1
|
Ruan YJ, Wang XL, Wang PF, Zhang CZ, Wen MM, Hu XY, Liu XG. Cobalt-Catalyzed Cross-Coupling of Glycosyl Sulfones with Zinc reagents toward the Stereoselective Synthesis of C(sp/sp 2)-Glycosides. Org Lett 2025; 27:4534-4541. [PMID: 40249529 DOI: 10.1021/acs.orglett.5c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
A cobalt-catalyzed desulfonylative cross-coupling of glycosyl sulfones with organozinc reagents toward the stereoselective synthesis of C-glycosides is reported. The new C-glycoside synthesis proceeds under mild reaction conditions and exhibits tolerance to a range of functional groups. Diverse alkynylated, arylated, and alkenylated products are formed with high efficiency and excellent diastereoselectivity. Mechanistic studies indicate a radical pathway.
Collapse
Affiliation(s)
- Yu-Jun Ruan
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Li Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Peng-Fei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
2
|
Guo K, Zhang S, Zhang J, Ren Y, Chang X, Sun P. Direct Synthesis of Allylic Sulfones via Hydrosulfonylation of 1,3-Dienes with Sulfinic Acids. Molecules 2025; 30:1785. [PMID: 40333796 PMCID: PMC12029303 DOI: 10.3390/molecules30081785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/09/2025] Open
Abstract
Catalyst- and additive-free reactions for synthesizing valuable organic compounds have garnered significant attention in the context of sustainable development. As crucial structural motifs, allylic sulfones find extensive applications in pharmaceutical development and organic synthesis. Despite remarkable advances in allylic sulfone construction, catalyst-free and additive-free methodologies remain an underexplored frontier. Herein, we present an environmentally benign and atom-economical approach for synthesizing allylic sulfones by reacting electron-rich aryl-1,3-dienes with sulfinic acids, achieving yields of 10-94%. This transformation proceeds under ambient air at room temperature, eliminating the need for catalysts or additives. The protocol demonstrates exceptional regio- and chemo-selectivity, streamlined operational simplicity, and excellent scalability potential. This methodology establishes a sustainable and cost-effective paradigm for allylic sulfone synthesis, aligning with green chemistry principles.
Collapse
Affiliation(s)
- Ke Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Daodi Herbs, Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; (K.G.); (S.Z.); (J.Z.)
- Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuaichen Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Daodi Herbs, Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; (K.G.); (S.Z.); (J.Z.)
- Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Daodi Herbs, Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; (K.G.); (S.Z.); (J.Z.)
- Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan Playground, Beijing 100091, China;
| | - Xiaoqiang Chang
- School of Pharmacy, Bengbu Medical University, Bengbu 233000, China
| | - Peng Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Daodi Herbs, Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China; (K.G.); (S.Z.); (J.Z.)
- Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Ghosh J, Cooks RG. Accelerated click reactions using boronic acids for heterocyclic synthesis in microdroplets. Chem Sci 2025:d5sc00851d. [PMID: 40276635 PMCID: PMC12015631 DOI: 10.1039/d5sc00851d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Click chemistry is important for its simplicity and versatility, however, condensation-based click reactions are limited by the general requirement of high temperatures and catalysts. Here, we report accelerated click reactions using boronic acids in microdroplets under ambient conditions without a catalyst. The reaction between 2-formyl phenylboronic acid (2-FPBA) and substituted amines leads to the formation of multi-step click products, including iminoboronates, boroxines, thiazolidines, and diazaborines, depending on the selected amine. The reactions occur during microdroplet flight and are three orders of magnitude faster than the corresponding bulk reactions. MS and NMR spectral analysis confirmed the nature of the products. We suggest that the air-liquid interface of microdroplets serves both as a superacid and as a drying surface, facilitating dehydration by its superacidicity to access these products. We also demonstrate the application of these accelerated reactions as a late-stage functionalization (LSF) tool to access a range of antihistamine drug derivatives.
