1
|
López CA, Alam SM, Derdeyn CA, Haynes BF, Gnanakaran S. Influence of membrane on the antigen presentation of the HIV-1 envelope membrane proximal external region (MPER). Curr Opin Struct Biol 2024; 88:102897. [PMID: 39173417 DOI: 10.1016/j.sbi.2024.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The membrane proximal external region (MPER) of the HIV envelope glycoproteins has generated renewed interest after a recent phase I vaccine trial that presented MPER lipid-peptide epitopes demonstrated promise to elicit a broad neutralization response. The antigenicity of MPER is intimately associated with the membrane, and its presentation relies significantly on the lipid composition. This review brings together recent findings on the influence of membranes on the conformation of MPER and its recognition by broadly neutralizing antibodies. Specifically, the review highlights the importance of properly accounting for the balance between protein-protein and membrane-protein interactions in vaccine design.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cynthia A Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
2
|
Du G, Zhao L, Zheng Y, Belfetmi A, Cai T, Xu B, Heyninck K, Van Den Heede K, Buyse MA, Fontana P, Bowman M, Lin LL, Wu H, Chou JJ. Autoinhibitory structure of preligand association state implicates a new strategy to attain effective DR5 receptor activation. Cell Res 2023; 33:131-146. [PMID: 36604598 PMCID: PMC9892523 DOI: 10.1038/s41422-022-00755-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/15/2022] [Indexed: 01/07/2023] Open
Abstract
Members of the tumor necrosis factor receptor superfamily (TNFRSF) are important therapeutic targets that can be activated to induce death of cancer cells or stimulate proliferation of immune cells. Although it has long been implicated that these receptors assemble preligand associated states that are required for dominant interference in human disease, such states have so far eluded structural characterization. Here, we find that the ectodomain of death receptor 5 (DR5-ECD), a representative member of TNFRSF, can specifically self-associate when anchored to lipid bilayer, and we report this self-association structure determined by nuclear magnetic resonance (NMR). Unexpectedly, two non-overlapping interaction interfaces are identified that could propagate to higher-order clusters. Structure-guided mutagenesis indicates that the observed preligand association structure is represented on DR5-expressing cells. The DR5 preligand association serves an autoinhibitory role as single-domain antibodies (sdAbs) that partially dissociate the preligand cluster can sensitize the receptor to its ligand TRAIL and even induce substantial receptor signaling in the absence of TRAIL. Unlike most agonistic antibodies that require multivalent binding to aggregate receptors for activation, these agonistic sdAbs are monovalent and act specifically on an oligomeric, autoinhibitory configuration of the receptor. Our data indicate that receptors such as DR5 can form structurally defined preclusters incompatible with signaling and that true agonists should disrupt the preligand cluster while converting it to signaling-productive cluster. This mechanism enhances our understanding of a long-standing question in TNFRSF signaling and suggests a new opportunity for developing agonistic molecules by targeting receptor preligand clustering.
