACT: Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Fernando Uribe-Romo
- Department of Chemistry and REACT: Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| |
Collapse
|
2
|
Romero-Muñiz I, Loukopoulos E, Xiong Y, Zamora F, Platero-Prats AE. Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem Soc Rev 2024; 53:11772-11803. [PMID: 39400325 DOI: 10.1039/d4cs00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom-atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Edward Loukopoulos
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ying Xiong
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Félix Zamora
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Rubio-Gaspar A, Misturini A, Millan R, Almora-Barrios N, Tatay S, Bon V, Bonneau M, Guillerm V, Eddaoudi M, Navalón S, Kaskel S, Armentano D, Martí-Gastaldo C. Translocation and Confinement of Tetraamines in Adaptable Microporous Cavities. Angew Chem Int Ed Engl 2024; 63:e202402973. [PMID: 38644341 DOI: 10.1002/anie.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.
Collapse
Affiliation(s)
- Ana Rubio-Gaspar
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Alechania Misturini
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Reisel Millan
- Instituto de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, 46022, Spain
| | - Neyvis Almora-Barrios
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Sergio Tatay
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Volodymyr Bon
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Mickaele Bonneau
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Kaskel
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Carlos Martí-Gastaldo
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| |
Collapse
|
4
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
6
|
Chen Z, Gulam Rabbani SM, Liu Q, Bi W, Duan J, Lu Z, Schweitzer NM, Getman RB, Hupp JT, Chapman KW. Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate-Metal-Organic-Framework Architecture. J Am Chem Soc 2024; 146:7950-7955. [PMID: 38483267 DOI: 10.1021/jacs.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Single-site catalysts (SSCs) achieve a high catalytic performance through atomically dispersed active sites. A challenge facing the development of SSCs is aggregation of active catalytic species. Reducing the loading of these sites to very low levels is a common strategy to mitigate aggregation and sintering; however, this limits the tools that can be used to characterize the SSCs. Here we report a sintering-resistant SSC with high loading that is achieved by incorporating Anderson-Evans polyoxometalate clusters (POMs, MMo6O24, M = Rh/Pt) within NU-1000, a Zr-based metal-organic framework (MOF). The dual confinement provided by isolating the active site within the POM, then isolating the POMs within the MOF, facilitates the formation of isolated noble metal sites with low coordination numbers via exsolution from the POM during activation. The high loading (up to 3.2 wt %) that can be achieved without sintering allowed the local structure transformation in the POM cluster and the surrounding MOF to be evaluated using in situ X-ray scattering with pair distribution function (PDF) analysis. Notably, the Rh/Pt···Mo distance in the active catalyst is shorter than the M···M bond lengths in the respective bulk metals. Models of the active cluster structure were identified based on the PDF data with complementary computation and X-ray absorption spectroscopy analysis.
Collapse
Affiliation(s)
- Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - S M Gulam Rabbani
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Qin Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Wentuan Bi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Castells-Gil J, Almora-Barrios N, Lerma-Berlanga B, Padial NM, Martí-Gastaldo C. Chemical complexity for targeted function in heterometallic titanium-organic frameworks. Chem Sci 2023; 14:6826-6840. [PMID: 37389254 PMCID: PMC10306077 DOI: 10.1039/d3sc01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry. This possibility is even more challenging for titanium-organic frameworks due to the additional difficulties intrinsic to controlling the chemistry of titanium in solution. In this perspective article we provide an overview of the synthesis and advanced characterization of mixed-metal frameworks and emphasize the particularities of those based in titanium with particular focus on the use of additional metals to modify their function by controlling their reactivity in the solid state, tailoring their electronic structure and photocatalytic activity, enabling synergistic catalysis, directing the grafting of small molecules or even unlocking the formation of mixed oxides with stoichiometries not accessible to conventional routes.
Collapse
Affiliation(s)
- Javier Castells-Gil
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Belén Lerma-Berlanga
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de Valencia C/Catedrático José Beltrán 2 46980 Paterna Spain
| |
Collapse
|
8
|
Duan J, Shabbir H, Chen Z, Bi W, Liu Q, Sui J, Đorđević L, Stupp SI, Chapman KW, Martinson ABF, Li A, Schaller RD, Goswami S, Getman RB, Hupp JT. Synthetic Access to a Framework-Stabilized and Fully Sulfided Analogue of an Anderson Polyoxometalate that is Catalytically Competent for Reduction Reactions. J Am Chem Soc 2023; 145:7268-7277. [PMID: 36947559 DOI: 10.1021/jacs.2c12992] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Polyoxometalates (POMs) featuring 7, 12, 18, or more redox-accessible transition metal ions are ubiquitous as selective catalysts, especially for oxidation reactions. The corresponding synthetic and catalytic chemistry of stable, discrete, capping-ligand-free polythiometalates (PTMs), which could be especially attractive for reduction reactions, is much less well developed. Among the challenges are the propensity of PTMs to agglomerate and the tendency for agglomeration to block reactant access of catalyst active sites. Nevertheless, the pervasive presence of transition metal sulfur clusters metalloenzymes or cofactors that catalyze reduction reactions and the justifiable proliferation of studies of two-dimensional (2D) metal-chalcogenides as reduction catalysts point to the promise of well-defined and controllable PTMs as reduction catalysts. Here, we report the fabrication of agglomeration-immune, reactant-accessible, capping-ligand-free CoIIMo6IVS24n- clusters as periodic arrays in a water-stable, hierarchically porous Zr-metal-organic framework (MOF; NU1K) by first installing a disk-like Anderson polyoxometalate, CoIIIMo6VIO24m-, in size-matched micropores where the siting is established via difference electron density (DED) X-ray diffraction (XRD) experiments. Flowing H2S, while heating, reduces molybdenum(VI) ions to Mo(IV) and quantitatively replaces oxygen anions with sulfur anions (S2-, HS-, S22-). DED maps show that MOF-templated POM-to-PTM conversion leaves clusters individually isolated in open-channel-connected micropores. The structure of the immobilized cluster as determined, in part, by X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analysis, and pair distribution function (PDF) analysis of total X-ray scattering agrees well with the theoretically simulated structure. PTM@MOF displays both electrocatalytic and photocatalytic competency for hydrogen evolution. Nevertheless, the initially installed PTM appears to be a precatalyst, gaining competency only after the loss of ∼3 to 6 sulfurs and exposure to hydride-forming metal ions.
