1
|
Chen W, Liu Z, Zhu L, Wang D. Knowledge -driven design of boron-based catalysts for oxidative dehydrogenation of propane. Phys Chem Chem Phys 2025; 27:2874-2887. [PMID: 39841030 DOI: 10.1039/d4cp03474k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Metal-free boron-based materials exhibit remarkable performance in oxidative dehydrogenation of propane (ODHP). Rational design of boron-based catalysts requires a systematic understanding of the underlying mechanisms to constitute a knowledge base. This work provides a comprehensive view of the reaction mechanism of the boron-based ODH reaction and discusses the key features of the reaction systems, including the inhibition of deep oxidation, high olefin selectivity, and the role of water in the ODHP reaction. A perspective is provided to propose potential issues in future research, i.e. identification of hidden elementary steps for an extensive understanding of the mechanisms, and application of machine learning techniques to mine the catalyst structure-catalytic performance relationship to guide the discovery of novel boron-based materials.
Collapse
Affiliation(s)
- Weixi Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Lihan Zhu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Liu H, Sun S, Li D, Lei Y. Catalyst development for O 2-assisted oxidative dehydrogenation of propane to propylene. Chem Commun (Camb) 2024; 60:7535-7554. [PMID: 38949820 DOI: 10.1039/d4cc01948b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
O2-Assisted oxidative dehydrogenation of propane (O2-ODHP) could convert abundant shale gas into propylene as an important chemical raw material, meaning O2-ODHP has practical significance. Thermodynamically, high temperature is beneficial for O2-ODHP; however, high reaction temperature always causes the overoxidation of propylene, leading to a decline in its selectivity. In this regard, it is crucial to achieve low temperatures while maintaining high efficiency and selectivity during O2-ODHP. The use of catalytic technology provides more opportunities for achieving high-efficiency O2-ODHP under mild conditions. Up to now, many kinds of catalytic systems have been elaborately designed, including transition metal oxide catalysts (such as vanadium-based catalysts, molybdenum-based catalysts, etc.), transition metal-based catalysts (such as Pt nanoclusters), rare earth metal oxide catalysts (especially CeO2 related catalysts), and non-metallic catalysts (BN, other B-containing catalysts, and C-based catalysts). In this review, we have summarized the development progress of mainstream catalysts in O2-ODHP, aiming at providing a clear picture to the catalysis community and advancing this research field further.
Collapse
Affiliation(s)
- Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Shaoyuan Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, Liaoning Province, P. R. China.
| | - Yiming Lei
- Departament de Química (Unitat de Química Inorgànica), Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Valles, 08193, Barcelona, Spain.
| |
Collapse
|
3
|
Kadota K, Uchiyama H, Kämäräinen T, Tanaka S, Tozuka Y. Building respirable powder architectures: utilizing polysaccharides for precise control of particle morphology for enhanced pulmonary drug delivery. Expert Opin Drug Deliv 2024; 21:945-963. [PMID: 38961522 DOI: 10.1080/17425247.2024.2376702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Dry powder inhaler (DPI) formulations are gaining attention as universal formulations with applications in a diverse range of drug formulations. The practical application of DPIs to pulmonary drugs requires enhancing their delivery efficiency to the target sites for various treatment modalities. Previous reviews have not explored the relation between particle morphology and delivery to different pulmonary regions. This review introduces new approaches to improve targeted DPI delivery using novel particle design such as supraparticles and metal-organic frameworks based on cyclodextrin. AREAS COVERED This review focuses on the design of DPI formulations using polysaccharides, promising excipients not yet approved by regulatory agencies. These excipients can be used to design various particle morphologies by controlling their physicochemical properties and manufacturing methods. EXPERT OPINION Challenges associated with DPI formulations include poor access to the lungs and low delivery efficiency to target sites in the lung. The restricted applicability of typical excipients contributes to their limited use. However, new formulations based on polysaccharides are expected to establish a technological foundation for the development of DPIs capable of delivering modalities specific to different lung target sites, thereby enhancing drug delivery.
Collapse
Affiliation(s)
- Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Hiromasa Uchiyama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Tero Kämäräinen
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shunsuke Tanaka
- Faculty of Environmental and Urban Engineering, Kansai University, Suita, Osaka, Japan
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
4
|
Qin Y, Li L, Liu H, Han J, Wang H, Zhu X, Ge Q. Anionic oxyl radical formed on CrVI-oxo anchored on the defect site of the UiO-66 node facilitates methane to methanol conversion. J Chem Phys 2024; 160:134701. [PMID: 38557845 DOI: 10.1063/5.0201753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The direct conversion of methane to methanol has attracted increasing interest due to abundant and low-cost natural gas resources. Herein, by anchoring Cr-oxo/-oxyhydroxides on UiO-66 metal-organic frameworks, we demonstrate that reactive anionic oxyl radicals can be formed by controlling the coordination environment based on the results of density functional theory calculations. The anionic oxyl radicals produced at the completely oxidized CrVI site acted as the active species for facile methane activation. The thermodynamically stable CrVI-oxo/-oxyhydroxides with the anionic oxyl radicals catalyze the activation of the methane C-H bond through a homolytic mechanism. An analysis of the results showed that the catalytic performance of the active oxyl species correlates with the reaction energy of methane activation and H adsorption energies. Following methanol formation, N2O can regenerate the active sites on the most stable CrVI oxyhydroxides, i.e., the Cr(O)4Hf species. The present study demonstrated that the anionic oxyl radicals formed on the anchored CrVI oxyhydroxides by tuning the coordination environment enabled facile methane activation and facilitated methanol production.