Collapse
Affiliation(s)
- Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anissa Belfetmi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tiantian Cai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Boying Xu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | | | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michael Bowman
- Checkpoint Immunology, Immunology & Inflammation, Sanofi, Cambridge, MA, USA
| | - Lih-Ling Lin
- Checkpoint Immunology, Immunology & Inflammation, Sanofi, Cambridge, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - James Jeiwen Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Fernandez-de Céspedes MV, Hoffman HK, Carter H, Simons LM, Naing L, Ablan SD, Scheiblin DA, Hultquist JF, van Engelenburg SB, Freed EO. Rab11-FIP1C Is Dispensable for HIV-1 Replication in Primary CD4 + T Cells, but Its Role Is Cell Type Dependent in Immortalized Human T-Cell Lines. J Virol 2022; 96:e0087622. [PMID: 36354340 PMCID: PMC9749476 DOI: 10.1128/jvi.00876-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Hannah Carter
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lwar Naing
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay D. Ablan
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - David A. Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
4
|
Sutherland M, Kwon B, Hong M. Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183723. [PMID: 34352242 DOI: 10.1016/j.bbamem.2021.183723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
HIV-1 entry into cells requires coordinated changes of the conformation and dynamics of both the fusion protein, gp41, and the lipids in the cell membrane and virus envelope. Commonly proposed features of membrane deformation during fusion include high membrane curvature, lipid disorder, and membrane surface dehydration. The virus envelope and target cell membrane contain a diverse set of phospholipids and cholesterol. To dissect how different lipids interact with gp41 to contribute to membrane fusion, here we use 31P solid-state NMR spectroscopy to investigate the curvature, dynamics, and hydration of POPE, POPC and POPS membranes, with and without cholesterol, in the presence of a peptide comprising the membrane proximal external region (MPER) and transmembrane domain (TMD) of gp41. Static 31P NMR spectra indicate that the MPER-TMD induces strong negative Gaussian curvature (NGC) to the POPE membrane but little curvature to POPC and POPC:POPS membranes. The NGC manifests as an isotropic peak in the static NMR spectra, whose intensity increases with the peptide concentration. Cholesterol inhibits the NGC formation and stabilizes the lamellar phase. Relative intensities of magic-angle spinning 31P cross-polarization and direct-polarization spectra indicate that all three phospholipids become more mobile upon peptide binding. Finally, 2D 1H-31P correlation spectra show that the MPER-TMD enhances water 1H polarization transfer to the lipids, indicating that the membrane surfaces become more hydrated. These results suggest that POPE is an essential component of the high-curvature fusion site, and lipid dynamic disorder is a general feature of membrane restructuring during fusion.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Piai A, Fu Q, Sharp AK, Bighi B, Brown AM, Chou JJ. NMR Model of the Entire Membrane-Interacting Region of the HIV-1 Fusion Protein and Its Perturbation of Membrane Morphology. J Am Chem Soc 2021; 143:6609-6615. [PMID: 33882664 DOI: 10.1021/jacs.1c01762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV-1 envelope glycoprotein (Env) is a transmembrane protein that mediates membrane fusion and viral entry. The membrane-interacting regions of the Env, including the membrane-proximal external region (MPER), the transmembrane domain (TMD), and the cytoplasmic tail (CT), not only are essential for fusion and Env incorporation but also can strongly influence the antigenicity of the Env. Previous studies have incrementally revealed the structures of the MPER, the TMD, and the KS-LLP2 regions of the CT. Here, we determined the NMR structure of the full-length CT using a protein fragment comprising the TMD and the CT in bicelles that mimic a lipid bilayer, and by integrating the new NMR data and those acquired previously on other gp41 fragments, we derived a model of the entire membrane-interacting region of the Env. The structure shows that the CT forms a large trimeric baseplate around the TMD trimer, and by residing in the headgroup region of the lipid bilayer, the baseplate causes severe exclusion of lipid in the cytoleaflet of the bilayer. All-atom molecular dynamics simulations showed that the overall structure of the MPER-TMD-CT can be stable in a viral membrane and that a concerted movement of the KS-LLP2 region compensates for the lipid exclusion in order to maintain both structure and membrane integrity. Our structural and simulation results provide a framework for future research to manipulate the membrane structure to modulate the antigenicity of the Env for vaccine development and for mutagenesis studies for investigating membrane fusion and Env interaction with the matrix proteins.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Beatrice Bighi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Aisenbrey C, Rifi O, Bechinger B. Structure, membrane topology and influence of cholesterol of the membrane proximal region: transmembrane helical anchor sequence of gp41 from HIV. Sci Rep 2020; 10:22278. [PMID: 33335248 PMCID: PMC7746737 DOI: 10.1038/s41598-020-79327-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