Collapse
Affiliation(s)
- Jiaxin Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hafeera Shabbir
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Wentuan Bi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Qin Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jingyi Sui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology and Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, New York 11794-3400, United States
| | - Alex B F Martinson
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Alice Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Bryant JT, Logan MW, Chen Z, Djokic M, Cairnie DR, Vazquez-Molina DA, Nijamudheen A, Langlois KR, Markley MJ, Pombar G, Holland AA, Caranto JD, Harper JK, Morris AJ, Mendoza-Cortes JL, Jurca T, Chapman KW, Uribe-Romo FJ. Synergistic Steric and Electronic Effects on the Photoredox Catalysis by a Multivariate Library of Titania Metal-Organic Frameworks. J Am Chem Soc 2023; 145:4589-4600. [PMID: 36795004 DOI: 10.1021/jacs.2c12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Metal-organic frameworks (MOFs) that display photoredox activity are attractive materials for sustainable photocatalysis. The ability to tune both their pore sizes and electronic structures based solely on the choice of the building blocks makes them amenable for systematic studies based on physical organic and reticular chemistry principles with high degrees of synthetic control. Here, we present a library of eleven isoreticular and multivariate (MTV) photoredox-active MOFs, UCFMOF-n, and UCFMTV-n-x% with a formula Ti6O9[links]3, where the links are linear oligo-p-arylene dicarboxylates with n number of p-arylene rings and x mol% of multivariate links containing electron-donating groups (EDGs). The average and local structures of UCFMOFs were elucidated from advanced powder X-ray diffraction (XRD) and total scattering tools, consisting of parallel arrangements of one-dimensional (1D) [Ti6O9(CO2)6]∞ nanowires connected through the oligo-arylene links with the topology of the edge-2-transitive rod-packed hex net. Preparation of an MTV library of UCFMOFs with varying link sizes and amine EDG functionalization enabled us to study both their steric (pore size) and electronic (highest occupied molecular orbital-lowest unoccupied molecular orbital, HOMO-LUMO, gap) effects on the substrate adsorption and photoredox transformation of benzyl alcohol. The observed relationship between the substrate uptake and reaction kinetics with the molecular traits of the links indicates that longer links, as well as increased EDG functionalization, exhibit impressive photocatalytic rates, outperforming MIL-125 by almost 20-fold. Our studies relating photocatalytic activity with pore size and electronic functionalization demonstrate how these are important parameters to consider when designing new MOF photocatalysts.
Collapse
Affiliation(s)
| | | | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Marcus Djokic
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel R Cairnie
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - A Nijamudheen
- Department of Chemical & Biomedical Engineering, Florida A&M─Florida State University, Department of Physics, Scientific Computing, Materials Science and Engineering, High Performance Materials Institute, Condensed Matter Theory, National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32310, United States
| | | | | | | | | | | | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Chemical & Biomedical Engineering, Florida A&M─Florida State University, Department of Physics, Scientific Computing, Materials Science and Engineering, High Performance Materials Institute, Condensed Matter Theory, National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32310, United States
| | | | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | | |
Collapse
|
10
|
Vicchio SP, Chen Z, Chapman KW, Getman RB. Computational and Experimental Characterization of the Ligand Environment of a Ni-Oxo Catalyst Supported in the Metal-Organic Framework NU-1000. J Am Chem Soc 2023; 145:2852-2859. [PMID: 36693214 DOI: 10.1021/jacs.2c10554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heterogeneous catalysts exhibit significant changes in composition due to the influence of operating conditions, and these compositional changes can have dramatic effects on catalytic performance. For traditional bulk metal heterogeneous catalysts, relationships between composition and catalytic operating conditions are well documented. However, the influence of operating conditions on the compositions of single-site heterogeneous catalysts remains largely unresolved. To address this, we report a combined computational and experimental characterization of a Ni oxo catalyst under catalytic hydrogenation conditions. Specifically, pair distribution function (PDF) analysis is combined with ab initio thermodynamic modeling to investigate ligand environments present on a Ni oxo cluster supported in the metal-organic framework NU-1000. Comparisons of the experimentally observed and simulated Ni-O coordination numbers and Ni-O, Ni···Ni, and Ni···Zr distances provide insight into the Ni ligand environment under H2 (g). These comparisons suggest significant OH and H2O content and, further, that different Ni ions within the cluster and/or NU-1000 structure may comprise subtly different numbers of these ligands. Further, the observation of significant H2O content under H2 (g) suggests that the NU-1000 support supplies H2O to the cluster. Examples of ligand environments that could lead to the observed PDFs are provided. The combination of simulations and experiments provides new insights into the ligand environment for Ni-NU-1000 catalysts that will be useful for understanding the ligand environments of other single-site Ni catalysts as well.