Collapse
Affiliation(s)
- Yuyao Qin
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liwen Li
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huixian Liu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinyu Han
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hua Wang
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinli Zhu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| |
Collapse
|
5
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
6
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
7
|
Zhang CP, Zhu YJ, Wang D, Qian J, Zhao YP, Lian C, Zhang ZH, He MY, Chen SC, Chen Q. Ligand-Mediated Regulation of the Chemical/Thermal Stability and Catalytic Performance of Isostructural Cobalt(II) Coordination Polymers. Inorg Chem 2023; 62:17678-17690. [PMID: 37856236 DOI: 10.1021/acs.inorgchem.3c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Regulating the chemical/thermal stability and catalytic activity of coordination polymers (CPs) to achieve high catalytic performance is topical and challenging. The CPs are competent in promoting oxidative cross-coupling, yet they have not received substantial attention. Here, the ligand effect of the secondary ligand of CPs for oxidative cross-coupling reactions was investigated. Specifically, four new isostructural CPs [Co(Fbtx)1.5(4-R-1,2-BDC)]n (denoted as Co-CP-R, Fbtx = 1,4-bis(1,2,4-triazole-1-ylmethyl)-2,3,5,6-tetrafluorobenzene, 4-R-1,2-BDC = 4-R-1,2-benzenedicarboxylate, R = F, Cl, Br, CF3) were prepared. It was found that in the reactions of oxidative amination of benzoxazoles with secondary amines and the oxidative coupling of styrenes with benzaldehydes, both the chemical and thermal stabilities of the four Co-CPs with the R group followed the trend of -CF3 > -Br > -Cl > -F. Density functional theory (DFT) calculations suggested that the difference in reactivity may be ascribed to the effect of substituent groups on the electron transition energy of the cobalt(II) center of these Co-CPs. These findings highlight the secondary ligand effect in regulating the stability and catalytic performance of coordination networks.
Collapse
Affiliation(s)
- Cheng-Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Jun Zhu
- Department of Pharmacy and Biomedical Engineering, Clinical College of Anhui Medical University, Hefei 230031, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yu-Pei Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Cheng Lian
- Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Sheng-Chun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
8
|
Kung CW, Otake KI, Drout RJ, Goswami S, Farha OK, Hupp JT. Post-Synthetic Cyano-ferrate(II) Functionalization of a Metal-Organic Framework, NU-1000. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4936-4942. [PMID: 36994868 DOI: 10.1021/acs.langmuir.2c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Starting with ferrocyanide ions in acidic aqueous solution, cyano-ferrate(II) species are post-synthetically grafted to the nodes of a mesoporous zirconium-based MOF, NU-1000. As indicated by single-crystal X-ray crystallography, grafting occurs by substitution of cyanide ligands by node-based hydroxo and oxo ligands rather than by substitution of node aqua ligands by cyanide ligands as bridges between Fe(II) and Zr(IV). The installed moieties yield a broad absorption band that is tentatively ascribed to iron-to-zirconium charge transfer. Consistent with Fe(III/II) redox activity, a modest fraction of the installed iron complexes are directly electrochemically addressable.
Collapse
Affiliation(s)
- Chung-Wei Kung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Ken-Ichi Otake
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto 606-8317, Japan
| | - Riki J Drout
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Wang T, Zhu M. Effect of Boron Species on Carbon Surface on Oxidative Dehydrogenation of Propane. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
11
|
Iliescu A, Oppenheim JJ, Sun C, Dincǎ M. Conceptual and Practical Aspects of Metal-Organic Frameworks for Solid-Gas Reactions. Chem Rev 2023; 123:6197-6232. [PMID: 36802581 DOI: 10.1021/acs.chemrev.2c00537] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The presence of site-isolated and well-defined metal sites has enabled the use of metal-organic frameworks (MOFs) as catalysts that can be rationally modulated. Because MOFs can be addressed and manipulated through molecular synthetic pathways, they are chemically similar to molecular catalysts. They are, nevertheless, solid-state materials and therefore can be thought of as privileged solid molecular catalysts that excel in applications involving gas-phase reactions. This contrasts with homogeneous catalysts, which are overwhelmingly used in the solution phase. Herein, we review theories dictating gas phase reactivity within porous solids and discuss key catalytic gas-solid reactions. We further treat theoretical aspects of diffusion within confined pores, the enrichment of adsorbates, the types of solvation spheres that a MOF might impart on adsorbates, definitions of acidity/basicity in the absence of solvent, the stabilization of reactive intermediates, and the generation and characterization of defect sites. The key catalytic reactions we discuss broadly include reductive reactions (olefin hydrogenation, semihydrogenation, and selective catalytic reduction), oxidative reactions (oxygenation of hydrocarbons, oxidative dehydrogenation, and carbon monoxide oxidation), and C-C bond forming reactions (olefin dimerization/polymerization, isomerization, and carbonylation reactions).