During the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence. These observations are suggestive of a strong coupling between the transmembrane and the membrane proximal region of gp41 possibly enforced by oligomerization of the transmembrane helical region.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Omar Rifi
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de chimie de Strasbourg, UMR7177, University of Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
7
|
Abstract
During the last three decades or so, many efforts have been made to study the protein cleavage
sites by some disease-causing enzyme, such as HIV (Human Immunodeficiency Virus) protease
and SARS (Severe Acute Respiratory Syndrome) coronavirus main proteinase. It has become increasingly
clear <i>via</i> this mini-review that the motivation driving the aforementioned studies is quite wise,
and that the results acquired through these studies are very rewarding, particularly for developing peptide
drugs.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
8
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
9
|
Chou KC. An Insightful 10-year Recollection Since the Emergence of the 5-steps Rule. Curr Pharm Des 2020; 25:4223-4234. [PMID: 31782354 DOI: 10.2174/1381612825666191129164042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE One of the most challenging and also the most difficult problems is how to formulate a biological sequence with a vector but considerably keep its sequence order information. METHODS To address such a problem, the approach of Pseudo Amino Acid Components or PseAAC has been developed. RESULTS AND CONCLUSION It has become increasingly clear via the 10-year recollection that the aforementioned proposal has been indeed very powerful.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, Massachusetts 02478, United States.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
|
11
|
Zheng L, Huang S, Mu N, Zhang H, Zhang J, Chang Y, Yang L, Zuo Y. RAACBook: a web server of reduced amino acid alphabet for sequence-dependent inference by using Chou's five-step rule. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5650975. [PMID: 31802128 PMCID: PMC6893003 DOI: 10.1093/database/baz131] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
By reducing amino acid alphabet, the protein complexity can be significantly simplified, which could improve computational efficiency, decrease information redundancy and reduce chance of overfitting. Although some reduced alphabets have been proposed, different classification rules could produce distinctive results for protein sequence analysis. Thus, it is urgent to construct a systematical frame for reduced alphabets. In this work, we constructed a comprehensive web server called RAACBook for protein sequence analysis and machine learning application by integrating reduction alphabets. The web server contains three parts: (i) 74 types of reduced amino acid alphabet were manually extracted to generate 673 reduced amino acid clusters (RAACs) for dealing with unique protein problems. It is easy for users to select desired RAACs from a multilayer browser tool. (ii) An online tool was developed to analyze primary sequence of protein. The tool could produce K-tuple reduced amino acid composition by defining three correlation parameters (K-tuple, g-gap, λ-correlation). The results are visualized as sequence alignment, mergence of RAA composition, feature distribution and logo of reduced sequence. (iii) The machine learning server is provided to train the model of protein classification based on K-tuple RAAC. The optimal model could be selected according to the evaluation indexes (ROC, AUC, MCC, etc.). In conclusion, RAACBook presents a powerful and user-friendly service in protein sequence analysis and computational proteomics. RAACBook can be freely available at http://bioinfor.imu.edu.cn/raacbook. Database URL: http://bioinfor.imu.edu.cn/raacbook
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Shenghui Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Nengjiang Mu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Haoyue Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Jiayu Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Yu Chang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Baojian Road No.157, Harbin 150081, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Zhaojun Road No.24, Hohhot, 010070, China
| |
Collapse
|
12
|
Piai A, Fu Q, Cai Y, Ghantous F, Xiao T, Shaik MM, Peng H, Rits-Volloch S, Chen W, Seaman MS, Chen B, Chou JJ. Structural basis of transmembrane coupling of the HIV-1 envelope glycoprotein. Nat Commun 2020; 11:2317. [PMID: 32385256 PMCID: PMC7210310 DOI: 10.1038/s41467-020-16165-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The prefusion conformation of HIV-1 envelope protein (Env) is recognized by most broadly neutralizing antibodies (bnAbs). Studies showed that alterations of its membrane-related components, including the transmembrane domain (TMD) and cytoplasmic tail (CT), can reshape the antigenic structure of the Env ectodomain. Using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of an Env segment encompassing the TMD and a large portion of the CT in bicelles. The structure reveals that the CT folds into amphipathic helices that wrap around the C-terminal end of the TMD, thereby forming a support baseplate for the rest of Env. NMR dynamics measurements provide evidences of dynamic coupling across the TMD between the ectodomain and CT. Pseudovirus-based neutralization assays suggest that CT-TMD interaction preferentially affects antigenic structure near the apex of the Env trimer. These results explain why the CT can modulate the Env antigenic properties and may facilitate HIV-1 Env-based vaccine design.