Collapse
Affiliation(s)
- Jyotirmoy Ghosh
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
4
|
Mukherjee K, Cheung KPS, Gevorgyan V. Photoinduced Pd-Catalyzed Direct Sulfonylation of Allylic C-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202413646. [PMID: 39287933 DOI: 10.1002/anie.202413646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Allylic sulfones are valuable motifs due to their medicinal and biological significance and their versatile chemical reactivities. While direct allylic C-H sulfonylation represents a straightforward and desirable approach, these methods are primarily restricted to terminal alkenes, leaving the engagement of the internal counterparts a formidable challenge. Herein we report a photocatalytic approach that accommodates both cyclic and acyclic internal alkenes with diverse substitution patterns and electronic properties. Importantly, the obtained allylic sulfones can be readily diversified into a wide range of products, thus enabling formal alkene transposition and all-carbon quaternary center formation through the sequential C-H functionalization.
Collapse
Affiliation(s)
- Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| |
Collapse
|
5
|
Xu X, Zhang Y, Zhang X. Recent Advances in C-C Bond Formation via Visible Light-Mediated Desulfonylation and Its Application in the Modification of Biologically Active Compounds. Molecules 2024; 29:5553. [PMID: 39683713 DOI: 10.3390/molecules29235553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Developing efficient and novel methodologies to construct a C-C bond is highly important in both synthetic chemistry and pharmaceutical sciences. In recent years, the visible light-mediated desulfonylative transformation of sulfonyl compounds has emerged as a powerful tool for the synthesis of diverse C-C bond. To emphasize their practical utility, many methodologies have been successfully applied in the modification of a variety of biologically active compounds which possess unprotected amide or hydroxy groups. In this review, we would like to summarize recent advances in C-C bond formation via the visible light-mediated desulfonylation of sulfonyl chlorides, sulfinates, sulfonamides, sulfones, and sulfonylhydrazones. The reaction design, mechanism research, and the application of these protocols in the modification of biologically active compounds are presented. The challenges and future developments in this area are also discussed.
Collapse
Affiliation(s)
- Xiaohong Xu
- Chaozhou Institute for Drug Control, Chaozhou 521000, China
- College of Pharmacy, Graduate School, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yufan Zhang
- Chaozhou Institute for Drug Control, Chaozhou 521000, China
| | - Xueyuan Zhang
- Chaozhou Institute for Drug Control, Chaozhou 521000, China
| |
Collapse
|
6
|
Nolla-Saltiel R, Ariki ZT, Schiele S, Alpin J, Tahara Y, Yokogawa D, Nambo M, Crudden CM. Enantiospecific cross-coupling of cyclic alkyl sulfones. Nat Chem 2024; 16:1445-1452. [PMID: 39103655 DOI: 10.1038/s41557-024-01594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/04/2024] [Indexed: 08/07/2024]
Abstract
Methods to form carbon-carbon bonds efficiently and with control of stereochemistry are critical for the construction of complex molecules. Cross-coupling reactions are among the most efficient and widely used reactions to construct molecules, with reactions enabling the retention or installation of chirality as recent additions to this powerful toolbox. Sulfones are robust, accessible organic electrophiles that have many attractive features as cross-coupling partners; however, since the first example of their use in 1979, there have been no examples of their use in enantioselective, enantiospecific or entantioconvergent cross-couplings. The high acidity of sulfones makes it unclear whether this transformation is even possible outside tertiary systems. Here we report the enantiospecific cross-coupling of cyclic sulfones and Grignard reagents. Up to 99% chirality transfer is observed despite the strong basicity of the Grignard components. In situ monitoring reveals that the cross-coupling is kinetically competitive with competing deprotonation, resulting in a highly enantioselective transformation.