Collapse
Affiliation(s)
- Andrei Iliescu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Wang X, Syed ZH, Chen Z, Bazak JD, Gong X, Wasson MC, Washton NM, Chapman KW, Notestein JM, Farha OK. Enhanced Catalytic Performance of a Ce/V Oxo Cluster through Confinement in Mesoporous SBA-15. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52886-52893. [PMID: 36395424 DOI: 10.1021/acsami.2c15046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.
Collapse
Affiliation(s)
- Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - J David Bazak
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xinyi Gong
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Megan C Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nancy M Washton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Feng F, Zhang H, Chu S, Zhang Q, Wang C, Wang G, Wang F, Bing L, Han D. Recent progress on the traditional and emerging catalysts for propane dehydrogenation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Wang X, Ma K, Goh T, Mian MR, Xie H, Mao H, Duan J, Kirlikovali KO, Stone AEBS, Ray D, Wasielewski MR, Gagliardi L, Farha OK. Photocatalytic Biocidal Coatings Featuring Zr 6Ti 4-Based Metal-Organic Frameworks. J Am Chem Soc 2022; 144:12192-12201. [PMID: 35786901 DOI: 10.1021/jacs.2c03060] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials. Here, we report how incorporating titanium into the zirconium-pyrene-based MOF NU-1000, denoted as NU-1012, generates a highly reactive biocidal photocatalyst. This MOF features a rare ligand migration phenomenon, and both the Ti/Zr center and the pyrene linker act synergistically as dual active centers and widen the absorption band for this material, which results in enhanced reactive oxygen species generation upon visible light irradiation. Additionally, we found that the ligand migration process is generally applicable to other csq topology Zr-MOFs. Importantly, NU-1012 can be easily incorporated onto cotton textile cloths as a coating, and the resulting composite material demonstrates fast and potent biocidal activity against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus epidermidis), and T7 bacteriophage virus with up to a 7-log(99.99999%) reduction within 1 h under simulated daylight.
Collapse
Affiliation(s)
- Xingjie Wang
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Teffanie Goh
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Mohammad Rasel Mian
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jiaxin Duan
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Aaron E B S Stone
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debmalya Ray
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55414, United States
| | - Michael R Wasielewski
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Omar K Farha
- International Institute for Nanotechnology, Institute for Sustainability and Energy at Northwestern, and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Zhang A, Wang R, Huang H, Liu T, Cao R. Post-modification of metal-organic framework for improved CO2 photoreduction efficiency. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Chen Y, Ahn S, Mian MR, Wang X, Ma Q, Son FA, Yang L, Ma K, Zhang X, Notestein JM, Farha OK. Modulating Chemical Environments of Metal-Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure-Activity Relationship in Cyclohexene Epoxidation. J Am Chem Soc 2022; 144:3554-3563. [PMID: 35179900 DOI: 10.1021/jacs.1c12421] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.
Collapse
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.,Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sol Ahn
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Florencia A Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lifeng Yang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Notestein
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Al Sharabati M, Sabouni R, Husseini GA. Biomedical Applications of Metal-Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:277. [PMID: 35055294 PMCID: PMC8780624 DOI: 10.3390/nano12020277] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of porous hybrid organic-inorganic materials that have attracted increasing attention over the past decade. MOFs can be used in chemical engineering, materials science, and chemistry applications. Recently, these structures have been thoroughly studied as promising platforms for biomedical applications. Due to their unique physical and chemical properties, they are regarded as promising candidates for disease diagnosis and drug delivery. Their well-defined structure, high porosity, tunable frameworks, wide range of pore shapes, ultrahigh surface area, relatively low toxicity, and easy chemical functionalization have made them the focus of extensive research. This review highlights the up-to-date progress of MOFs as potential platforms for disease diagnosis and drug delivery for a wide range of diseases such as cancer, diabetes, neurological disorders, and ocular diseases. A brief description of the synthesis methods of MOFs is first presented. Various examples of MOF-based sensors and DDSs are introduced for the different diseases. Finally, the challenges and perspectives are discussed to provide context for the future development of MOFs as efficient platforms for disease diagnosis and drug delivery systems.
Collapse
Affiliation(s)
- Miral Al Sharabati
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- The Material Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. BOX 26666, United Arab Emirates
| |
Collapse
|
18
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
19
|
Qian H, Sun F, Huang C, Zhang W, Fang K, Wang Y. Efficient metal borate catalysts for oxidative dehydrogenation of propane. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01792f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boron-based catalysts have attracted attention due to their high selectivity to light olefins in the catalytic oxidative dehydrogenation of propane (ODHP) in the recent years, however, which still faced the...
