1
|
Yang D, Ruan Z, He S, Tang L, Wang R, Wan C. Sulfur(IV) Chemistry-Based Peptide and Protein Late-Stage Modification. Chembiochem 2025; 26:e202500234. [PMID: 40235189 DOI: 10.1002/cbic.202500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/17/2025]
Abstract
The development of precise and controllable chemical modification tools for peptides and proteins represents a great challenge in elucidating their structure-activity relationships and regulatory mechanisms, as well as a powerful driver for advancing macromolecular therapeutic strategies. However, current technologies predominantly rely on irreversible covalent labeling or genetic encoding of unnatural amino acids, exhibiting significant limitations in reversible modification, in situ functional regulation, and adaptability to complex physiological environments. In recent years, breakthrough advancements in sulfur(IV) chemistry have provided a paradigm for the late-stage functionalization of peptides and proteins. Through synergistic innovations in sulfur(IV)-based reagent design, intermediate modulation, and bioorthogonal reactions, a more multifaceted modification toolbox has been progressively established, integrating site selectivity, condition responsiveness, and functional rescue. Providing current challenges and future perspectives in this field, this review focuses on sulfur(IV) chemistry-driven strategies for peptide and protein modification, as well as their applications in proximity-labeling strategies and drug delivery/therapeutic interventions.
Collapse
Affiliation(s)
- Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510230, China
| | - Zhijun Ruan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Li Tang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
2
|
Chen X, Au CM, Fang P, Xue Y, Leung KCF, Chan WL. Late-Stage N-Alkenylative Modifications of Indolic Scaffolds with Propiolates: Toward Bisconjugation and Macrocyclization. Org Lett 2025; 27:5081-5086. [PMID: 40368809 DOI: 10.1021/acs.orglett.5c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
A facile, mild, and scalable late-stage N-alkenylative modification strategy is introduced on 1H-indoles, 9H-carbazoles, and their structural derivatives and analogues, including alkaloids, bioactive agents, and tryptophan motifs, via chemo- and regioselective phosphine-mediated propiolate hydroamination. Saliently, through this protocol, bisconjugation and macrocyclization on (bis)indolic scaffolds can also be accomplished, with the installation of new α,β-unsaturated ester handles for potential further versatile synthetic manipulations.
Collapse
Affiliation(s)
- Xiaoye Chen
- The International Joint Institute of Tianjin University-National University of Singapore in Fuzhou, Tianjin University, Tianjin 300072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Chi-Ming Au
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Pengyuan Fang
- The International Joint Institute of Tianjin University-National University of Singapore in Fuzhou, Tianjin University, Tianjin 300072, China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon 999077, Hong Kong SAR, China
| | - Wai-Lun Chan
- The International Joint Institute of Tianjin University-National University of Singapore in Fuzhou, Tianjin University, Tianjin 300072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
3
|
Day EH, Lindert S. Extracting Residue Solvent Exposure from Covalent Labeling Data with Machine Learning: A Hybrid Approach for Protein Structure Prediction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40393955 DOI: 10.1021/jasms.5c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled with mass spectrometry yields information about residue solvent exposure and protein topology. However, data from these experiments are sparse and require computational interpretation to generate useful structural insight. We previously implemented a Rosetta algorithm that uses experimental HRPF data to improve protein structure prediction. Modern structure prediction methods, such as AlphaFold2 (AF2), use machine learning (ML) to generate their predictions. Implementation of an HRPF-guided version of AF2 is challenging due to the substantial amount of training data required and the inherently abstract nature of ML networks. Thus, here we present a hybrid method that uses a light gradient boosting machine to predict residue solvent accessibility from experimental HRPF data. These predictions were subsequently used to improve Rosetta structure prediction. Our hybrid approach identified models with atomic-level detail for all four proteins in our benchmark set. These results illustrate that it is possible to successfully use ML in combination with HRPF data to accurately predict protein structures.
Collapse
Affiliation(s)
- Elijah H Day
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Zhang Y, Yu H, Tang F, Zhang FH, Zhang M, Dong J, Zhao J, Huang W, Liu B. Bioinspired Methionine-Selective Desulfurization Editing of Peptides via the Photocatalysis Strategy. J Am Chem Soc 2025; 147:16379-16389. [PMID: 40323122 DOI: 10.1021/jacs.5c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
S-Adenosylmethionine (SAM) frequently functions as a cofactor or precursor for enzymes, initiating an array of radical reactions in biological systems. In contrast with the conventional 5'-deoxyadenosyl (dAdo) radical pathway, which proceeds via homolytic cleavage of the S-C(5') bond of SAM, the Dph2 enzyme provides an alternative 3-amino-3-carboxypropyl (ACP) radical pathway through breaking the S-C(γ) bond. Inspired by this distinctive bond cleavage mode, we have developed a chemically induced pathway to generate an ACP-type radical intermediate on methionine-based sulfonium. This strategy presents a novel desulfurization conjugation mode for methionine modification, diverging from previous approaches that conjugate onto the sulfur atom or the adjacent methyl group of methionine. The versatility of this strategy is demonstrated by the efficient functionalization of various peptides and peptide macrocyclizations. Density Functional Theory (DFT) calculations provide further insights into the mechanism of this desulfurization reaction, explaining the exceptional selectivity of homolytic cleavage of the S-C(γ) bond of methionine-based sulfonium. The successful implementation of this novel desulfurization strategy represents a substantial advancement in the understanding of sulfonium-based intramolecular radical substitution reactions and provides new opportunities for the functionalization of biomolecules, thereby fostering progress in interdisciplinary research.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huixin Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Feng-Hua Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| | - Meihui Zhang
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinhua Dong
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd, Shenzhen 518055, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| |
Collapse
|
5
|