Collapse
Affiliation(s)
- Roberto Nolla-Saltiel
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Zachary T Ariki
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, Canada
| | - Stefanie Schiele
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, Canada
| | - Jana Alpin
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, Canada
| | - Yasuyo Tahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Cathleen M Crudden
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, Canada.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
7
|
Li S, Zhang C, Wang S, Yang W, Fang X, Fan S, Zhang Q, Li XX, Feng YS. Cooperative Photoredox and N-Heterocyclic Carbene Catalysis Suzuki-Miyaura-Type Reaction: Radical Coupling of Aroyl Fluorides and Alkyl Boronic Acids. Org Lett 2024; 26:1728-1733. [PMID: 38385808 DOI: 10.1021/acs.orglett.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
An intermolecular Suzuki-Miyaura-type reaction of benzoyl fluorides with alkyl boronic acids to synthetic ketone was revealed by cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. Various alkyl boric acids can be converted into alkyl radicals without external oxidants or activators. Moreover, the catalytic system was feasible for the difunctionalization of styrenes via a radical relay process. Mechanistic experiments suggested that the benzoate anion intermediate might play a unique role in this reaction system.
Collapse
Affiliation(s)
- Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Chaoyang Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
| | - Xinru Fang
- Hangzhou Xiaobei Pharmaceutical Technology Co., Ltd, 398 Haida North Road, Hangzhou, Zhejiang 310018, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiao-Xuan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230000, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, China
| |
Collapse
|
8
|
Li X, Zhang Y, Shi Z, Wang D, Yang H, Zhang Y, Qin H, Lu W, Chen J, Li Y, Qing G. Water-stable boroxine structure with dynamic covalent bonds. Nat Commun 2024; 15:1207. [PMID: 38331926 PMCID: PMC10853236 DOI: 10.1038/s41467-024-45464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Boroxines are significant structures in the production of covalent organic frameworks, anion receptors, self-healing materials, and others. However, their utilization in aqueous media is a formidable task due to hydrolytic instability. Here we report a water-stable boroxine structure discovered from 2-hydroxyphenylboronic acid. We find that, under ambient environments, 2-hydroxyphenylboronic acid undergoes spontaneous dehydration to form a dimer with dynamic covalent bonds and aggregation-induced enhanced emission activity. Intriguingly, upon exposure to water, the dimer rapidly transforms into a boroxine structure with excellent pH stability and water-compatible dynamic covalent bonds. Building upon these discoveries, we report the strong binding capacity of boroxines toward fluoride ions in aqueous media, and develop a boroxine-based hydrogel with high acid-base stability and reversible gel-sol transition. This discovery of the water-stable boroxine structure breaks the constraint of boroxines not being applicable in aqueous environments, opening a new era of researches in boroxine chemistry.
Collapse
Affiliation(s)
- Xiaopei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yongjie Zhang
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Hang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yahui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China.
| |
Collapse
|
9
|
Xie X, Zhang J, Song XQ, Li W, Cao F, Zhou C, Zhu H, Li L. Unveiling Pre-Transmetalation Intermediates in Base-Free Suzuki-Miyaura Cross-Couplings: A Computational Study. Inorg Chem 2024; 63:2606-2615. [PMID: 38267390 DOI: 10.1021/acs.inorgchem.3c03855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The pre-transmetalation intermediates are critically important in Suzuki-Miyaura cross-coupling (SMC) reactions and have become a hot spot of the current research. However, the pre-transmetalation intermediates under base-free conditions have not been clear. Herein, a comprehensive theoretical study is performed on the base-free Pd-catalyzed desulfonative SMC reaction. The fragile coordination feature and the acceleration role of the RuPhos chelate ligand are revealed. The hydrogen-bond complex between the Pd-F complex and aryl boronic acid is identified as an important pre-transmetalation intermediate, which increases the energy span to 32.5 kcal/mol. The controlling factor for the formation of the hydrogen-bond complexes is attributed to the electronegativities of halogen atoms in the metal halide complexes. What is more, other reported SMC reaction systems involving metal halide complexes and aryl boronic acids are reconsidered and suggest that the hydrogen-bond complexes widely exist as stable pre-transmetalation intermediates with influencing the catalytic activities. The earth-abundant Ni-catalyzed desulfonative SMC reaction is further designed and predicted to have a higher activity than the original Pd-catalyzed SMC reaction.