Collapse
|
20
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
21
|
Wang L, Shen D, Zhang H, Mo B, Wu J, Hou H. Z-Scheme In 2 S 3 /NU-1000 Heterojunction for Boosting Photo-Oxidation of Sulfide into Sulfoxide under Ambient Conditions. Chemistry 2021; 28:e202103466. [PMID: 34889478 DOI: 10.1002/chem.202103466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/10/2022]
Abstract
Photocatalytic oxidation of sulfide into sulfoxide has attracted extensive attention as an environmentally friendly strategy for chemical transformations or toxic chemicals degradation. Herein, we construct a series of In2 S3 /NU-1000 heterojunction photocatalysts, which can efficiently catalyze the oxidation of sulfides to form sulfoxides as the sole product under LED lamp (full-spectrum) illumination in air at room temperature. Especially, the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), can also be photocatalytically oxidized with In2 S3 /NU-1000 to afford nontoxic 2-chloroethyl ethyl sulfoxide (CEESO) selectively and effectively. In contrast, individual NU-1000 and In2 S3 show very low catalytic activity on this reaction. The significantly improved photocatalytic activity is ascribed to the constructing of an efficient Z-scheme photocatalysts In2 S3 /NU-1000, which exhibits the enhancement of light harvesting, the promotion of photogenerated electron-hole separation, and the retention of high porosity of the parent MOF. Moreover, mechanism studies in photocatalytic oxidation reveal that the superoxide radical (. O2 - ) and singlet oxygen (1 O2 ) are the main oxidative species in the oxidation system. This work exploits the opportunities for the construction of porous Z-scheme photocatalysts based on the photoactive MOFs materials and inorganic semiconductors for promoting catalytic organic transformations. More importantly, it provides a route to the rational design of efficient photocatalysts for the detoxification of mustard gas.
Collapse
Affiliation(s)
- Lianlian Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dalong Shen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Heyao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bingyan Mo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jie Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongwei Hou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
22
|
Yan B, Lu WD, Sheng J, Li WC, Ding D, Lu AH. Electrospinning synthesis of porous boron-doped silica nanofibers for oxidative dehydrogenation of light alkanes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63809-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Wu L, Fu Z, Ren Z, Wei J, Gao X, Tan L, Tang Y. Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment. ChemCatChem 2021. [DOI: 10.1002/cctc.202100752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lizhi Wu
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Zhiyuan Fu
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Zhuangzhuang Ren
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Jinhe Wei
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Xinhua Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering College of Chemistry and Chemical Engineering Ningxia University 750021 Yinchuan P. R. China
| | - Li Tan
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| | - Yu Tang
- Institute of Molecular Catalysis and In-situ/operando Studies College of Chemistry Fuzhou University 350108 Fuzhou P. R. China
| |
Collapse
|
24
|
Wang Y, Suo Y, Ren JT, Wang Z, Yuan ZY. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. J Colloid Interface Sci 2021; 594:113-121. [PMID: 33756359 DOI: 10.1016/j.jcis.2021.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
The "active site isolation" strategy has been proved to be efficient for enhancing the catalytic performance in propane dehydrogenation (PDH). Herein, spatially isolated cobalt oxide sites within nitrogen-doped carbon (NC) layers supported on silicalite-1 zeolite (CoOx@NC/S-1) were synthesized by a two-step process consisting of the pyrolysis of bimetallic Zn/Co zeolitic imidazole frameworks loaded on silicalite-1 (ZnCo-ZIF/S-1) under N2 and the subsequent calcination in air atmosphere. This catalyst possesses exceptional catalytic performance for PDH with the propane conversion of 40% and the propene selectivity of >97%, and no apparent deactivation is observed after 10 h PDH reaction at 600 °C. With intensive characterizations and experiments, it is indicated that the real active sites of CoOx@NC/S-1 are isolated CoO sites during the PDH process. In situ FT-IR spectroscopy shows the same intermediate product (Co-C3H7) during both propane dehydrogenation and propene hydrogenation, indicating that they have a reverse reaction process, and a reaction mechanism for PDH is proposed accordingly.