Jain R, Farquhar ER, Dhillon NS, Jeon N, Chance MR, Kiselar J. Multiplex Trifluoromethyl and Hydroxyl Radical Chemistry Enables High-Resolution Protein Footprinting. Anal Chem 2025; 97:482-491. [PMID: 39720871 PMCID: PMC11830425 DOI: 10.1021/acs.analchem.4c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>103) dynamic range of AA reactivity with •OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low •OH reactivities. To overcome this limitation, we developed a multiplex labeling chemistry that utilizes both CF3 radicals (•CF3) produced from a trifluoromethylation (TFM) reagent and OH radicals (•OH), under controlled and optimized radiolysis doses generated by X-rays. We optimized the dual •CF3/•OH chemistry using model peptides and proteins, thereby extending the existing •OH labeling platform to incorporate simultaneous •CF3 labeling. We labeled >50% of the protein sequence and >80% of protein solvent-accessible AAs via multiplex TFM labeling resulting in high-resolution footprinting, primarily by enhancing the labeling of AAs with low •OH reactivity via the •CF3 channel, while labeling moderate and highly •OH-reactive AAs in both •CF3 and •OH channels. Moreover, the low reactivity of methionine with •CF3 enabled the detection and quantification of additional AAs labeled by •CF3 within methionine-containing peptides. Finally, we found that the solvent accessibility of protein AAs directly correlated with •CF3 labeling, demonstrating that multiplex TFM labeling enables a high-resolution assessment of molecular interactions for enhanced HRPF.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Nanak S. Dhillon
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Nayeon Jeon
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
6
|
Werle Y, Kovermann M. Fluorine Labeling and 19F NMR Spectroscopy to Study Biological Molecules and Molecular Complexes. Chemistry 2025; 31:e202402820. [PMID: 39466678 DOI: 10.1002/chem.202402820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
High-resolution nuclear magnetic resonance (NMR) spectroscopy represents a key methodology for studying biomolecules and their interplay with other molecules. Recent developments in labeling strategies have made it possible to incorporate fluorine into proteins and peptides reliably, with manageable efforts and, importantly, in a highly site-specific manner. Paired with its excellent NMR spectroscopic properties and absence in most biological systems, fluorine has enabled scientists to investigate a rather wide range of scientific objectives, including protein folding, protein dynamics and drug discovery. Furthermore, NMR spectroscopic experiments can be conducted in complex environments, such as cell lysate or directly inside living cells. This review presents selected studies demonstrating how 19F NMR spectroscopic approaches enable to contribute to the understanding of biomolecular processes. Thereby the focus has been set to labeling strategies available and specific NMR experiments performed to answer the underlying scientific objective.
Collapse
Affiliation(s)
- Yannick Werle
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry and Graduate School of Chemical-Biology (KoRS-CB), Universität Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
7
|
Abbas SJ, Yesmin S, Vittala SK, Sepay N, Xia F, Ali SI, Chang WC, Hung YC, Ma WL. Target Bioconjugation of Protein Through Chemical, Molecular Dynamics, and Artificial Intelligence Approaches. Metabolites 2024; 14:668. [PMID: 39728449 DOI: 10.3390/metabo14120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Covalent modification of proteins at specific, predetermined sites is essential for advancing biological and biopharmaceutical applications. Site-selective labeling techniques for protein modification allow us to effectively track biological function, intracellular dynamics, and localization. Despite numerous reports on modifying target proteins with functional chemical probes, unique organic reactions that achieve site-selective integration without compromising native functional properties remain a significant challenge. In this review, we delve into site-selective protein modification using synthetic probes, highlighting both chemical and computational methodologies for chemo- and regioselective modifications of naturally occurring amino acids, as well as proximity-driven protein-selective chemical modifications. We also underline recent traceless affinity labeling strategies that involve exchange/cleavage reactions and catalyst tethering modifications. The rapid development of computational infrastructure and methods has made the bioconjugation of proteins more accessible, enabling precise predictions of structural changes due to protein modifications. Hence, we discuss bioconjugational computational approaches, including molecular dynamics and artificial intelligence, underscoring their potential applications in enhancing our understanding of cellular biology and addressing current challenges in the field.
Collapse
Affiliation(s)
- Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sabina Yesmin
- Institute of Chemistry, Academia Sinica, Taipei 115201, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Sandeepa K Vittala
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Wei-Chun Chang
- Ph.D. Program for Health Science and Industry, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yao-Ching Hung
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
8
|
Sengupta I. Insights into the Structure and Dynamics of Proteins from 19F Solution NMR Spectroscopy. Biochemistry 2024; 63:2958-2968. [PMID: 39495741 DOI: 10.1021/acs.biochem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
19F NMR spectroscopy has recently witnessed a resurgence as an attractive analytical tool for the study of the structure and dynamics of biomolecules in vitro and in cells, despite reports of its applications in biomolecular NMR since the 1970s. The high gyromagnetic ratio, large chemical shift dispersion, and complete absence of the spin 1/2 19F nucleus from biomolecules results in background-free, high-resolution 19F NMR spectra. The introduction of 19F probes in a few selected locations in biomolecules reduces spectral crowding despite its increased line width in comparison to typical 1H NMR line widths and allows rapid site-specific measurements from simple 1D spectra alone. The design and synthesis of novel 19F probes with reduced line widths and increased chemical shift sensitivity to the surrounding environment, together with advances in labeling techniques, NMR methodology, and hardware, have overcome several drawbacks of 19F NMR spectroscopy. The increased interest and widespread use of 19F NMR spectroscopy of biomolecules is gradually establishing it as a sensitive and high-resolution probe of biomolecular structure and dynamics, supplementing traditional 13C/15N-based methods. This Review focuses on the advances in 19F solution NMR spectroscopy of proteins in the past 5 years, with an emphasis on novel 19F tags and labeling techniques, NMR experiments to probe protein structure and conformational dynamics in vitro, and in-cell NMR applications.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Wright JS, Sharninghausen LS, Lapsys A, Sanford MS, Scott PJH. C-H Labeling with [ 18F]Fluoride: An Emerging Methodology in Radiochemistry. ACS CENTRAL SCIENCE 2024; 10:1674-1688. [PMID: 39364044 PMCID: PMC11447958 DOI: 10.1021/acscentsci.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024]
Abstract