Collapse
Affiliation(s)
- Stephen P Vicchio
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29634, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29634, United States
| |
Collapse
|
11
|
Sun C, Wang W, Mu X, Zhang Y, Wang Y, Ma C, Jia Z, Zhu J, Wang C. Tuning the Electrical Conductivity of a Flexible Fabric-Based Cu-HHTP Film through a Novel Redox Interaction between the Guest-Host System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54266-54275. [PMID: 36399651 DOI: 10.1021/acsami.2c17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of metal-organic frameworks (MOFs) and flexible fabrics has been recently considered as a promising strategy applied in wearable electronic devices. We synthesized a flexible fabric-based Cu-HHTP film consisted of Cu2+ ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) via a self-sacrificial template method. The obtained Cu-HHTP film displays an outstanding nanostructured surface and uniformity. Iodine molecules are first introduced into the pores of Cu-HHTP to investigate the influence of guest molecules on electrical conductivity in a 2D guest-host system. After doping, the conductivity of the Cu-HHTP film shows an increased dependent on the doping time, and the maximum value is more than 30 times that of the original MOFs. The enhanced electrical conductivity results from an intriguing redox interaction occurred between the confined iodine molecules and the framework. The organic ligands are oxidized by iodine molecules, and generating new ions allows for subsequent participation in the regulation of the mixed valence bands of copper ions in MOFs, changing the ratio of Cu2+/Cu+, promoting the charge transport of the framework, and then synergistically enhancing the electronic conductivity. This study successfully prepared a flexible fabric-based conductive I2@Cu-HHTP film and presented insights into revealing the behavior of iodine molecules after entering the Cu-HHTP pores, expanding the possibilities of Cu-HHTP used in flexible wearable electronics.
Collapse
Affiliation(s)
- Chongcai Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Weike Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Xueyang Mu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yifan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yong Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Chuang Ma
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Zhen Jia
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Jiankang Zhu
- Guangzhou Special Pressure Equipment Inspection and Research Institute National Graphene Product Quality Supervision and Inspection Center, Guangzhou, Guangdong510700, P. R. China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| |
Collapse
|
12
|
Hao L, Guo C, Hu Z, Guo R, Liu X, Liu C, Tian Y. Single-atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. NANOSCALE 2022; 14:13861-13889. [PMID: 35994044 DOI: 10.1039/d2nr02989h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Novel single-atom catalysts (SACs) have become the frontier materials in the field of environmental remediation, especially wastewater purification because of their nearly 100% ultra-high atomic utilization and excellent properties. SACs can be used in Fenton-like catalytic reactions to activate various peroxides (such as hydrogen peroxide (H2O2), ozone (O3), and persulfate (PSs)) to release active radicals and non-radicals, acting on target pollutants, and realize their decomposition and mineralization. Among them, peroxymonosulfate (PMS) in PS systems has gradually become an important oxidant in Fenton-like processes due to its asymmetric molecular structure and characteristics of easy storage and transportation. Focusing on the numerous proposed strategies for the synthesis and performance regulation of Fenton-like SACs, it has been confirmed that the coordination of isolated metal atoms and the support/carrier enhances the structural robustness and chemical stability of these catalysts and optimizes their catalytic activity and kinetics. Moreover, the tunability of the coordination environment and electronic properties of SACs can improve their other catalytic properties, such as cycle stability and selectivity. Thus, to systematically explain the relationship between the active center, catalyst performance and the corresponding potential catalytic mechanism, herein, we focus on the representative scientific work on the preparation strategy, catalytic application and performance regulation of Fenton-like SACs. Specifically, we review the typical Fenton-like SAC reaction processes and catalytic mechanisms for the degradation of refractory organic compounds in advanced oxidation processes (AOPs). Finally, the future development and challenges of Fenton-like SACs are presented.
Collapse
Affiliation(s)
- Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Chunming Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ye Tian
- The First Hospital of Qinhuangdao 066099, China
| |
Collapse
|
13
|
Zheng J, Löbbert L, Chheda S, Khetrapal N, Schmid J, Gaggioli CA, Yeh B, Bermejo-Deval R, Motkuri RK, Balasubramanian M, Fulton JL, Gutiérrez OY, Siepmann JI, Neurock M, Gagliardi L, Lercher JA. Metal-organic framework supported single-site nickel catalysts for butene dimerization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Alzamly A, Bakiro M, Hussein Ahmed S, Siddig LA, Nguyen HL. Linear α-olefin oligomerization and polymerization catalyzed by metal-organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Terban MW, Billinge SJL. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem Rev 2022; 122:1208-1272. [PMID: 34788012 PMCID: PMC8759070 DOI: 10.1021/acs.chemrev.1c00237] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/16/2022]
Abstract
This is a review of atomic pair distribution function (PDF) analysis as applied to the study of molecular materials. The PDF method is a powerful approach to study short- and intermediate-range order in materials on the nanoscale. It may be obtained from total scattering measurements using X-rays, neutrons, or electrons, and it provides structural details when defects, disorder, or structural ambiguities obscure their elucidation directly in reciprocal space. While its uses in the study of inorganic crystals, glasses, and nanomaterials have been recently highlighted, significant progress has also been made in its application to molecular materials such as carbons, pharmaceuticals, polymers, liquids, coordination compounds, composites, and more. Here, an overview of applications toward a wide variety of molecular compounds (organic and inorganic) and systems with molecular components is presented. We then present pedagogical descriptions and tips for further implementation. Successful utilization of the method requires an interdisciplinary consolidation of material preparation, high quality scattering experimentation, data processing, model formulation, and attentive scrutiny of the results. It is hoped that this article will provide a useful reference to practitioners for PDF applications in a wide realm of molecular sciences, and help new practitioners to get started with this technique.