Collapse
Affiliation(s)
- Yansu Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yujun Suo
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jin-Tao Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
25
|
Liu J, Chen Z, Wang R, Alayoglu S, Islamoglu T, Lee SJ, Sheridan TR, Chen H, Snurr RQ, Farha OK, Hupp JT. Zirconium Metal-Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22485-22494. [PMID: 33961384 DOI: 10.1021/acsami.1c03717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia capture by porous materials is relevant to protection of humans from chemical threats, while ammonia separation may be relevant to its isolation and use following generation by emerging electrochemical schemes. Our previous work described both reversible and irreversible interactions of ammonia with the metal-organic framework (MOF) material, NU-1000, following thermal treatment at either 120 or 300 °C. In the present work, we have examined NU-1000-Cl, a variant that features a modified node structure-at ambient temperature, Zr6(μ3-O)4(μ3-OH)4(H2O)812+ in place of Zr6(μ3-O)4(μ3-OH)4(OH)4(H2O)48+. Carboxylate termini from each of eight linkers balance the 8+ charge of the parent node, while four chloride ions, attached only by hydrogen bonding, complete the charge balance for the 12+ version. We find that both reversible and irreversible uptake of ammonia are enhanced for NU-1000-Cl, relative to the chloride-free version. Two irreversible interactions were observed via in situ diffuse-reflectance infrared Fourier-transform spectroscopy: coordination of NH3 at open Zr sites generated during thermal pretreatment and formation of NH4+ by proton transfer from node aqua ligands. The irreversibility of the latter appears to be facilitated by the presence chloride ions, as NH4+ formation occurs reversibly with chloride-free NU-1000. At room temperature, chemically reversible (and irreversible) interactions between ammonia and NU-1000-Cl result in separation of NH3 from N2 when gas mixtures are examined with breakthrough instrumentation, as evinced by a much longer breakthrough time (∼9 min) for NH3.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Reactor Engineering and Catalyst Testing Core, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seung-Joon Lee
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas R Sheridan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Liu J, Lu Z, Chen Z, Rimoldi M, Howarth AJ, Chen H, Alayoglu S, Snurr RQ, Farha OK, Hupp JT. Ammonia Capture within Zirconium Metal-Organic Frameworks: Reversible and Irreversible Uptake. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20081-20093. [PMID: 33886253 DOI: 10.1021/acsami.1c02370] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia uptake by high-capacity and high-porosity sorbents is a promising approach to its storage and release, capture and mitigation, and chemical separation. Here, we examined the ammonia sorption behavior of several versions of an archetypal zirconium-based metal-organic framework (MOF) material, NU-1000-a meso- and microporous crystalline compound having the empirical formula (1,3,6,8-tetrakis(p-benzoate)pyrene)2 Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 with linkers and nodes arranged to satisfy a csq topology. Depending on the thermal treatment protocol used prior to sorption measurements, ammonia can physisorb to NU-1000 via hydrogen-bonding and London-dispersion interactions and chemisorb via Brønsted acid-base reactions with node-integrated proton donors (μ3-hydroxos) and node-ligated proton donors (terminal hydroxos), via simple coordination at open Zr(IV) sites, or via dissociative coordination to Zr(IV) as NH2- and protonation of a node-based μ3-oxo. Ammonia adsorption occurs via both reversible and irreversible processes. The latter are of particular interest for protection and mitigation. Notably, the unexpected dissociative adsorption occurs only with nodes that have been fully dehydrated and irreversibly structurally distorted via thermal pre-treatment-a finding that is supported by density functional theory calculations. Differentiating and ranking the relative importance of the many modes of adsorption was facilitated, in part, by the availability of variants of NU-1000 that replace the majority of terminal aqua and hydroxo ligands with nonstructural formate ligands, auxiliary ditopic linkers, or both. The study provides insights into the chemical basis for both reversible and irreversible uptake of ammonia by Zr-MOFs and related compounds. The unexpectedly rich variety of sorption motifs suggest the criteria for designing or choosing MOFs that are optimal for specific ammonia-centric applications.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Martino Rimoldi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ashlee J Howarth
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W, Montreal H4B 1R6, Canada
| | - Haoyuan Chen
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Reactor Engineering and Catalyst Testing Core, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Abstract
In the past several decades, light alkane dehydrogenation to mono-olefins, especially propane dehydrogenation to propylene has gained widespread attention and much development in the field of research and commercial application. Under suitable conditions, the supported Pt-Sn and CrOx catalysts widely used in industry exhibit satisfactory dehydrogenation activity and selectivity. However, the high cost of Pt and the potential environmental problems of CrOx have driven researchers to improve the coking and sintering resistance of Pt catalysts, and to find new non-noble metal and environment-friendly catalysts. As for the development of the reactor, it should be noted that low operation pressure is beneficial for improving the single-pass conversion, decreasing the amount of unconverted alkane recycled back to the reactor, and reducing the energy consumption of the whole process. Therefore, the research direction of reactor improvement is towards reducing the pressure drop. This review is aimed at introducing the characteristics of the dehydrogenation reaction, the progress made in the development of catalysts and reactors, and a new understanding of reaction mechanism as well as its guiding role in the development of catalyst and reactor.