Fluorine-18 is the most routinely employed radioisotope for positron emission tomography, a dynamic nuclear imaging modality. The radiolabeling of C-H bonds is an attractive method for installing fluorine-18 into organic molecules since it can preclude the cumbersome prefunctionalization of requisite precursors. Although electrophilic "F+" reagents (e.g., [18F]F2) are effective for C-H radiolabeling, state-of-the-art methodologies predominantly leverage high molar activity nucleophilic [18F]fluoride sources (e.g., [18F]KF) with substantial (pre)clinical advantages. Reflecting this, multiple nucleophilic C-H radiolabeling techniques of high utility have been disclosed over the past decade. However, the adoption of (pre)clinical C-H radiolabeling has been slow, and PET imaging agents are still routinely prepared via methods that, despite a high level of practicality, are limited in scope (e.g., SNAr, SN2 radiofluorinations). By addressing the drawbacks inherent to these strategies, C-H radiofluorination and radiofluoroalkylation carry the potential to complement and supersede state-of-the-art labeling methods, facilitating the expedited production of PET agents used in disease staging and drug development. In this Outlook, we showcase recent C-H labeling developments with fluorine-18 and discuss the merits, potential, and barriers to adoption in (pre)clinical settings. In addition, we highlight trends, challenges, and directions in this emerging field of study.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liam S Sharninghausen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alex Lapsys
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Nuruzzaman M, Colella BM, Nizam ZM, Cho IJ, Zagorski J, Ohata J. Redox-neutral, metal-free tryptophan labeling of polypeptides in hexafluoroisopropanol (HFIP). RSC Chem Biol 2024; 5:d4cb00142g. [PMID: 39234575 PMCID: PMC11368038 DOI: 10.1039/d4cb00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Despite the unmet needs for chemical tools to study biological roles of tryptophan in living systems, there has been a lack of chemical modification methods for tryptophan residues that can be used in cellular environments. Driven by a preliminary computational study of our previous research, this work experimentally examined our hypotheses to translate the metal-catalyzed tryptophan modification method in hexafluoroisopropanol (HFIP) into a metal-free process. While one of the hypotheses merely confirmed the superiority of the thiophene-ethanol reagent developed in the previous report, the second hypothesis resulted in the identification of a trifluoroborate salt and an acidic ionic liquid as alternatives for the catalysis. Labeling of lysates of a human cell line was achieved with the acidic ionic liquid catalyst, where negative impacts of the tryptophan labeling and HFIP medium on the cellular samples were apparently insignificant. Because the labeling process does not require any redox mediators and is a formal redox-neutral reaction, the metal-free approach would be of use for tryptophan biology research potentially related to their various redox roles.
Collapse
Affiliation(s)
- Mohammad Nuruzzaman
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Brandon M Colella
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Zeinab M Nizam
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Isaac JiHoon Cho
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Julia Zagorski
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| | - Jun Ohata
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695 USA
| |
Collapse
|
12
|
Feng F, Gao Y, Zhao Q, Luo T, Yang Q, Zhao N, Xiao Y, Han Y, Pan J, Feng S, Zhang L, Wu M. Single-electron transfer between sulfonium and tryptophan enables site-selective photo crosslinking of methyllysine reader proteins. Nat Chem 2024; 16:1267-1277. [PMID: 39079947 DOI: 10.1038/s41557-024-01577-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
The identification of readers, an important class of proteins that recognize modified residues at specific sites, is essential to uncover the biological roles of post-translational modifications. Photoreactive crosslinkers are powerful tools for investigating readers. However, existing methods usually employ synthetically challenging photoreactive warheads, and their high-energy intermediates generated upon irradiation, such as nitrene and carbene, may cause substantial non-specific crosslinking. Here we report dimethylsulfonium as a methyllysine mimic that binds to specific readers and subsequently crosslinks to a conserved tryptophan inside the binding pocket through single-electron transfer under ultraviolet irradiation. The crosslinking relies on a protein-templated σ-π electron donor-acceptor interaction between sulfonium and indole, ensuring excellent site selectivity for tryptophan in the active site and orthogonality to other methyllysine readers. This method could escalate the discovery of methyllysine readers from complex cell samples. Furthermore, this photo crosslinking strategy could be extended to develop other types of microenvironment-dependent conjugations to site-specific tryptophan.
Collapse
Affiliation(s)
- Feng Feng
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Yingxiao Gao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ting Luo
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Qingyun Yang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Nan Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yihang Xiao
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yusong Han
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Jinheng Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
13
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
14
|
Ren JX, Zhou M, Feng XT, Zhao HY, Fu XP, Zhang X. Site-selective S-gem-difluoroallylation of unprotected peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:10002-10009. [PMID: 38966370 PMCID: PMC11220611 DOI: 10.1039/d4sc02681k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Bench-stable 3,3-difluoroallyl sulfonium salts (DFASs), featuring tunable activity and their editable C-β and gem-difluoroallyl group, proved to be versatile fluoroalkylating reagents for site-selective S-gem-difluoroallylation of cysteine residues in unprotected peptides. The reaction proceeds with high efficiency under mild conditions (ambient temperature and aqueous and weak basic conditions). Various protected/unprotected peptides, especially bioactive peptides, are site-selectively S-gem-difluoroallylated. The newly added gem-difluoroallyl group and other functional groups derived from C-β of DFASs are poised for ligation with bio-functional groups through click and radical chemistry. This stepwise "doubly orthogonal" modification of peptides enables the construction of bioconjugates with enhanced complexity and functionality. This proof of principle is successfully applied to construct a peptide-saccharide-biotin chimeric bioconjugate, indicating its great potential application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Minqi Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
15
|
Cockburn KT, Sykes BD. Fluorine labelling for in situ 19F NMR in oriented systems. JOURNAL OF BIOMOLECULAR NMR 2024; 78:119-124. [PMID: 38407676 DOI: 10.1007/s10858-024-00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
The focus of this project is to take advantage of the large NMR chemical shift anisotropy of 19F to determine the orientation of fluorine labeled biomolecules in situ in oriented biological systems such as muscle. The difficulty with a single fluorine atom is that the orientation determined from a chemical shift is not singlevalued in the case of a fully anisotropic chemical shift tensor. The utility of a labeling approach with two fluorine labels in a fixed molecular framework where one of the labels has an axially symmetric chemical shift anisotropy such as a CF3 group and the other has a fully asymmetric chemical shift anisotropy such as 5-fluorotryptophan is evaluated. The result is that the orientation of the label can be determined straightforwardly from a single one-dimensional 19F NMR spectrum. The potential applications are widespread and not limited to biological applications.