Collapse
Affiliation(s)
- Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Md Munan Shaik
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Identifying FL11 subtype by characterizing tumor immune microenvironment in prostate adenocarcinoma via Chou's 5-steps rule. Genomics 2020; 112:1500-1515. [DOI: 10.1016/j.ygeno.2019.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
|
14
|
Chou KC. Impacts of Pseudo Amino Acid Components and 5-steps Rule to Proteomics and Proteome Analysis. Curr Top Med Chem 2019; 19:2283-2300. [DOI: 10.2174/1568026619666191018100141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 01/27/2023]
Abstract
Stimulated by the 5-steps rule during the last decade or so, computational proteomics has achieved remarkable progresses in the following three areas: (1) protein structural class prediction; (2) protein subcellular location prediction; (3) post-translational modification (PTM) site prediction. The results obtained by these predictions are very useful not only for an in-depth study of the functions of proteins and their biological processes in a cell, but also for developing novel drugs against major diseases such as cancers, Alzheimer’s, and Parkinson’s. Moreover, since the targets to be predicted may have the multi-label feature, two sets of metrics are introduced: one is for inspecting the global prediction quality, while the other for the local prediction quality. All the predictors covered in this review have a userfriendly web-server, through which the majority of experimental scientists can easily obtain their desired data without the need to go through the complicated mathematics.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
15
|
Behbahani M, Nosrati M, Moradi M, Mohabatkar H. Using Chou's General Pseudo Amino Acid Composition to Classify Laccases from Bacterial and Fungal Sources via Chou's Five-Step Rule. Appl Biochem Biotechnol 2019; 190:1035-1048. [PMID: 31659712 DOI: 10.1007/s12010-019-03141-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/12/2019] [Indexed: 01/28/2023]
Abstract
Laccases are a group of enzymes with a critical activity in the degradation process of both phenolic and non-phenolic compounds. These enzymes present in a diverse array of species, including fungi and bacteria. Since this enzyme is in the market for different usages from industry to medicine, having a better knowledge of its structures and properties from diverse sources will be useful to select the most appropriate candidate for different purposes. In the current study, sequence- and structure-based characteristics of these enzymes from fungi and bacteria, including pseudo amino acid composition (PseAAC), physicochemical characteristics, and their secondary structures, are being compared and classified. Autodock 4 software was used for docking analysis between these laccases and some phenolic and non-phenolic compounds. The results indicated that features including molecular weight, aliphatic, extinction coefficient, and random coil percentage of these protein groups present high degrees of diversity in most cases. Categorization of these enzymes by the notion of PseAAC, showed over 96% accuracy. The binding free energy between fungal laccases and their substrates showed to be considerably higher than those of bacterial ones. According to the outcomes of the current study, data mining methods by using different machine learning algorithms, especially neural networks, could provide valuable information for a fair comparison between fungal and bacterial laccases. These results also suggested an association between efficacy and physicochemical features of laccase enzymes from different sources.
Collapse
Affiliation(s)
- Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mokhtar Nosrati
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Moradi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
16
|
Liang R, Xie J, Zhang C, Zhang M, Huang H, Huo H, Cao X, Niu B. Identifying Cancer Targets Based on Machine Learning Methods via Chou's 5-steps Rule and General Pseudo Components. Curr Top Med Chem 2019; 19:2301-2317. [PMID: 31622219 DOI: 10.2174/1568026619666191016155543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
Abstract
In recent years, the successful implementation of human genome project has made people realize that genetic, environmental and lifestyle factors should be combined together to study cancer due to the complexity and various forms of the disease. The increasing availability and growth rate of 'big data' derived from various omics, opens a new window for study and therapy of cancer. In this paper, we will introduce the application of machine learning methods in handling cancer big data including the use of artificial neural networks, support vector machines, ensemble learning and naïve Bayes classifiers.