Collapse
Affiliation(s)
- Chunyi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China.
| | | |
Collapse
|
28
|
Yan H, He K, Samek IA, Jing D, Nanda MG, Stair PC, Notestein JM. Tandem In
2
O
3
-Pt/Al
2
O
3
catalyst for coupling of propane dehydrogenation to selective H
2
combustion. Science 2021; 371:1257-1260. [DOI: 10.1126/science.abd4441] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/03/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Huan Yan
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kun He
- Northwestern University Atomic and Nanoscale Characterization Experimental Center (NUANCE), Northwestern University, Evanston, IL 60208, USA
| | - Izabela A. Samek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Dian Jing
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Macy G. Nanda
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Peter C. Stair
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
29
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
30
|
Oxidative Dehydrogenation of Propane over Ni–Al Mixed Oxides: Effect of the Preparation Methods on the Activity of Surface Ni(II) Species. Catal Letters 2021. [DOI: 10.1007/s10562-020-03317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Sutar P, Bakuru VR, Yadav P, Laha S, Kalidindi SB, Maji TK. Nanocomposite Hydrogel of Pd@ZIF‐8 and Laponite
®
: Size‐Selective Hydrogenation Catalyst under Mild Conditions. Chemistry 2021; 27:3268-3272. [DOI: 10.1002/chem.202004345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Papri Sutar
- Molecular Materials Laboratory Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Vasudeva Rao Bakuru
- Molecular Materials Laboratory Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
- Materials Science Division Poornaprajna Institute of Scientific Research Devanahalli Bangalore Rural 562164 India
| | - Pooja Yadav
- Molecular Materials Laboratory Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Subhajit Laha
- Molecular Materials Laboratory Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Suresh Babu Kalidindi
- Inorganic and Analytical Chemistry Department School of Chemistry Andhra University Visakhapatnam 530003 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory Chemistry and Physics of Materials Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| |
Collapse
|
32
|
Sheng J, Yan B, Lu WD, Qiu B, Gao XQ, Wang D, Lu AH. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chem Soc Rev 2021; 50:1438-1468. [PMID: 33300532 DOI: 10.1039/d0cs01174f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metal-free boron- and carbon-based catalysts have shown both great fundamental and practical value in oxidative dehydrogenation (ODH) of light alkanes. In particular, boron-based catalysts show a superior selectivity toward olefins, excellent stability and atom-economy to valuable carbon-based products by minimizing CO2 emission, which are highly promising in future industrialization. The carbonaceous catalysts also exhibited impressive behavior in the ODH of light alkanes helped along by surface oxygen-containing functional groups. This review surveyed and compared the preparation methods of the boron- and carbon-based catalysts and their characterization, their performance in the ODH of light alkanes, and the mechanistic issues of the ODH including the identification of the possible active sites and the exploration of the underlying mechanisms. We discussed different boron-based materials and established versatile methodologies for the investigation of active sites and reaction mechanisms. We also elaborated on the similarities and differences in catalytic and kinetic behaviors, and reaction mechanisms between boron- and carbon-based metal-free materials. A perspective of the potential issues of metal-free ODH catalytic systems in terms of their rational design and their synergy with reactor engineering was sketched.
Collapse
Affiliation(s)
- Jian Sheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev 2021; 50:3315-3354. [DOI: 10.1039/d0cs00814a] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes recent advances in the propane dehydrogenation process in terms of emerging technologies, catalyst development and new chemistry.
Collapse
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Tingting Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
34
|
Dai Y, Gao X, Wang Q, Wan X, Zhou C, Yang Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev 2021; 50:5590-5630. [DOI: 10.1039/d0cs01260b] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal and metal oxide catalysts for non-oxidative ethane/propane dehydrogenation are outlined with respect to catalyst synthesis, structure–property relationship and catalytic mechanism.
Collapse
Affiliation(s)
- Yihu Dai
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xing Gao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiaojuan Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiaoyue Wan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chunmei Zhou
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yanhui Yang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
35
|
Castillo-Blas C, Romero-Muñiz I, Mavrandonakis A, Simonelli L, Platero-Prats AE. Unravelling the local structure of catalytic Fe-oxo clusters stabilized on the MOF-808 metal organic-framework. Chem Commun (Camb) 2020; 56:15615-15618. [PMID: 33290455 DOI: 10.1039/d0cc06134d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stabilizing catalytic iron-oxo-clusters within nanoporous metal-organic frameworks (MOFs) is a powerful strategy to prepare new active materials for the degradation of toxic chemicals, such as bisphenol A. Herein, we combine pair distribution function analysis of total X-ray scattering data and X-ray absorption spectroscopy, with computational modelling to understand the local structural nature of added redox-active iron-oxo clusters bridging neighbouring zirconia-nodes within MOF-808.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | |
Collapse
|
36
|
Xie Z, Yu T, Song W, Li J, Zhao Z, Liu B, Gao Z, Li D. Highly Active Nanosized Anatase TiO2–x Oxide Catalysts In Situ Formed through Reduction and Ostwald Ripening Processes for Propane Dehydrogenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02825] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zean Xie
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Tingting Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Jianmei Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Baijun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Zhenfei Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Dong Li
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
37
|
Wang Z, Schmalbach KM, Combs RL, Chen Y, Penn RL, Mara NA, Stein A. Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49971-49981. [PMID: 33079519 DOI: 10.1021/acsami.0c12877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic framework (MOF) materials have shown promise in many applications, ranging from gas storage to absorption and catalysis. Because of the high porosity and low density of many MOFs, densification methods such as pelletization and extrusion are needed for practical use and for commercialization of MOF materials. Therefore, it is important to elucidate the mechanical properties of MOFs and to develop methods of further enhancing their mechanical strength. Here, we demonstrate the influence of phase purity and the presence of a pore-reinforcing component on elastic modulus and yield stress of NU-1000 MOFs through nanoindentation methods and finite element simulation. Three types of NU-1000 single crystals were compared: phase-pure NU-1000 prepared with biphenyl-4-carboxylic acid as a modulator (NU-1000-bip), NU-1000 prepared with benzoic acid as a modulator (NU-1000-ben), which results in an additional, denser impurity phase of NU-901, and NU-1000-bip whose mesopores were infiltrated with silica (SiOx(OH)y@NU-1000) by nanocasting methods. By maintaining phase purity and minimizing defects, the elastic modulus could be enhanced by nearly an order of magnitude: phase-pure NU-1000-bip crystals exhibited an elastic modulus of 21 GPa, whereas the value for NU-1000-ben crystals was only 3 GPa. The introduction of silica into the mesopores of NU-1000-bip did not strongly affect the measured elastic modulus (19 GPa) but significantly increased the load at failure from 2000 μN to 3000-4000 μN.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kevin M Schmalbach
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Rebecca L Combs
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Youxing Chen
- Department of Mechanical Engineering, UNC Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nathan A Mara
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Syed ZH, Sha F, Zhang X, Kaphan DM, Delferro M, Farha OK. Metal–Organic Framework Nodes as a Supporting Platform for Tailoring the Activity of Metal Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zoha H. Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Yang Z, Li H, Zhou H, Wang L, Wang L, Zhu Q, Xiao J, Meng X, Chen J, Xiao FS. Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation. J Am Chem Soc 2020; 142:16429-16436. [DOI: 10.1021/jacs.0c07792] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiyuan Yang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Huan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hang Zhou
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lingxiang Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Qiuyan Zhu
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiangju Meng
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Junxiang Chen
- Division of China, TILON Group Technology Limited, Shanghai 200090, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
40
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
41
|
Gutiérrez L, Mondal SS, Bucci A, Kandoth N, Escudero-Adán EC, Shafir A, Lloret-Fillol J. Crystal-to-Crystal Synthesis of Photocatalytic Metal-Organic Frameworks for Visible-Light Reductive Coupling and Mechanistic Investigations. CHEMSUSCHEM 2020; 13:3418-3428. [PMID: 32351031 DOI: 10.1002/cssc.202000465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Postmodification of reticular materials with well-defined catalysts is an appealing approach to produce new catalytic functional materials with improved stability and recyclability, but also to study catalysis in confined spaces. A promising strategy to this end is the postfunctionalization of crystalline and robust metal-organic frameworks (MOFs) to exploit the potential of crystal-to-crystal transformations for further characterization of the catalysts. In this regard, two new photocatalytic materials, MOF-520-PC1 and MOF-520-PC2, are straightforwardly obtained by the postfunctionalization of MOF-520 with perylene-3-carboxylic acid (PC1) and perylene-3-butyric acid (PC2). The single crystal-to-crystal transformation yielded the X-ray diffraction structure of catalytic MOF-520-PC2. The well-defined disposition of the perylenes inside the MOF served as suitable model systems to gain insights into the photophysical properties and mechanism by combining steady-state, time-resolved, and transient absorption spectroscopy. The resulting materials are active organophotoredox catalysts in the reductive dimerization of aromatic aldehydes, benzophenones, and imines under mild reaction conditions. Moreover, MOF-520-PC2 can be applied for synthesizing gram-scale quantities of products in continuous-flow conditions under steady-state light irradiation. This work provides an alternative approach for the construction of well-defined, metal-free, MOF-based catalysts.