Collapse
Affiliation(s)
- Kieran T Cockburn
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada.
| |
Collapse
|
16
|
Koutsopetras I, Vaur V, Benazza R, Diemer H, Sornay C, Ersoy Y, Rochet L, Longo C, Hernandez-Alba O, Erb S, Detappe A, Skerra A, Wagner A, Cianferani S, Chaubet G. Site-Selective Protein Conjugation by a Multicomponent Ugi Reaction. Chemistry 2024; 30:e202303242. [PMID: 38050774 DOI: 10.1002/chem.202303242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The chemical bioconjugation of proteins has seen tremendous applications in the past decades, with the booming of antibody-drug conjugates and their use in oncology. While genetic engineering has permitted to produce bespoke proteins featuring key (un-)natural amino acid residues poised for site-selective modifications, the conjugation of native proteins is riddled with selectivity issues. Chemoselective strategies are plentiful and enable the precise modification of virtually any residue with a reactive side-chain; site-selective methods are less common and usually most effective on small and medium-sized proteins. In this context, we studied the application of the Ugi multicomponent reaction for the site-selective conjugation of amine and carboxylate groups on proteins, and antibodies in particular. Through an in-depth mechanistic methodology work supported by peptide mapping studies, we managed to develop a set of conditions allowing the highly selective modification of antibodies bearing N-terminal glutamate and aspartate residues. We demonstrated that this strategy did not alter their affinity toward their target antigen and produced an antibody-drug conjugate with subnanomolar potency. Excitingly, we showed that the high site selectivity of our strategy was maintained on other protein formats, especially on anticalins, for which directed mutagenesis helped to highlight the key importance of a single lysine residue.
Collapse
Affiliation(s)
- Ilias Koutsopetras
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Yağmur Ersoy
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Léa Rochet
- Department of Chemistry, University College London, London, UK
| | - Carmen Longo
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | | | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| |
Collapse
|
17
|
Zhou M, Ren JX, Feng XT, Zhao HY, Fu XP, Min QQ, Zhang X. Late-stage gem-difluoroallylation of phenol in bioactive molecules and peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:2937-2945. [PMID: 38404383 PMCID: PMC10882445 DOI: 10.1039/d3sc06302j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
An efficient method for the late-stage selective O-fluoroalkylation of tyrosine residues with a stable yet highly reactive fluoroalkylating reagent, 3,3-difluoroallyl sulfonium salts (DFASs), has been developed. The reaction proceeds in a mild basic aqueous buffer (pH = 11.6) with high efficiency, high biocompatibility, and excellent regio- and chemoselectivity. Various oligopeptides and phenol-containing bioactive molecules, including carbohydrates and nucleosides, could be selectively O-fluoroalkylated. The added vinyl and other functional groups from DFASs can be valuable linkers for successive modification, significantly expanding the chemical space for further bioconjugation. The synthetic utility of this protocol has been demonstrated by the fluorescently labeled anti-cancer drug and the synthesis of O-link type 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid-tyrosine3-octreotate (DOTA-TATE), showing the prospect of the method in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao-Qiao Min
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
18
|
Lai C, Tang Z, Liu Z, Luo P, Zhang W, Zhang T, Zhang W, Dong Z, Liu X, Yang X, Wang F. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chem Sci 2024; 15:2545-2557. [PMID: 38362424 PMCID: PMC10866368 DOI: 10.1039/d3sc05106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
Collapse
Affiliation(s)
- Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyao Tang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhao Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Dong
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyuan Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xueming Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
20
|
Watanabe S, Wada Y, Kawano M, Higashibayashi S, Sugai T, Hanaya K. Selective modification of tryptophan in polypeptides via C-N coupling with azoles using in situ-generated iodine-based oxidants in aqueous media. Chem Commun (Camb) 2023; 59:13026-13029. [PMID: 37842839 DOI: 10.1039/d3cc03731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This study demonstrates the C-N coupling of tryptophan with azoles, promoted by an in situ-generated iodine-based oxidant. The protocol was successfully applied to the selective modification of tryptophan in nonprotected polypeptide bearing oxidatively sensitive residues in acidic aqueous media. The present method allows the attachment of reactive handles to polypeptides and the peptide stapling.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
21
|
Kuehl NJ, Taylor MT. Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages. J Am Chem Soc 2023; 145:22878-22884. [PMID: 37819426 PMCID: PMC11076010 DOI: 10.1021/jacs.3c08098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Described here is a photodecaging approach to radical trifluoromethylation of biomolecules. This was accomplished by designing a quinolinium sulfonate ester that, upon absorption of visible light, achieves decaging via photolysis of the sulfonate ester to ultimately liberate free trifluoromethyl radicals that are trapped by π-nucleophiles in biomolecules. This photodecaging process enables protein and protein-interaction mapping experiments using trifluoromethyl radicals that require only 1 s reaction times and low photocage concentrations. In these experiments, aromatic side chains are labeled in an environmentally dependent fashion, with selectivity observed for tryptophan (Trp), followed by histidine (His) and tyrosine (Tyr). Scalable peptide trifluoromethylation through photodecaging is also demonstrated, where bespoke peptides harboring trifluoromethyl groups at tryptophan residues can be synthesized with 5-7 min reaction times and good yields.