Collapse
Affiliation(s)
- Ruirui Liang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiayang Xie
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Chi Zhang
- Foshan Huaxia Eye Hospital, Huaxia Eye Hospital Group, Foshan 528000, China
| | - Mengying Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hai Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xin Cao
- Zhongshan Hospital, Institute of Clinical Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule. Biophys Chem 2019; 253:106227. [DOI: 10.1016/j.bpc.2019.106227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
|
18
|
Hollingsworth LR, Lemkul JA, Bevan DR, Brown AM. HIV-1 Env gp41 Transmembrane Domain Dynamics Are Modulated by Lipid, Water, and Ion Interactions. Biophys J 2019; 115:84-94. [PMID: 29972814 DOI: 10.1016/j.bpj.2018.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
The gp41 transmembrane domain (TMD) of the envelope glycoprotein of the human immunodeficiency virus modulates the conformation of the viral envelope spike, the only druggable target on the surface of the virion. Targeting the envelope glycoprotein with small-molecule and antibody therapies requires an understanding of gp41 TMD dynamics, which is often challenging given the difficulties in describing native membrane properties. Here, atomistic molecular dynamics simulations of a trimeric, prefusion gp41 TMD in a model, asymmetric viral membrane that mimics the native viral envelope were performed. Water and chloride ions were observed to permeate the membrane and interact with the highly conserved arginine bundle, (R696)3, at the center of the membrane and influenced TMD stability by creating a network of hydrogen bonds and electrostatic interactions. We propose that this (R696)3 - water - anion network plays an important role in viral fusion with the host cell by modulating protein conformational changes within the membrane. Additionally, R683 and R707 at the exofacial and cytofacial membrane-water interfaces, respectively, are anchored in the lipid headgroup region and serve as a junction point for stabilization of the termini. The membrane thins as a result of the tilting of the gp41 trimer with nearby lipids increasing in volume, leading to an entropic driving force for TMD conformational change. These results provide additional detail and perspective on the influence of certain lipid types on TMD dynamics and a rationale for targeting key residues of the TMD for therapeutic design. These insights into the molecular details of TMD membrane anchoring will build toward a greater understanding of the dynamics that lead to viral fusion with the host cell.
Collapse
Affiliation(s)
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia; University Libraries, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
19
|
|
20
|
Fu Q, Piai A, Chen W, Xia K, Chou JJ. Structure determination protocol for transmembrane domain oligomers. Nat Protoc 2019; 14:2483-2520. [PMID: 31270510 DOI: 10.1038/s41596-019-0188-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
Abstract
The transmembrane (TM) anchors of cell surface proteins have been one of the 'blind spots' in structural biology because they are generally very hydrophobic, sometimes dynamic, and thus difficult targets for structural characterization. A plethora of examples show these membrane anchors are not merely anchors but can multimerize specifically to activate signaling receptors on the cell surface or to stabilize envelope proteins in viruses. Through a series of studies of the TM domains (TMDs) of immune receptors and viral membrane proteins, we have established a robust protocol for determining atomic-resolution structures of TM oligomers by NMR in bicelles that closely mimic a lipid bilayer. Our protocol overcomes hurdles typically encountered by structural biology techniques such as X-ray crystallography and cryo-electron microscopy (cryo-EM) when studying small TMDs. Here, we provide the details of the protocol, covering five major technical aspects: (i) a general method for producing isotopically labeled TM or membrane-proximal (MP) protein fragments that involves expression of the protein (which is fused to TrpLE) into inclusion bodies and releasing the target protein by cyanogen bromide (CNBr) cleavage; (ii) determination of the oligomeric state of TMDs in bicelles; (iii) detection of intermolecular contacts using nuclear Overhauser effect (NOE) experiments; (iv) structure determination; and (v) paramagnetic probe titration (PPT) to characterize the membrane partition of the TM oligomers. This protocol is broadly applicable for filling structural gaps of many type I/II membrane proteins. The procedures may take 3-6 months to complete, depending on the complexity and stability of the protein sample.