Collapse
Affiliation(s)
- Maxwell W. Terban
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Simon J. L. Billinge
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
16
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
17
|
Influence of the framework on the catalytic performance of Rh-supported Zr-MOFs in the hydroformylation of n-alkenes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Hou D, Heard CJ. Migration of zeolite-encapsulated Pt and Au under reducing environments. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02270a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simulations reveal accelerated migration of Pt@zeolite by reducing adsorbates and the importance of PtCO in early stages of particle growth.
Collapse
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| |
Collapse
|
19
|
Platero-Prats AE, Mavrandonakis A, Liu J, Chen Z, Chen Z, Li Z, Yakovenko AA, Gallington LC, Hupp JT, Farha OK, Cramer CJ, Chapman KW. The Molecular Path Approaching the Active Site in Catalytic Metal-Organic Frameworks. J Am Chem Soc 2021; 143:20090-20094. [PMID: 34826220 DOI: 10.1021/jacs.1c11213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How molecules approach, bind at, and release from catalytic sites is key to heterogeneous catalysis, including for emerging metal-organic framework (MOF)-based catalysts. We use in situ synchrotron X-ray scattering analysis to evaluate the dominant binding sites for reagent and product molecules in the vicinity of catalytic Ni-oxo clusters in NU-1000 with different surface functionalization under conditions approaching those used in catalysis. The locations of the reagent and product molecules within the pores can be linked to the activity for ethylene hydrogenation. For the most active catalyst, ethylene reagent molecules bind close to the catalytic clusters, but only at temperatures approaching experimentally observed onset of catalysis. The ethane product molecules favor a different binding location suggesting that the product is readily released from the active site. An unusual guest-dependence of the framework negative thermal expansion is documented. We hypothesize that reagent and product binding sites reflect the pathway through the MOF to the active site and can be used to identify key factors that impact the catalytic activity.
Collapse
Affiliation(s)
- Ana E Platero-Prats
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andreas Mavrandonakis
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhanyong Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrey A Yakovenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Leighanne C Gallington
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karena W Chapman
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| |
Collapse
|
20
|
Yeh B, Vicchio SP, Chheda S, Zheng J, Schmid J, Löbbert L, Bermejo-Deval R, Gutiérrez OY, Lercher JA, Lu CC, Neurock M, Getman RB, Gagliardi L, Bhan A. Site Densities, Rates, and Mechanism of Stable Ni/UiO-66 Ethylene Oligomerization Catalysts. J Am Chem Soc 2021; 143:20274-20280. [PMID: 34817993 DOI: 10.1021/jacs.1c09320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nickel-functionalized UiO-66 metal organic frameworks (MOFs) oligomerize ethylene in the absence of cocatalysts or initiators after undergoing ethylene-pressure-dependent transients and maintain stable oligomerization rates for >15 days on stream. Higher ethylene pressures shorten induction periods and engender more active sites for ethylene oligomerization; these sites exhibit invariant selectivity-conversion characteristics to justify that only one type of catalytic center is relevant for oligomerization. The number of active sites is estimated using in situ NO titration to disambiguate the effect of increased reaction rates upon exposure to increasing ethylene pressures. After accounting for augmented site densities with increasing ethylene pressures, ethylene oligomerization is first order in ethylene pressure from 100 to 1800 kPa with an activation energy of 81 kJ mol-1 at temperatures from 443-503 K on Ni/UiO-66. A representative Ni/UiO-66 cluster model that mimics high ethylene pressure process conditions is validated with ab initio thermodynamic analysis, and the Cossee-Arlman mechanism is posited based on comparisons between experimental and computed activation enthalpies from density functional theory calculations on these cluster models of Ni/UiO-66. The insights gained from experiment and theory help rationalize evolution in structure and stability for ethylene oligomerization Ni/UiO-66 MOF catalysts.
Collapse
Affiliation(s)
- Benjamin Yeh
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Stephen P Vicchio
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0909, United States
| | - Saumil Chheda
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jian Zheng
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Julian Schmid
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Laura Löbbert
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Ricardo Bermejo-Deval
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85748 Garching, Germany
| | - Connie C Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0909, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Firth FCN, Gaultois MW, Wu Y, Stratford JM, Keeble DS, Grey CP, Cliffe MJ. Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with in Situ X-ray Pair Distribution Function Analysis. J Am Chem Soc 2021; 143:19668-19683. [PMID: 34784470 DOI: 10.1021/jacs.1c06990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nodes in the framework; although these clusters are crucial, their evolution during MOF synthesis is not fully understood. In this paper, we explore the nature of Hf metal clusters that form in different reaction solutions, including in a mixture of DMF, formic acid, and water. We show that the choice of solvent and reaction temperature in UiO MOF syntheses determines the cluster identity and hence the MOF structure. Using in situ X-ray pair distribution function measurements, we demonstrate that the evolution of different Hf cluster species can be tracked during UiO MOF synthesis, from solution stages to the full crystalline framework, and use our understanding to propose a formation mechanism for the hcp UiO-66(Hf) MOF, in which first the metal clusters aggregate from the M6 cluster (as in fcu UiO-66) to the hcp-characteristic M12 double cluster and, following this, the crystalline hcp framework forms. These insights pave the way toward rationally designing syntheses of as-yet unknown MOF structures, via tuning the synthesis conditions to select different cluster species.