Collapse
Affiliation(s)
- Nicholas J. Kuehl
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, United States
| | - Michael T. Taylor
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
22
|
Tang J, Lu F, Sun Y, Zhang G, Zhang E, Jiang YY. Late-Stage Diversification of Peptides via Pd-Catalyzed Site-Selective δ-C(sp 2)-H Fluorination and Amination. J Org Chem 2023; 88:14165-14171. [PMID: 37751495 DOI: 10.1021/acs.joc.3c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Site-selective C-H fluorination is an attractive strategy for directly transforming inert C-H bonds into C-F bonds, yet it remains a significant challenge. Herein, we have developed an efficient and versatile strategy for site-selective fluorination and amination of phenylalanine-containing peptides via late-stage Pd-catalyzed δ-C(sp2)-H activation, providing a valuable tool for the in situ synthesis of fluorinated indoline scaffolds within peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210096, China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yi Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Guodong Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuan-Ye Jiang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
23
|
Bassi T, Hirlinger A, Grayson L, Vantourout J, Toor N. Fluorescent labeling of RNA and DNA on the Hoogsteen edge using sulfinate chemistry. RNA (NEW YORK, N.Y.) 2023; 29:1437-1451. [PMID: 37277186 PMCID: PMC10573292 DOI: 10.1261/rna.079679.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
We have devised a single pot, low-cost method to add azide groups to unmodified nucleic acids without the need for enzymes or chemically modified nucleoside triphosphates. This involves reacting an azide-containing sulfinate salt with the nucleic acid, leading to replacement of C-H bonds on the nucleobase aromatic rings with C-R, where R is the azide-containing linker derived from the original sulfinate salt. With the addition of azide functional groups, the modified nucleic acid can easily be reacted with any alkyne-labeled compound of interest, including fluorescent dyes as shown in this work. This methodology enables the fluorescent labeling of a wide variety of nucleic acids, including natively folded RNAs, under mild conditions with minimal effects upon biochemical function and ribozyme catalysis. To demonstrate this, we show that a pair of labeled complementary ssDNA oligonucleotides (oligos) can hybridize to form dsDNA, even when labeled with multiple fluorophores per oligo. In addition, we also demonstrate that two different group II introns can splice when prelabeled internally with fluorophores, using our method. Broadly, this demonstrates that sulfinate modification of RNA is compatible with ribozyme function and Watson-Crick pairing, while preserving the labile backbone.
Collapse
Affiliation(s)
- Tiziano Bassi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Anastassia Hirlinger
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Leah Grayson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Julien Vantourout
- Department of Chemistry, Scripps Research, La Jolla, California 92037, USA
| | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
24
|
Lee JC, Cuthbertson JD, Mitchell NJ. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan. Org Lett 2023; 25:5459-5464. [PMID: 37462428 PMCID: PMC10391624 DOI: 10.1021/acs.orglett.3c01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Across eukaryotic proteomes, tryptophan is the least abundant of the 20 canonical amino acids, which makes it an ideal chemical handle for the late-stage functionalization of peptide and protein scaffolds with minimal production of undesired isoforms. Herein, we report the photocatalytic C2-alkylation of tryptophan using bromodifluoroacetate/acetamide-derived radical precursors. This rapid visible-light-mediated reaction is additive-free, operationally simple, and tolerates diverse functionality. We demonstrate the late-stage modification of a variety of complex peptides, including examples of biological significance.
Collapse
Affiliation(s)
- Joanna C Lee
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - James D Cuthbertson
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
25
|
Nisavic M, Wørmer GJ, Nielsen CS, Jeppesen SM, Palmfeldt J, Poulsen TB. oxSTEF Reagents Are Tunable and Versatile Electrophiles for Selective Disulfide-Rebridging of Native Proteins. Bioconjug Chem 2023. [PMID: 37201197 DOI: 10.1021/acs.bioconjchem.3c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Site-selective disulfide rebridging has emerged as a powerful strategy to modulate the structural and functional properties of proteins. Here, we introduce a novel class of electrophilic reagents, designated oxSTEF, that demonstrate excellent efficiency in disulfide rebridging via double thiol exchange. The oxSTEF reagents are prepared using an efficient synthetic sequence which may be diverted to obtain a range of derivatives allowing for tuning of reactivity or steric bulk. We demonstrate highly selective rebridging of cyclic peptides and native proteins, such as human growth hormone, and the absence of cross-reactivity with other nucleophilic amino acid residues. The oxSTEF conjugates undergo glutathione-mediated disintegration under tumor-relevant glutathione concentrations, which highlights their potential for use in targeted drug delivery. Finally, the α-dicarbonyl motif of the oxSTEF reagents enables "second phase" oxime ligation, which furthermore increases the thiol stability of the conjugates significantly.
Collapse
Affiliation(s)
- Marija Nisavic
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Department of Clinical Medicine─Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus N, Denmark
| | - Gustav J Wørmer
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Cecilie S Nielsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Sofie M Jeppesen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine─Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus N, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Chen X, Josephson B, Davis BG. Carbon-Centered Radicals in Protein Manipulation. ACS CENTRAL SCIENCE 2023; 9:614-638. [PMID: 37122447 PMCID: PMC10141601 DOI: 10.1021/acscentsci.3c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Methods to directly post-translationally modify proteins are perhaps the most straightforward and operationally simple ways to create and study protein post-translational modifications (PTMs). However, precisely altering or constructing the C-C scaffolds pervasive throughout biology is difficult with common two-electron chemical approaches. Recently, there has been a surge of new methods that have utilized single electron/radical chemistry applied to site-specifically "edit" proteins that have started to create this potential-one that in principle could be near free-ranging. This review provides an overview of current methods that install such "edits", including those that generate function and/or PTMs, through radical C-C bond formation (as well as C-X bond formation via C• where illustrative). These exploit selectivity for either native residues, or preinstalled noncanonical protein side-chains with superior radical generating or accepting abilities. Particular focus will be on the radical generation approach (on-protein or off-protein, use of light and photocatalysts), judging the compatibility of conditions with proteins and cells, and novel chemical biology applications afforded by these methods. While there are still many technical hurdles, radical C-C bond formation on proteins is a promising and rapidly growing area in chemical biology with long-term potential for biological editing.
Collapse
Affiliation(s)
- Xuanxiao Chen
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
| | - Brian Josephson
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
| | - Benjamin G. Davis
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, U.K.
| |
Collapse
|
27
|
Hammond JM, Gardiner MG, Malins LR. Amino Acid Sulfinate Salts as Alkyl Radical Precursors. Org Lett 2023; 25:3157-3162. [PMID: 37093619 DOI: 10.1021/acs.orglett.3c01112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A general approach to the synthesis of amino acid sulfinate salts from commercially available α-chiral hydroxylated amino acids is reported. These reagents are shown to be valuable precursors to alkyl radicals under mild photochemical oxidation conditions. The photochemically generated amino acid radicals engage readily with alkyl and aryl disulfide radical traps to afford a diverse suite of modified amino acids.