Collapse
Affiliation(s)
- Luis Gutiérrez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Suvendu Sekhar Mondal
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Alberto Bucci
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Noufal Kandoth
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Eduardo C Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
| | - Alexandr Shafir
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Païos Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
42
|
He X, Looker BG, Dinh KT, Stubbs AW, Chen T, Meyer RJ, Serna P, Román-Leshkov Y, Lancaster KM, Dincă M. Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02493] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin He
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benjamin G. Looker
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kimberly T. Dinh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda W. Stubbs
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Randall J. Meyer
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Pedro Serna
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Nie X, Wu S, Mensah A, Wang Q, Huang F, Li D, Wei Q. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy. J Colloid Interface Sci 2020; 579:233-242. [PMID: 32592988 DOI: 10.1016/j.jcis.2020.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Development of ease-fabricated and effectively self-disinfecting textile materials for antimicrobial and infection prevention has been urgently desired by both consumers and industry. However, some nonresponsive antibacterial agents finished fabrics may be harmful to human. To address this issue, we developed a facile finishing method to endow woven cotton fabrics (WCF) with light-driven antibacterial property. Here in, porphyrinic metal-organic frameworks (PCN-224) were in situ synthesized on WCF (termed PCN-224/WCF) and PCN-224/WCF was proven to be used for antibacterial photodynamic inactivation (aPDI). aPDI studies indicated no difference in bacterial inactivation, the inactivation was 99.9999% of Gram-negative Escherichia coli 8099 and Pseudomonas aeruginosa CMCC (B) 10104 as well as Gram-positive Staphylococcus aureus ATCC-6538 and Bacillus subtilis CMCC (B) 63501 under visible light illumination (500 W, 15 cm vertical distance, λ ≥ 420 nm, 45 min). Cytotoxicity tests revealed PCN-224/WCF had low biological toxicity and good biocompatibility. Mechanism study revealed that singlet oxygen (1O2) was produced by PCN-224/WCF and caused severe damage to bacteria which was observed from the SEM images. This study provided a facile guideline to functionalize cotton fabrics with responsive bactericidal property which showed great potential for new generation of textiles with practical applications.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Alfred Mensah
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
44
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
45
|
Chen H, Snurr RQ. Insights into Catalytic Gas-Phase Hydrolysis of Organophosphate Chemical Warfare Agents by MOF-Supported Bimetallic Metal-Oxo Clusters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14631-14640. [PMID: 31909586 DOI: 10.1021/acsami.9b19484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been reported to be efficient catalysts for the hydrolysis of organophosphate chemical warfare agents (CWAs) in buffered solutions. However, for the gas-phase reaction, which is more relevant to the situation in a battlefield gas mask application, the kinetics of Zr-MOF catalysts may be severely hindered by strong product inhibition. To improve the catalytic performance, we computationally screened a series of synthetically accessible Zr-MOF-supported bimetallic metal-oxo clusters in which the metal-oxygen-metal active motif is preserved, aiming to find catalysts that have lower binding affinities to the hydrolysis product. For the promising catalyst Al2O2(OH)2@NU-1000 identified from the screening using density functional theory, we mapped out the full reaction pathway of gas-phase dimethyl p-nitrophenolphosphate (DMNP) hydrolysis and analyzed the free energy profile as well as the turnover frequency (TOF). We found that the catalytic mechanism on the new catalyst is slightly different from the one on NU-1000, which also led to a different TOF-limiting step. Additional factors that can affect the overall catalytic performance in practical application, such as the amount of ambient moisture and the existence of acid gases that may poison the catalyst, have also been evaluated.
Collapse
Affiliation(s)
- Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem Rev 2020; 120:8468-8535. [DOI: 10.1021/acs.chemrev.9b00685] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasiya Bavykina
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Il Son Khan
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jeremy A. Bau
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
47
|
Noh H, Yang Y, Zhang X, Goetjen TA, Syed ZH, Lu Z, Ahn S, Farha OK, Hupp JT. Single‐Site, Single‐Metal‐Atom, Heterogeneous Electrocatalyst: Metal–Organic‐Framework Supported Molybdenum Sulfide for Redox Mediator‐Assisted Hydrogen Evolution Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hyunho Noh
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Ying Yang
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Xuan Zhang
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Timothy A. Goetjen
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Zoha H. Syed
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Zhiyong Lu
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- College of Mechanics and Materials Hohai University Nanjing 210098 China
| | - Sol Ahn
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Joseph T. Hupp
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
48
|
Wang L, Ao C, Zhai Y, Feng B, Duan J, Qian S, Zhao W, Zhang L, Liu F. Highly active and stable Co3O4 catalyst for the Low-temperature oxidative dehydrogenation of propane. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Kim IS, Ahn S, Vermeulen NA, Webber TE, Gallington LC, Chapman KW, Penn RL, Hupp JT, Farha OK, Notestein JM, Martinson ABF. The Synthesis Science of Targeted Vapor-Phase Metal-Organic Framework Postmodification. J Am Chem Soc 2020; 142:242-250. [PMID: 31851505 DOI: 10.1021/jacs.9b10034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The postmodification of metal organic frameworks (MOFs) affords exceedingly high surface area materials with precisely installed chemical features, which provide new opportunities for detailed structure-function correlation in the field of catalysis. Here, we significantly expand upon the number of vapor-phase postmodification processes reported to date through screening a library of atomic layer deposition (ALD) precursors, which span metals across the periodic table and which include ligands from four distinct precursor classes. With a large library of precursors and synthesis conditions, we discern trends in the compatibility of precursor classes for well-behaved ALD in MOFs (AIM) and identify challenges and solutions to more precise postsynthetic modification.
Collapse
Affiliation(s)
| | | | | | - Thomas E Webber
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | | | | | - R Lee Penn
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | | | | | | | | |
Collapse
|
50
|
Zhang J, Chen YY, Tan C, Ma X, Wang XF, Ou G. Hydrogen bonding-tuned hydroxo-bridged tetra-copper Cu 4(bipy) 4-cluster supramolecular network to layered coordination polymer. CrystEngComm 2020. [DOI: 10.1039/d0ce00985g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen bonds influence the transformation of the Cu4-cluster⋯ligand hydrogen net to the layered coordination polymer.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
| | - Yang-Yang Chen
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
| | - Chunhong Tan
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
| | - Xiao-Feng Wang
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes
| | - Guangchuan Ou
- Department of Biology and Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425199
- P. R. China
| |
Collapse
|