Collapse
Affiliation(s)
- Xiaofeng Xie
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Jiejing Zhang
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xue-Qing Song
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wan Li
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Fei Cao
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chengyan Zhou
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Huajie Zhu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Longfei Li
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
10
|
Ma X, Tan M, Li L, Zhong Z, Li P, Liang J, Song Q. Ni-catalysed assembly of axially chiral alkenes from alkynyl tetracoordinate borons via 1,3-metallate shift. Nat Chem 2024; 16:42-53. [PMID: 38182763 DOI: 10.1038/s41557-023-01396-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
Asymmetric synthesis based on a metallate shift of tetracoordinate borons is an intriguing and challenging topic. Despite the construction of central chirality from tetracoordinate boron species via a 1,2-metallate shift, catalytic asymmetric synthesis of axially chiral compounds from such boron 'ate' complexes is an ongoing challenge. Axially chiral alkenes have received great attention due to their unique characteristics and intriguing molecular scaffolds. Here we report an enantioselective nickel-catalysed strategy for the construction of axially chiral alkenes via a 1,3-metallate shift of alkynyl tetracoordinate boron species. The chemoselectivity, regioselectivity and atroposelectivity can be regulated and well-controlled from readily accessible starting materials with a cheap transition-metal catalyst. Downstream transformations indicate the powerful conversion ability of such compounds in this protocol, and late-stage elaborations of bioactive compounds can also be achieved. Mechanistic experiments reveal that regioselective syn-addition of an aryl-Ni complex with a carbon-carbon triple bond and subsequent 1,3-phenyl migration are the two key steps for the synthesis of axially chiral alkenes.
Collapse
Affiliation(s)
- Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Mengwei Tan
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Luo Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Zihao Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Puhui Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Jinchao Liang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Zhong C, Liu M, Qiu X, Wei H, Cui B, Shi Y, Cao C. Nickel-Catalyzed Cross-Coupling Reaction of Aryl Methyl Sulfides with Aryl Bromides. J Org Chem 2023; 88:13418-13426. [PMID: 37752001 DOI: 10.1021/acs.joc.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A nickel-catalyzed cross-coupling reaction of aryl methyl sulfides with aryl bromides has been developed to access biaryls in yields of up to 86%. The reactions proceeded well using Ni(COD)2 as catalyst with the ligand BINAP (2,2'-bis(diphenylphosphanyl)-1,1'-binaphthalene) in the presence of magnesium. The method has a broad scope of substrates and is scalable. The wide availability of commercially available aryl bromides and the absence of preparation and preparation of organometallic reagents make the reaction of high application value.
Collapse
Affiliation(s)
- Chuntao Zhong
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengna Liu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xianchao Qiu
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hao Wei
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Benqiang Cui
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhui Shi
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Changsheng Cao
- School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
12
|
Hsu CM, Lin HB, Hou XZ, Tapales RVPP, Shih CK, Miñoza S, Tsai YS, Tsai ZN, Chan CL, Liao HH. Azetidines with All-Carbon Quaternary Centers: Merging Relay Catalysis with Strain Release Functionalization. J Am Chem Soc 2023; 145:19049-19059. [PMID: 37589099 DOI: 10.1021/jacs.3c06710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Given the importance and beneficial characteristics of decorated azetidines in medicinal chemistry, efficient strategies for their synthesis are highly sought after. Herein, we report a facile synthesis of the elusive all-carbon quaternary-center-bearing azetidines. By adopting a well-orchestrated polar-radical relay strategy, ring strain release of bench-stable benzoylated 1-azabicyclo[1.1.0]butane (ABB) can be harnessed for nickel-catalyzed Suzuki Csp2-Csp3 cross-coupling with commercially available boronic acids in broad scope (>50 examples), excellent functional group tolerance, and gram-scale utility. Preliminary mechanistic studies provided insights into the underlying mechanism, wherein the ring opening of ABB with a catalytic quantity of bromide accounts for the conversion of ABB into a redox-active azetidine, which subsequently engages in the cross-coupling reaction through a radical pathway. The synergistic bromide and nickel catalysis could intriguingly be derived from a single nickel source (NiBr2). Application of the method to modify natural products, biologically relevant molecules, and pharmaceuticals has been successfully achieved as well as the synthesis of melanocortin-1 receptor (MC-1R) agonist and vesicular acetylcholine transporter (VAChT) inhibitor analogues through bioisosteric replacements of piperidine with azetidine moieties, highlighting the potential of the method in drug optimization studies. Aside from the synthesis of azetidines, we demonstrate the ancillary utility of our nickel catalytic system toward the restricted Suzuki cross-coupling of tertiary alkyl bromides with aryl boronic acids to construct all-carbon quaternary centers.