Collapse
Affiliation(s)
- Joshua M Hammond
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
28
|
Ramkumar N, Baumane L, Zacs D, Veliks J. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy-monofluoromethylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202219027. [PMID: 36692216 DOI: 10.1002/anie.202219027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
A simple process for the oxy-monofluoromethylation of alkenes is described. In combination with visible-light copper(I) photoredox catalysis, an easily accessible iodine(III) reagent containing monofluoroacetoxy ligands serves as a powerful source of a monofluoromethyl (CH2 F) radical, enabling the step economical synthesis of γ-fluoro-acetates from a broad range of olefinic substrates under mild conditions. Applications to late-stage diversification of alkenes derived from complex molecules, amino acids and the synthesis of fluoromethylated heterocycles are also demonstrated.
Collapse
Affiliation(s)
- Nagarajan Ramkumar
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Larisa Baumane
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076, Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| |
Collapse
|
29
|
Zhou M, Feng Z, Zhang X. Recent advances in the synthesis of fluorinated amino acids and peptides. Chem Commun (Camb) 2023; 59:1434-1448. [PMID: 36651307 DOI: 10.1039/d2cc06787k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The site-selective modification of amino acids, peptides, and proteins has always been an intensive topic in organic synthesis, medicinal chemistry, and chemical biology due to the vital role of amino acids in life. Among the developed methods, the site-selective introduction of fluorine functionalities into amino acids and peptides has emerged as a useful approach to change their physicochemical and biological properties. With the increasing demand for life science, the direct fluorination/fluoroalkylation of proteins has also received increasing attention because of the unique properties of fluorine atom(s) that can change the protein structure, increase their lipophilicity, and enable fluorine functionality as a biological tracer or probe for chemical biology studies. In this feature article, we summarized the recent advances in the synthesis of fluorinated amino acids and peptides, wherein two strategies have been discussed. One is based on the fluorinated building blocks to prepare fluorinated amino acids and peptides with diversified structures, including the transformations of fluorinated imines and nickel-catalyzed dicarbofunctionalization of alkenes with bromodifluoroacetate and its derivatives; the other is direct fluorination/fluoroakylation of amino acids, peptides, and proteins, in which the selective transformations of the functional groups on serine, threonine, tyrosine, tryptophan, and cysteine lead to a wide range of fluorinated α-amino acids, peptides, and proteins, featuring synthetic convenience and late-stage modification of biomacromolecules. These two strategies complement each other, wherein transition-metal catalysis and new fluoroalkylating reagents provide powerful tools to selectively access fluorinated amino acids, peptides, and proteins, showing the prospect of medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhang Feng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xingang Zhang
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
30
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
31
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
32
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
33
|
Jain R, Dhillon NS, Farquhar ER, Wang B, Li X, Kiselar J, Chance MR. Multiplex Chemical Labeling of Amino Acids for Protein Footprinting Structure Assessment. Anal Chem 2022; 94:9819-9825. [PMID: 35763792 PMCID: PMC9983563 DOI: 10.1021/acs.analchem.2c01640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein footprinting with mass spectrometry is an established structural biology technique for mapping solvent accessibility and assessing molecular-level interactions of proteins. In hydroxyl radical protein footprinting (HRPF), hydroxyl (OH) radicals generated by water radiolysis or other methods covalently label protein side chains. Because of the wide dynamic range of OH reactivity, not all side chains are easily detected in a single experiment. Novel reagent development and the use of radical chain reactions for labeling, including trifluoromethyl radicals, is a potential approach to normalize the labeling across a diverse set of residues. HRPF in the presence of a trifluoromethylation reagent under the right conditions could provide a "one-pot" reaction for multiplex labeling of protein side chains. Toward this goal, we have systematically evaluated amino acid labeling with the recently investigated Langlois' reagent (LR) activated by X-ray-mediated water radiolysis, followed by three different mass spectrometry methods. We compared the reactivity of CF3 and OH radical labeling for all 20 protein side chains in a competition-free environment. We found that all 20 amino acids exhibited CF3 or OH labeling in LR. Our investigations provide the evidence and knowledge set to perfect hydroxyl radical-activated trifluoromethyl chemistry as "one-pot" reaction for multiplex labeling of protein side chains to achieve higher resolution in HRPF.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Nanak S. Dhillon
- Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Xiaolin Li
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA,Corresponding Author: Mark R. Chance - Center for Synchrotron Biosciences; Center for Proteomics and Bioinformatics; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|
34
|
Liu L, Zhang W, Xu C, He J, Xu Z, Yang Z, Ling F, Zhong W. Electrosynthesis of CF
3
‐Substituted Polycyclic Quinazolinones via Cascade Trifluoromethylation/Cyclization of Unactivated Alkene. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Liu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Wangqin Zhang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chao Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jiaying He
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zhenhui Xu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
35
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|
36
|