Collapse
Affiliation(s)
- Francesca C N Firth
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michael W Gaultois
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yue Wu
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Joshua M Stratford
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Dean S Keeble
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Wang X, Li L, Li K, Su R, Zhao Y, Gao S, Guo W, Luan Z, Liang G, Xi H, Zou R. Hierarchically porous metal hydroxide/metal-organic framework composite nanoarchitectures as broad-spectrum adsorbents for toxic chemical filtration. J Colloid Interface Sci 2021; 606:272-285. [PMID: 34390994 DOI: 10.1016/j.jcis.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
We demonstrate that the hierarchically porous metal hydroxide/metal-organic framework composite nanoarchitectures exhibit broad-spectrum removal activity for three chemically distinct toxic gases, viz. acid gases, base gases, and nitrogen oxides. A facile and general in-situ hydrolysis strategy combined with gentle ambient pressure drying (APD) was utilized to integrate both Zr(OH)4 and Ti(OH)4 with the amino-functionalized MOF-808 xerogel (G808-NH2). The M(OH)4/G808-NH2 xerogel composites manifested 3D crystalline porous networks and substantially hierarchical porosity, with controllable amounts of amorphous M(OH)4 nanoparticles residing at the edge of xerogel particles. Microbreakthrough tests were performed under both dry and moist conditions to evaluate the filtration capabilities of the composites against three representative compounds: SO2, NH3, and NO2. Compared with the pristine G808-NH2 xerogel, the incorporation of M(OH)4 effectively enhanced the broad-spectrum toxic chemical mitigation ability of the material, with the highest SO2, NH3, and NO2 breakthrough uptake reaching 74.5, 55.3, and 394.0 mg/g, respectively. Post-breakthrough characterization confirmed the abundant M-OH groups with diverse binding configurations, alongside the unsaturated M (IV) centers on the surface of M(OH)4 provided extra adsorption sites for irreversible toxic chemical capture besides Van der Waals driven physisorption. The ability to achieve high-capacity adsorption and strong retention for multiple contaminants is of great significance for real-world filtration applications.
Collapse
Affiliation(s)
- Xinbo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Li Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Kai Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Ruyue Su
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Zhiqiang Luan
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Guojie Liang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China.
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Fonseca J, Lu J. Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01200] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Javier Fonseca
- Nanomaterial Laboratory for Catalysis and Advanced Separations, Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, United States
| | - Junling Lu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Abstract
Metal–organic frameworks (MOFs) are emerging porous materials with highly tunable structures developed in the 1990s, while organometallic chemistry is of fundamental importance for catalytic transformation in the academic and industrial world for many decades. Through the years, organometallic chemistry has been incorporated into functional MOF construction for diverse applications. Here, we will focus on how organometallic chemistry is applied in MOF design and modifications from linker-centric and metal-cluster-centric perspectives, respectively. Through structural design, MOFs can function as a tailorable platform for traditional organometallic transformations, including reaction of alkenes, cross-coupling reactions, and C–H activations. Besides, an overview will be made on other application categories of organometallic MOFs, such as gas adsorption, magnetism, quantum computing, and therapeutics.
Collapse
|
25
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
26
|
Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Terban MW, Ghose SK, Plonka AM, Troya D, Juhás P, Dinnebier RE, Mahle JJ, Gordon WO, Frenkel AI. Atomic resolution tracking of nerve-agent simulant decomposition and host metal-organic framework response in real space. Commun Chem 2021; 4:2. [PMID: 36697507 PMCID: PMC9814582 DOI: 10.1038/s42004-020-00439-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.
Collapse
Affiliation(s)
- Maxwell W. Terban
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Sanjit K. Ghose
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Anna M. Plonka
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA
| | - Diego Troya
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Pavol Juhás
- grid.202665.50000 0001 2188 4229Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Robert E. Dinnebier
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - John J. Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Wesley O. Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Anatoly I. Frenkel
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA ,grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| |
Collapse
|
28
|
Mialane P, Mellot-Draznieks C, Gairola P, Duguet M, Benseghir Y, Oms O, Dolbecq A. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem Soc Rev 2021; 50:6152-6220. [DOI: 10.1039/d0cs00323a] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.
Collapse
Affiliation(s)
- P. Mialane
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - C. Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques
- UMR CNRS 8229
- Collège de France
- Sorbonne Université
- PSL Research University
| | - P. Gairola
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - M. Duguet
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - Y. Benseghir
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - O. Oms
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| | - A. Dolbecq
- Université Paris-Saclay
- UMR CNRS 8180
- Université de Versailles St Quentin en Yvelines
- Institut Lavoisier de Versailles
- 78035 Versailles Cedex
| |
Collapse
|
29
|
Castillo-Blas C, Romero-Muñiz I, Mavrandonakis A, Simonelli L, Platero-Prats AE. Unravelling the local structure of catalytic Fe-oxo clusters stabilized on the MOF-808 metal organic-framework. Chem Commun (Camb) 2020; 56:15615-15618. [PMID: 33290455 DOI: 10.1039/d0cc06134d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stabilizing catalytic iron-oxo-clusters within nanoporous metal-organic frameworks (MOFs) is a powerful strategy to prepare new active materials for the degradation of toxic chemicals, such as bisphenol A. Herein, we combine pair distribution function analysis of total X-ray scattering data and X-ray absorption spectroscopy, with computational modelling to understand the local structural nature of added redox-active iron-oxo clusters bridging neighbouring zirconia-nodes within MOF-808.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | |
Collapse
|
30
|
Hicks KE, Rosen AS, Syed ZH, Snurr RQ, Farha OK, Notestein JM. Zr 6O 8 Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenton E. Hicks
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Andrew S. Rosen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Cha GY, Chun H, Hong DY, Kim J, Cho KH, Lee UH, Chang JS, Ryu SG, Lee HW, Kim SJ, Han B, Hwang YK. Unique design of superior metal-organic framework for removal of toxic chemicals in humid environment via direct functionalization of the metal nodes. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122857. [PMID: 32512442 DOI: 10.1016/j.jhazmat.2020.122857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Unique chemical and thermal stabilities of a zirconium-based metal-organic framework (MOF) and its functionalized analogues play a key role to efficiently remove chemical warfare agents (ex., cyanogen chloride, CNCl) and simulant (dimethyl methylphosphonate, DMMP) as well as industrial toxic gas, ammonia (NH3). Herein, we for the first time demonstrate outstanding performance of MOF-808 for removal of toxic chemicals in humid environment via special design of functionalization of hydroxo species bridging Zr-nodes using a triethylenediamine (TEDA) to form ionic frameworks by gas phase acid-base reactions. In situ experimental analyses and first-principles density functional theory calculations unveil underlying mechanism on the selective deposition of TEDA on the Zr-bridging hydroxo sites (μ3-OH) in Zr-MOFs. The crystal structure of TEDA-grafted MOF-808 was confirmed using synchrotron X-ray powder diffraction (SXRPD). Furthermore, operando FT-IR spectra elucidate why the TEDA-grafted MOF-808 shows by far superior sorption efficiency to other MOF varieties. This work provides design principles and applications how to optimize MOFs for the preparation for versatile adsorbents using diamine grafting chemistry, which is also potentially applicable to various catalysis.