Collapse
Affiliation(s)
- Che-Ming Hsu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Heng-Bo Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Xin-Zhi Hou
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | | | - Chen-Kuei Shih
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Yu-Syuan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Cheng-Lin Chan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (R.O.C.)
| |
Collapse
|
13
|
Lu WD, Zheng Y, Zhang ZP, Chen HB, Chen K, Xiang HY, Yang H. Visible-Light-Induced, Palladium-Mediated Desaturation/Sulfonation Cascade To Access 4-Sulfonyltetrahydropyridine Scaffolds. Org Lett 2023; 25:6077-6081. [PMID: 37550862 DOI: 10.1021/acs.orglett.3c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Herein, we report a visible-light-induced, palladium-catalyzed desaturation/sulfonation cascade, offering a concise route to a series of highly valuable 4-sulfonyltetrahydropyridine scaffolds from inexpensive and readily available piperidine derivatives with sodium sulfinates. The key to the success of this transformation is the well-designed sequence of palladium-mediated 1,5-hydrogen atom transfer/β-hydride elimination/allylic sulfonation process, which demonstrates the synthetic potentials for orchestrating synthetic events by rationally taking advantage of varied catalytic modes.
Collapse
Affiliation(s)
- Wei-Dong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Zhi-Peng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
- Jiangxi Time Chemical Company, Limited, Fuzhou, Jiangxi 344800, People's Republic of China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| |
Collapse
|
14
|
Beng TK, Eichwald J, Fessenden J, Quigley K, Sharaf S, Jeon N, Do M. Regiodivergent synthesis of sulfone-tethered lactam-lactones bearing four contiguous stereocenters. RSC Adv 2023; 13:21250-21258. [PMID: 37456540 PMCID: PMC10340014 DOI: 10.1039/d3ra03800a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Sulfone-tethered lactones/amides/amines display a diverse spectrum of biological activities, including anti-psychotic and anti-hypertensive. Sulfones are also widely present in functional materials and fragrances. We therefore reasoned that a regiodivergent and stereocontrolled strategy that merges the sulfone, lactone, and lactam motifs would likely lead to the discovery of new pharmacophores and functional materials. Here, we report mild conditions for the sulfonyllactonization of γ-lactam-tethered 5-aryl-4(E)-pentenoic acids. The annulation is highly modular, chemoselective, and diastereoselective. With respect to regioselectivity, trisubstituted alkenoic acids display a preference for 5-exo-trig cyclization whereas disubstituted alkenoic acids undergo exclusive 6-endo-trig cyclization. The lactam-fused sulfonyllactones bear angular quaternary as well as four contiguous stereocenters. The products are post-modifiable, especially through a newly developed Co-catalyzed reductive cross-coupling protocol.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jolyn Fessenden
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Kaiden Quigley
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Sapna Sharaf
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Nanju Jeon
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
15
|
Borowski JE, Newman-Stonebraker SH, Doyle AG. Comparison of Monophosphine and Bisphosphine Precatalysts for Ni-Catalyzed Suzuki-Miyaura Cross-Coupling: Understanding the Role of the Ligation State in Catalysis. ACS Catal 2023; 13:7966-7977. [PMID: 38037565 PMCID: PMC10688240 DOI: 10.1021/acscatal.3c01331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Practical advances in Ni-catalyzed Suzuki-Miyaura cross-coupling (SMC) have been limited by a lack of mechanistic understanding of phosphine ligand effects. While bisphosphines are commonly used in these methodologies, we have observed instances where monophosphines can provide comparable or higher levels of reactivity. Seeking to understand the role of ligation state in catalysis, we performed a head-to-head comparison study of C(sp2)-C(sp2) Ni SMCs catalyzed by mono and bisphosphine precatalysts using six distinct substrate pairings. Significant variation in optimal precatalyst was observed, with the monophosphine precatalyst tending to outperform the bisphosphines with electronically deactivated and sterically hindered substrates. Mechanistic experiments revealed a role for monoligated (P1Ni) species in accelerating the fundamental organometallic steps of the catalytic cycle, while highlighting the need for bisligated (P2Ni) species to avoid off-cycle reactivity and catalyst poisoning by heterocyclic motifs. These findings provide guidelines for ligand selection against challenging substrates and future ligand design tailored to the mechanistic demands of Ni-catalyzed SMCs.