Wan C, Wang Y, Lian C, Chang Q, An Y, Chen J, Sun J, Hou Z, Yang D, Guo X, Yin F, Wang R, Li Z. Histidine-specific bioconjugation via visible-light-promoted thioacetal activation. Chem Sci 2022; 13:8289-8296. [PMID: 35919717 PMCID: PMC9297702 DOI: 10.1039/d2sc02353a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Histidine (His, H) undergoes various post-translational modifications (PTMs) and plays multiple roles in protein interactions and enzyme catalyzed reactions. However, compared with other amino acids such as Lys or Cys, His modification is much less explored. Herein we describe a novel visible-light-driven thioacetal activation reaction which enables facile modification on histidine residues. An efficient addition to histidine imidazole N3 under biocompatible conditions was achieved with an electrophilic thionium intermediate. This method allows chemo-selective modification on peptides and proteins with good conversions and efficient histidine-proteome profiling with cell lysates. 78 histidine containing proteins were for the first time found with significant enrichment, most functioning in metal accumulation in brain related diseases. This facile His modification method greatly expands the chemo-selective toolbox for histidine-targeted protein conjugation and helps to reveal histidine's role in protein functions. Functionalization of histidine residues in proteins via visible-light-promoted thioacetal activation is reported. ∼2000 proteins with reactive and exposed histidine residues from the MCF7 cell line are characterized using ABPP by this method.![]()
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Qi Chang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Jinming Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhanfeng Hou
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, P. R. China
| |
Collapse
|
37
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
38
|
Bock L, Schultheiß SK, Maschauer S, Lasch R, Gradl S, Prante O, Zard SZ, Heinrich MR. Synthesis of 2‐(Chlorodifluoromethyl)indoles for Nucleophilic Halogen Exchange with [
18
F]Fluoride. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Stefanie K. Schultheiß
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Roman Lasch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Susanne Gradl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique associé au CNRS Ecole Polytechnique 91128 Palaiseau France
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
39
|
Kehl A, Hiller M, Hecker F, Tkach I, Dechert S, Bennati M, Meyer A. Resolution of chemical shift anisotropy in 19F ENDOR spectroscopy at 263 GHz/9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107091. [PMID: 34749036 DOI: 10.1016/j.jmr.2021.107091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Pulsed 19F ENDOR spectroscopy provides a selective method for measuring angstrom to nanometer distances in structural biology. Here, the performance of 19F ENDOR at fields of 3.4 T and 9.4 T is compared using model compounds containing one to three 19F atoms. CF3 groups are included in two compounds, for which the possible occurrence of uniaxial rotation might affect the distance distribution. At 9.4 T, pronounced asymmetric features are observed in many of the presented 19F ENDOR spectra. Data analysis by spectral simulations shows that these features arise from the chemical shift anisotropy (CSA) of the 19F nuclei. This asymmetry is also observed at 3.4 T, albeit to a much smaller extent, confirming the physical origin of the effect. The CSA parameters are well consistent with DFT predicted values and can be extracted from simulation of the experimental data in favourable cases, thereby providing additional information about the geometrical and electronic structure of the spin system. The feasibility of resolving the CSA at 9.4 T provides important information for the interpretation of line broadening in ENDOR spectra also at lower fields, which is relevant for developing methods to extract distance distributions from 19F ENDOR spectra.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany.
| | - Andreas Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
40
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
41
|
Zhu F, Powell WC, Jing R, Walczak MA. Organometallic Ala M Reagents for Umpolung Peptide Diversification. CHEM CATALYSIS 2021; 1:870-884. [PMID: 34738092 PMCID: PMC8562471 DOI: 10.1016/j.checat.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selective modifications of peptides and proteins have emerged as a promising strategy to develop novel mechanistic probes and prepare compounds with translational potentials. Here, we report alanine carbastannatranes AlaSn as a universal synthon in various C-C and C-heteroatom bond-forming reactions. These reagents are compatible with peptide manipulation techniques and can undergo chemoselective conjugation in minutes when promoted by Pd(0). Despite their increased nucleophilicity and propensity to transfer the alkyl group, C(sp3)-C(sp2) coupling with AlaSn can be accomplished at room temperature under buffered conditions (pH 6.5-8.5). We also show that AlaSn can be easily transformed into several canonical L- and D-amino acids in arylation, acylation, and etherification reactions. Furthermore, AlaSn can partake in macrocyclizations exemplified by the synthesis of medium size cyclic peptides with various topologies. Taken together, metalated alanine AlaSn demonstrates unparalleled scope and represents a new type of umpolung reagents suitable for structure-activity relationship studies and peptide diversification.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. C
- These authors contributed equally
| | - Wyatt C. Powell
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
- These authors contributed equally
| | - Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, CO 80309, United States
| |
Collapse
|
42
|
Oxime/Hydrazone Conjugation at Histidine: Late-Stage Functionalization Approach of Unprotected Peptides. Methods Mol Biol 2021. [PMID: 34386948 DOI: 10.1007/978-1-0716-1617-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Synthetic molecular probes have recently been in focus for their potential use in target deconvolution, target engagement studies, and imaging. With the field expanding, new strategies to develop such tools are in high demand. While traditional conjugation techniques relying on inherently nucleophilic amino acids such as cysteine (Cys) and lysine (Lys) or pre-incorporated non-natural amino acids are still heavily used, novel methodologies for the direct and site-selective modification of peptides are attracting increasing attention. Of particular interest are Late-Stage Functionalization (LSF) approaches based on radical chemistry as they afford mild and biocompatible alternatives to transition-metal catalysis. A recent synthetic method, which leverages the unique reactivity of histidine (His), has proven to be a promising new strategy for LSF and site-selective conjugation of unprotected peptides. In this chapter, detailed step-by-step protocols depicting the C2-alkylation of His-containing peptides, the unveiling of a ketone as handle for hydrazone conjugation, and its use to site-selectively introduce a fluorophore at this residue are discussed. In addition to its application toward the synthesis of molecular probes, this methodology can be employed in peptide-based drug discovery programs, offering the possibility to rapidly explore the chemical space surrounding peptide hits. Finally, this strategy is also amenable to the preparation of novel peptide-ASO/small molecule drug conjugates.