Collapse
Affiliation(s)
- Ga-Young Cha
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong, Yuseong, Daejeon 34114, Republic of Korea; Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea
| | - Hoje Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Sinchon-dong, Seodaemun, Seoul 03722, Republic of Korea
| | - Do-Young Hong
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong, Yuseong, Daejeon 34114, Republic of Korea; Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea
| | - Jaegyeom Kim
- Department of Energy Systems Research, Department of Chemistry, Ajou University, Woncheon-dong, Yeongtong, Suwon 16499, Republic of Korea
| | - Kyung-Ho Cho
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - U-Hwang Lee
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong, Yuseong, Daejeon 34114, Republic of Korea; Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea
| | - Jong-San Chang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong, Yuseong, Daejeon 34114, Republic of Korea; Department of Chemistry, Sungkyunkwan University, Cheoncheon-dong, Jangan, Suwon 16419, Republic of Korea
| | - Sam Gon Ryu
- Agency for Defense Development, Sunam-dong, Yuseong, Daejeon 34186, Republic of Korea.
| | - Hae Wan Lee
- Agency for Defense Development, Sunam-dong, Yuseong, Daejeon 34186, Republic of Korea
| | - Seung-Joo Kim
- Department of Energy Systems Research, Department of Chemistry, Ajou University, Woncheon-dong, Yeongtong, Suwon 16499, Republic of Korea.
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Sinchon-dong, Seodaemun, Seoul 03722, Republic of Korea.
| | - Young Kyu Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Jang-dong, Yuseong, Daejeon 34114, Republic of Korea; Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-dong, Yuseong, Daejeon 34113, Republic of Korea.
| |
Collapse
|
32
|
Brandt AJ, Shakya DM, Metavarayuth K, Dolgopolova E, Hensley L, Duke AS, Farzandh S, Stefik M, Shustova NB, Chen DA. Growth of Crystalline Bimetallic Metal-Organic Framework Films via Transmetalation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9900-9908. [PMID: 32667804 DOI: 10.1021/acs.langmuir.0c01535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crystalline films of the Cu3(BTC)2 (BTC3- = 1,3,5-benzenetricarboxylate) metal-organic framework (MOF) have been grown by dip-coating an alumina/Si(111) substrate in solutions of Cu(II) acetate and the organic linker H3BTC. Atomic force microscopy (AFM) experiments demonstrate that the substrate is completely covered by the MOF film, while grazing incidence wide-angle X-ray scattering (GIWAXS) establishes the crystallinity of the films. Forty cycles of dip-coating results in a film that is ∼70 nm thick with a root mean squared roughness of 25 nm and crystallites ranging from 50-160 nm in height. Co2+ ions were exchanged into the MOF framework by immersing the Cu3(BTC)2 films in solutions of CoCl2. By varying the temperature and exchange times, different concentrations of Co were incorporated into the films, as determined by X-ray photoelectron spectroscopy experiments. AFM studies showed that morphologies of the bimetallic films were largely unchanged after transmetalation, and GIWAXS indicated that the bimetallic films retained their crystallinity.
Collapse
Affiliation(s)
- Amy J Brandt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Deependra M Shakya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ekaterina Dolgopolova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lauren Hensley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Audrey S Duke
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sharfa Farzandh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Donna A Chen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
33
|
Hou D, Grajciar L, Nachtigall P, Heard CJ. Origin of the Unusual Stability of Zeolite-Encapsulated Sub-Nanometer Platinum. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
34
|
Castillo-Blas C, Moreno JM, Romero-Muñiz I, Platero-Prats AE. Applications of pair distribution function analyses to the emerging field of non-ideal metal-organic framework materials. NANOSCALE 2020; 12:15577-15587. [PMID: 32510095 DOI: 10.1039/d0nr01673j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pair distribution function, PDF, analyses are emerging as a powerful tool to characterize non-ideal metal-organic framework (MOF) materials with compromised ordering. Although originally envisaged as crystalline porous architectures, MOFs can incorporate defects in their structures through either chemistry or mechanical stress, resulting in materials with unpredicted novel properties. Indeed, a wide variety of current non-ideal MOFs have disorder in their structures to some extent, thereby often lacking crystals. Typically, PDF experiments are performed using high-energy synchrotron X-rays or neutrons to achieve a superior high atomic resolution in short times. The PDF technique analyses both Bragg and diffuse scattering signals simultaneously, without being restricted to crystalline materials. This characteristic makes PDF analyses a powerful probe to address the structural characterization of non-ideal MOF materials both at the local and intermediate range scales, including under in situ conditions relevant to MOF synthesis, activation and catalysis.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | | | | | |
Collapse
|
35
|
Bulk and local structures of metal-organic frameworks unravelled by high-resolution electron microscopy. Commun Chem 2020; 3:99. [PMID: 36703329 PMCID: PMC9814830 DOI: 10.1038/s42004-020-00361-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 01/29/2023] Open
Abstract
The periodic bulk structures of metal-organic frameworks (MOFs) can be solved by diffraction-based techniques; however, their non-periodic local structures-such as crystal surfaces, grain boundaries, defects, and guest molecules-have long been elusive due to a lack of suitable characterization tools. Recent advances in (scanning) transmission electron microscopy ((S)TEM) has made it possible to probe the local structures of MOFs at atomic resolution. In this article, we discuss why high-resolution (S)TEM of MOFs is challenging and how the new low-dose techniques overcome this challenge, and we review various MOF structural features observed by (S)TEM and important insights gained from these observations. Our discussions focus on real-space imaging, excluding other TEM-related characterization techniques (e.g. electron diffraction and spectroscopy).