Collapse
Affiliation(s)
| | - Samuel H. Newman-Stonebraker
- Department of Chemistry, Princeton University, Princeton, NJ 08544
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Abigail G. Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
16
|
Bai J, Li S, Qi D, Song Z, Li B, Guo L, Song L, Xia W. Visible-Light-Induced Trifluoromethylsulfonylation Reaction of Diazo Compounds Enabled by Manganese Catalysis. Org Lett 2023; 25:2410-2414. [PMID: 36996439 DOI: 10.1021/acs.orglett.3c00490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
A visible-light-induced trifluoromethylsulfonylation reaction of diazo compounds is herein reported. This developed synthetic method captures the relatively rare trifluoromethyl sulfone radicals via coordination to the Mn(acac)3 catalyst, delivering the corresponding α-trifluoromethyl sulfone esters in good to moderate yields (up to 82%). This protocol exhibits broad substrate scope and is easily carried out under mild reaction conditions. Furthermore, a plausible mechanism of the reaction was investigated through DFT calculations.
Collapse
Affiliation(s)
- Jinrui Bai
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuoheng Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bin Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lijuan Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Xiang YJ, Liu S, Zhou J, Lin JH, Yao X, Xiao JC. Dehydroxylative Sulfonylation of Alcohols. J Org Chem 2023; 88:4818-4828. [PMID: 36913713 DOI: 10.1021/acs.joc.2c03085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Described here is the R3P/ICH2CH2I-promoted dehydroxylative sulfonylation of alcohols with a variety of sulfinates. In contrast to previous dehydroxylative sulfonylation methods, which are usually limited to active alcohols, such as benzyl, allyl, and propargyl alcohols, our protocol can be extended to both active and inactive alcohols (alkyl alcohols). Various sulfonyl groups can be incorporated, such as CF3SO2 and HCF2SO2, which are fluorinated groups of interest in pharmaceutical chemistry and the installation of which has received increasing attention. Notably, all reagents are cheap and widely available, and moderate to high yields were obtained within 15 min of reaction time.
Collapse
Affiliation(s)
- Yi-Jun Xiang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| | - Shun Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, PR China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| |
Collapse
|
18
|
Huang X, Tang L, Song Z, Jiang S, Liu X, Ma M, Chen B, Ma Y. Nickel-Catalyzed Desulfonylative Reductive Cross-Coupling of Aryl Sulfones with Aryl Bromides. Org Lett 2023; 25:1198-1203. [PMID: 36757152 DOI: 10.1021/acs.orglett.3c00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Herein, a nickel catalysis system for desulfonylative C(sp2)-C(sp2) reductive cross-coupling reactions of aryl sulfone derivatives with a range of aryl bromides has been established to form diverse biaryl compounds. The complex Ar-Ni(II)-SO2CF3 bearing a phosphine ligand through oxidative addition of aryl sulfone to Ni(0) species was isolated and confirmed by an X-ray, which provides solid evidence for the understanding of the C(Ar)-SO2 bond activation and reaction mechanism.