Collapse
Affiliation(s)
- Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Wang Y, Peng Y, Zhang B, Zhang X, Li H, Wilson AJ, Mineev KS, Wang X. Targeting trimeric transmembrane domain 5 of oncogenic latent membrane protein 1 using a computationally designed peptide. Chem Sci 2019; 10:7584-7590. [PMID: 31588309 PMCID: PMC6761861 DOI: 10.1039/c9sc02474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
A peptide inhibitor was designed in silico and validated experimentally to disrupt homotrimeric transmembrane helix assembly.
Protein–protein interactions are involved in diverse biological processes. These interactions are therefore vital targets for drug development. However, the design of peptide modulators targeting membrane-based protein–protein interactions is a challenging goal owing to the lack of experimentally-determined structures and efficient protocols to probe their functions. Here we employed rational peptide design and molecular dynamics simulations to design a membrane-insertable peptide that disrupts the strong trimeric self-association of the fifth transmembrane domain (TMD5) of the oncogenic Epstein–Barr virus (EBV) latent membrane protein-1 (LMP-1). The designed anti-TMD5 peptide formed 1 : 2 heterotrimers with TMD5 in micelles and inhibited TMD5 oligomerization in bacterial membranes. Moreover, the designed peptide inhibited LMP-1 homotrimerization based on NF-κB activity in EVB positive lymphoma cells. The results indicated that the designed anti-TMD5 peptide may represent a promising starting point for elaboration of anti-EBV therapeutics via inhibition of LMP-1 oligomerization. To the best of our knowledge, this represents the first example of disrupting homotrimeric transmembrane helices using a designed peptide inhibitor.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510060 , China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals , Institute of Special Animal and Plant Sciences , Chinese Academy of Agricultural Sciences , Changchun , Jilin 130112 , China
| | - Bo Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaozheng Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Hongyuan Li
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK.,Astbury Centre for Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , 117997 , Russian
| | - Xiaohui Wang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China . .,Department of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
22
|
Pan L, Fu TM, Zhao W, Zhao L, Chen W, Qiu C, Liu W, Liu Z, Piai A, Fu Q, Chen S, Wu H, Chou JJ. Higher-Order Clustering of the Transmembrane Anchor of DR5 Drives Signaling. Cell 2019; 176:1477-1489.e14. [PMID: 30827683 DOI: 10.1016/j.cell.2019.02.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/14/2018] [Accepted: 01/29/2019] [Indexed: 12/18/2022]
Abstract
Receptor clustering on the cell membrane is critical in the signaling of many immunoreceptors, and this mechanism has previously been attributed to the extracellular and/or the intracellular interactions. Here, we report an unexpected finding that for death receptor 5 (DR5), a receptor in the tumor necrosis factor receptor superfamily, the transmembrane helix (TMH) alone in the receptor directly assembles a higher-order structure to drive signaling and that this structure is inhibited by the unliganded ectodomain. Nuclear magnetic resonance structure of the TMH in bicelles shows distinct trimerization and dimerization faces, allowing formation of dimer-trimer interaction networks. Single-TMH mutations that disrupt either trimerization or dimerization abolish ligand-induced receptor activation. Surprisingly, proteolytic removal of the DR5 ectodomain can fully activate downstream signaling in the absence of ligand. Our data suggest a receptor activation mechanism in which binding of ligand or antibodies to overcome the pre-ligand autoinhibition allows TMH clustering and thus signaling.
Collapse
Affiliation(s)
- Liqiang Pan
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wenbin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Chixiao Qiu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Wenhui Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|