Collapse
|
36
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
37
|
Shen B, Chen X, Shen K, Xiong H, Wei F. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nat Commun 2020; 11:2692. [PMID: 32483138 PMCID: PMC7264187 DOI: 10.1038/s41467-020-16531-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/04/2020] [Indexed: 11/25/2022] Open
Abstract
Porous metal-organic frameworks (MOFs) have shown wide applications in catalysis, gas storage and separation due to their highly tunable porosity, connectivity and local structures. However, the electron-beam sensitivity of MOFs makes it difficult to achieve the atomic imaging of their bulk and local structures under (scanning) transmission electron microscopy ((S)TEM) to study their structure-property relations. Here, we report the low-dose imaging of a beam-sensitive MOF, MIL-101, under a Cs-corrected STEM based on the integrated differential phase contrast (iDPC) technique. The images resolve the coordination of Cr nodes and organic linkers inside the frameworks with an information transfer of ~1.8Å. The local structures in MIL-101 are also revealed under iDPC-STEM, including the surfaces, interfaces and defects. These results provide an extensible method to image various beam-sensitive materials with ultrahigh resolution, and unravel the whole framework architectures for further defect and surface engineering of MOFs towards tailored functions.
Collapse
Affiliation(s)
- Boyuan Shen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Kui Shen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
38
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
39
|
Zheng J, Barpaga D, Trump BA, Shetty M, Fan Y, Bhattacharya P, Jenks JJ, Su CY, Brown CM, Maurin G, McGrail BP, Motkuri RK. Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal-Organic Framework Analogs. J Am Chem Soc 2020; 142:3002-3012. [PMID: 31968934 PMCID: PMC11060419 DOI: 10.1021/jacs.9b11963] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rapid growth in the global energy demand for space cooling requires the development of more efficient environmental chillers for which adsorption-based cooling systems can be utilized. Here, in this contribution, we explore sorbents for chiller use via a pore-engineering concept to construct analogs of the 1-dimensional pore metal-organic framework MOF-74 by using elongated organic linkers and stereochemistry control. The prepared pore-engineered MOFs show remarkable equilibrium adsorption of the selected fluorocarbon refrigerant that is translated to a modeled adsorption-based refrigeration cycle. To probe molecular level interactions at the origin of these unique adsorption properties for this series of Ni-MOFs, we combined in situ synchrotron X-ray powder diffraction, neutron powder diffraction, X-ray absorption spectroscopy, calorimetry, Fourier transform infrared techniques, and molecular simulations. Our results reveal the coordination of fluorine (of CH2F in R134a) to the nickel(II) open metal centers at low pressures for each Ni-MOF analog and provide insight into the pore filling mechanism for the full range of the adsorption isotherms. The newly designed Ni-TPM demonstrates exceptional R134a adsorption uptake compared to its parent microporous Ni-MOF-74 due to larger engineered pore size/volume. The application of this adsorption performance toward established chiller conditions yields a working capacity increase for Ni-TPM of about 400% from that of Ni-MOF-74, which combined with kinetics directly correlates to both a higher coefficient of performance and a higher average cooling capacity generated in a modeled chiller.
Collapse
Affiliation(s)
- Jian Zheng
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Dushyant Barpaga
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Benjamin A Trump
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Manish Shetty
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Yanzhong Fan
- Institut Charles Gerhardt, Montpellier UMR 5253 CNRS ENSCM UM , Université Montpellier , 34095 Montpellier , CEDEX 05 France
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , China
| | - Papri Bhattacharya
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Jeromy J Jenks
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , China
| | - Craig M Brown
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
- Department of Chemical and Biochemical Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Guillaume Maurin
- Institut Charles Gerhardt, Montpellier UMR 5253 CNRS ENSCM UM , Université Montpellier , 34095 Montpellier , CEDEX 05 France
| | - B Peter McGrail
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Radha Kishan Motkuri
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| |
Collapse
|
40
|
Yang D, Gaggioli CA, Conley E, Babucci M, Gagliardi L, Gates BC. Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67: Catalyst for ethylene hydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
The role of defects in the properties of functional coordination polymers. ADVANCES IN INORGANIC CHEMISTRY 2020. [DOI: 10.1016/bs.adioch.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Hanna L, Lockard JV. From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:483001. [PMID: 31387089 DOI: 10.1088/1361-648x/ab38da] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This topical review focuses on the application of several types of spectroscopy methods to a class of solid state materials called metal organic frameworks (MOFs). MOFs are self-assembled, porous crystalline materials composed of metal cluster nodes linked through coordination bonds with organic or organometallic molecular constituents. Their unique host-guest properties make them attractive for many adsorption-based applications such as gas storage and separation, catalysis, sensing and others. While much research focuses on the development and application of these materials, fundamental studies of MOF properties and molecular level host-guest interactions behind their functionality have become a significant research direction on its own. Spectroscopy methods are now ubiquitous tools in this pursuit. This review focuses on the application of three classes of spectroscopy methods to MOF materials: vibrational, optical electronic and x-ray spectroscopies. Following brief introductions to each method that include pertinent theory and experimental considerations, we present a broad overview of the types of MOF systems that have been studied, with specific examples and important new molecular level insights highlighted along the way. The current status of spectroscopic studies of MOFs is presented at the end along with some perspectives on the future directions in this area of research.