Collapse
|
43
|
Immel JR, Chilamari M, Bloom S. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. Chem Sci 2021; 12:10083-10091. [PMID: 34377401 PMCID: PMC8317666 DOI: 10.1039/d1sc02562g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Most peptide drugs contain non-proteinogenic amino acids (NPAAs), born out through extensive structure-activity relationship (SAR) studies using solid-phase peptide synthesis (SPPS). Synthetically laborious and expensive to manufacture, NPAAs also can have poor coupling efficiencies allowing only a small fraction to be sampled by conventional SPPS. To gain general access to NPAA-containing peptides, we developed a first-generation platform that merges contemporary flavin photocatalysis with parallel synthesis to simultaneously make, purify, quantify, and even test up to 96 single-NPAA peptide variants via the unique combination of boronic acids and a dehydroalanine residue in a peptide. We showcase the power of our newly minted platform to introduce NPAAs of diverse chemotypes-aliphatic, aromatic, heteroaromatic-directly into peptides, including 15 entirely new residues, and to evolve a simple proteinogenic peptide into an unnatural inhibitor of thrombin by non-classical peptide SAR.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Maheshwerreddy Chilamari
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| |
Collapse
|
44
|
Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Contemporary synthetic strategies in organofluorine chemistry. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Chen Z, Zhu M, Cai M, Xu L, Weng Y. Palladium-Catalyzed C(sp 3)–H Arylation and Alkynylation of Peptides Directed by Aspartic Acid (Asp). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhuo Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Meijie Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Mengwei Cai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Lulu Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Yiyi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| |
Collapse
|
46
|
Liu Y, Lv S, Peng L, Xie C, Gao L, Sun H, Lin L, Ding K, Li Z. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochem Pharmacol 2021; 190:114636. [PMID: 34062128 DOI: 10.1016/j.bcp.2021.114636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Nucleophilic amino acids play important roles in maintenance of protein structure and function, covalent modification of such amino acid residues by therapeutic agents is an efficient way to treat human diseases. Most of current clinical drugs are structurally limited to α,β-unsaturated amide as an electrophilic warhead. To alleviate this issue, many novel electrophiles have been developed in recent years that can covalently bind to different amino acid residues and provides a unique way to interrogate proteins, including "undruggable" targets. With an activity-based protein profiling (ABPP) approach, the activity and functionality of a protein and its binding sites can be assessed. This facilitates an understanding of protein function, and contributes to the discovery of new druggable targets and lead compounds. Meanwhile, many novel inhibitors bearing new reactive warhead were developed and displayed remarkable pharmaceutical properties. In this perspective, we have reviewed the recent remarkable progress of novel electrophiles and their applications in target identification and drug discovery.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shumin Lv
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chengliang Xie
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510000, China
| | - Liqian Gao
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510000, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
47
|
Nguyen TTH, O'Brien CJ, Tran MLN, Olson SH, Settineri NS, Prusiner SB, Paras NA, Conrad J. Water-Soluble Iridium Photoredox Catalyst for the Trifluoromethylation of Biomolecule Substrates in Phosphate Buffered Saline Solvent. Org Lett 2021; 23:3823-3827. [PMID: 33929208 DOI: 10.1021/acs.orglett.1c00871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of a water-soluble iridium catalyst enables the trifluoromethylation of polar small molecules and peptides in DMSO solution or aqueous media. The reaction was optimized in a microtiter plate format under ambient air, using commercial Langlois reagent as a CF3 radical source, blue LEDs for excitation, and using DPBS as solvent to provide up to 60% CF3- peptide.
Collapse
Affiliation(s)
- Terrence-Thang H Nguyen
- Institute for Neurodegenerative Diseases (IND), Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Connor J O'Brien
- Institute for Neurodegenerative Diseases (IND), Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Minh L N Tran
- Institute for Neurodegenerative Diseases (IND), Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Steven H Olson
- Institute for Neurodegenerative Diseases (IND), Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases (IND), Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Nick A Paras
- Institute for Neurodegenerative Diseases (IND), Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| | - Jay Conrad
- Institute for Neurodegenerative Diseases (IND), Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States.,Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
48
|
Roman BI. The Expanding Role of Chemistry in Optimizing Proteins for Human Health Applications. J Med Chem 2021; 64:7179-7188. [PMID: 34014084 DOI: 10.1021/acs.jmedchem.1c00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decades, therapeutics based on biological macromolecules and cells have successfully entered the clinical arena and progressively occupied an increasing share of what once was almost exclusively small molecule territory. This perspective explores the opportunities for chemists at the interface between biologics and small molecule-based products. It provides concrete examples by zooming in on the area of post-translational protein modification. The conclusion is that, rather than diminishing the relevance of chemistry in the pharmaceutical enterprise, the advent of the biologics has provided an additional playing field for synthetic and medicinal chemists, where they can contribute to the efficacy and scope of applicability of biological entities in a collaborative effort to transformatively address unmet medical needs.
Collapse
Affiliation(s)
- Bart I Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Universiteit Gent, Coupure Links 653, 9000 Gent, Belgium.,Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Gent, Belgium
| |
Collapse
|
49
|
Orellana NV, Taylor MT. Targeting Tryptophan for Tagging Through Photo-induced Electron Transfer. Synlett 2021; 32:1371-1378. [PMID: 34413573 PMCID: PMC8372833 DOI: 10.1055/a-1479-6366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The chemical modification of tryptophan (Trp) has been the subject of interest for nearly 100 years, yet the development modification conditions that exploit Trp's inherent photolability have remained elusive. In this perspective, we discuss our recently reported method for Tryptophan (Trp) photobioconjugation that uses N -carbamoyl pyridinium salts to engage Trp in photo-induced electron transfer. We detail our inspiration and rationale as well as place our report in the context of select prior art in the field.
Collapse
Affiliation(s)
- Norberto V Orellana
- University of Wyoming, Department of Chemistry, 1000 E. University Ave., Laramie, Wyoming, 82071, USA
| | - Michael T Taylor
- University of Wyoming, Department of Chemistry, 1000 E. University Ave., Laramie, Wyoming, 82071, USA
| |
Collapse
|
50
|
Zha F, Rao J, Chen B. Modification of pulse proteins for improved functionality and flavor profile: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:3036-3060. [PMID: 33798275 DOI: 10.1111/1541-4337.12736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
Consumers' preference to have a healthy eating pattern has led to an increasing demand for more nutrient-dense and healthier plant-based foods. Pulse proteins are exceptional quality ingredients with potential nutritional benefits, and might act as health-promoting agents for addressing the new-generation foods. However, the utilization of pulse protein in foods has been hampered by its relatively poor functionality and unpleasant flavor. Protein structure modification has been proved to be a useful means to improve the functionality and flavor profile of pulse protein. This paper begins with a brief introduction of hierarchical structure of pulse protein materials to better understand the structure characteristics. A comprehensive review is presented on the current techniques including chemical and enzymatic modifications and molecular breeding on pulse protein structure and functionality/flavor. The mechanism and the limitations and the toxicological concerns of these approaches are discussed. We conclude that understanding protein structure-functionality relationship is extremely valuable in tailoring proteins for specific functional outcomes and expanding the availability of pulse proteins. Furthermore, selective protein modification is a valuable in-depth toolkit for generating novel protein constructs with preferable functional attributes and flavor profiles. Innovative structure modification with special focus on the molecular basis for the exquisite protein designs is a pillar of pulse protein access to the desired functionality.
Collapse
Affiliation(s)
- Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|