Collapse
Affiliation(s)
- Lauren Hanna
- Department of Chemistry, Rutgers University, Newark, NJ 07102, United States of America
| | | |
Collapse
|
43
|
Afzali N, Kardanpour R, Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mechler A, Mohammadpoor‐Baltork I, Bahadori M. Molybdenum (VI)‐functionalized UiO‐66 provides an efficient heterogeneous nanocatalyst in oxidation reactions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niloufar Afzali
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Reihaneh Kardanpour
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Farnaz Zadehahmadi
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
- La Trobe Institute for Molecular SciencesLa Trobe University Bundoora VIC 3086 Australia
| | | | - Majid Moghadam
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Adam Mechler
- La Trobe Institute for Molecular SciencesLa Trobe University Bundoora VIC 3086 Australia
| | | | - Mehrnaz Bahadori
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| |
Collapse
|
44
|
Zheng J, Ye J, Ortuño MA, Fulton JL, Gutiérrez OY, Camaioni DM, Motkuri RK, Li Z, Webber TE, Mehdi BL, Browning ND, Penn RL, Farha OK, Hupp JT, Truhlar DG, Cramer CJ, Lercher JA. Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal-Organic Framework. J Am Chem Soc 2019; 141:9292-9304. [PMID: 31117650 DOI: 10.1021/jacs.9b02902] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.
Collapse
Affiliation(s)
- Jian Zheng
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Jingyun Ye
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Manuel A Ortuño
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - John L Fulton
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Donald M Camaioni
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Radha Kishan Motkuri
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Zhanyong Li
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Thomas E Webber
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - B Layla Mehdi
- School of Engineering , University of Liverpool , Liverpool , L69 3GH , United Kingdom
| | - Nigel D Browning
- School of Engineering , University of Liverpool , Liverpool , L69 3GH , United Kingdom
| | - R Lee Penn
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Omar K Farha
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Joseph T Hupp
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Donald G Truhlar
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Johannes A Lercher
- Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States.,Department of Chemistry and Catalysis Research Institute , TU München , Lichtenbergstrasse 4 , 85748 Garching , Germany
| |
Collapse
|
45
|
Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat Chem 2019; 11:622-628. [DOI: 10.1038/s41557-019-0263-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
|
46
|
Liu J, Li Z, Zhang X, Otake KI, Zhang L, Peters AW, Young MJ, Bedford NM, Letourneau SP, Mandia DJ, Elam JW, Farha OK, Hupp JT. Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04828] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhanyong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ken-ichi Otake
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Aaron W. Peters
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthias J. Young
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Nicholas M. Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Steven P. Letourneau
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - David J. Mandia
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Jeffrey W. Elam
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
47
|
Yang D, Gates BC. Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04515] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
48
|
Zhao N, Yang L, Pan Q, Han J, Li X, Liu M, Wang Y, Wang X, Pan Q, Zhu G. Step-by-Step Assembly of Metal–Organic Frameworks from Trinuclear Cu 3 Clusters. Inorg Chem 2019; 58:199-203. [DOI: 10.1021/acs.inorgchem.8b02158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nian Zhao
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Lun Yang
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Qiyun Pan
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Juanjuan Han
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Xiang Li
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Meifeng Liu
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Yu Wang
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Xiuzhang Wang
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Guangshan Zhu
- Key Laboratory for Micro−Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
49
|
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenbin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
50
|
Lollar CT, Qin JS, Pang J, Yuan S, Becker B, Zhou HC. Interior Decoration of Stable Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13795-13807. [PMID: 29746780 DOI: 10.1021/acs.langmuir.8b00823] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-organic frameworks (MOFs) are a diverse class of hybrid organic/inorganic crystalline materials composed of metal-containing nodes held in place by organic linkers. Through a discerning selection of these components, many properties such as the internal surface area, cavity size and shape, catalytic properties, thermal properties, and mechanical properties may be manipulated. Because of this high level of tunability, MOFs have been heralded as ideal platforms for various applications including gas storage, separation, catalysis, and chemical sensing. (1-8) Regrettably, these theoretical possibilities are limited by the reality of constraining conditions for solvothermal synthesis, which typically include high temperatures (usually over 100 °C), the use of specific solvents, and necessary exposure to acidic or basic conditions. In order to incorporate more delicate functionalities, postsynthesis decoration methods were developed. This feature article focuses on developed interior decoration methods for stable MOFs and the dynamic relationship between such methods and MOF stability. In particular, methods to transform organic, inorganic, and organometallic MOF parts as well as combination techniques, the generation of defects, and the inclusion of enzymes are addressed.
Collapse
Affiliation(s)
- Christina Tori Lollar
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Jun-Sheng Qin
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Jiandong Pang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Shuai Yuan
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Benjamin Becker
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|