Collapse
Affiliation(s)
- Xinmiao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Zhiyong Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Shuangshuang Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xianmao Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
19
|
Bergamaschi E, Mayerhofer VJ, Teskey CJ. Light-Driven Cobalt Hydride Catalyzed Hydroarylation of Styrenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Enrico Bergamaschi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Victor J. Mayerhofer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher J. Teskey
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
20
|
Peng P, Yang R, Xu B. Tunable Reduction of Benzyl
α
,
α
‐Difluorotriflones: Synthesis of Difluoroarenes and Sodium Aryldifluoromethyl Sufinates and their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology, Address Hangzhou 310014 China
| | - Ren‐Yin Yang
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| |
Collapse
|
21
|
Establishing Fe-Cu interaction in a novel free-standing material to boost the catalytic activity for ligand-free Suzuki-Miyaura cross-couplings. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Newman-Stonebraker SH, Wang JY, Jeffrey PD, Doyle AG. Structure-Reactivity Relationships of Buchwald-Type Phosphines in Nickel-Catalyzed Cross-Couplings. J Am Chem Soc 2022; 144:19635-19648. [PMID: 36250758 DOI: 10.1021/jacs.2c09840] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dialkyl-ortho-biaryl class of phosphines, commonly known as Buchwald-type ligands, are among the most important phosphines in Pd-catalyzed cross-coupling. These ligands have also been successfully applied to several synthetically valuable Ni-catalyzed cross-coupling methodologies and, as demonstrated in this work, are top performing ligands in Ni-catalyzed Suzuki Miyaura Coupling (SMC) and C-N coupling reactions, even outperforming commonly employed bisphosphines like dppf in many circumstances. However, little is known about their structure-reactivity relationships (SRRs) with Ni, and limited examples of well-defined, catalytically relevant Ni complexes with Buchwald-type ligands exist. In this work, we report the analysis of Buchwald-type phosphine SRRs in four representative Ni-catalyzed cross-coupling reactions. Our study was guided by data-driven classification analysis, which together with mechanistic organometallic studies of structurally characterized Ni(0), Ni(I), and Ni(II) complexes allowed us to rationalize reactivity patterns in catalysis. Overall, we expect that this study will serve as a platform for further exploration of this ligand class in organonickel chemistry as well as in the development of new Ni-catalyzed cross-coupling methodologies.
Collapse
Affiliation(s)
- Samuel H Newman-Stonebraker
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jason Y Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Abstract
Sulfur-containing compounds have attracted considerable interest due to their wide-ranging applications in pharmaceuticals, agriculture, natural products, and organic materials. The development of efficient and rapid methods for the construction and transformation of sulfur-containing compounds is of great importance. Since nickel is inexpensive and has a variety of valence states, strong nucleophilicity and low energy barriers for oxidative addition, the construction and transformation of sulfur-containing compounds by nickel-catalyzed cross-coupling have become important strategies. In addition, sulfur-containing compounds have also been playing increasingly important roles in the field of cross-coupling due to their thermodynamically stable but dynamic activity. This review will focus on nickel-catalyzed construction and transformation of various sulfide-containing compounds, such as sulfides, disulfides, and hypervalent sulfur-containing compounds.
Collapse
Affiliation(s)
- Su Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
24
|
Peng CC, Long F, Zhang KY, Hu YC, Wu LJ. Copper(I)-Catalyzed Cross-Coupling of Arylsulfonyl Radicals with Diazo Compounds: Assembly of Arylsulfones. J Org Chem 2022; 87:12265-12273. [PMID: 36037316 DOI: 10.1021/acs.joc.2c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel copper-catalyzed cross-coupling of arylsulfonyl radicals with diazo compounds is described for the synthesis of various arylsulfones under mild conditions. In this reaction, the cheap, environmentally friendly, and readily available inorganic K2S2O5 is employed as the sulfur dioxide source for providing arylsulfonyl radicals. In addition, a radical mechanism involving the insertion of sulfur dioxide with aryl radicals followed by the coupling of arylsulfonyl radicals with copper carbenes is proposed.
Collapse
Affiliation(s)
- Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Hunan Cuisine, ChangSha Commerce & Tourism College, Changsha 410116, China
| | - Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yun-Chu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
26
|
Nguyen VD, Trevino R, Greco SG, Arman HD, Larionov OV. Tricomponent Decarboxysulfonylative Cross-Coupling Facilitates Direct Construction of Aryl Sulfones and Reveals a Mechanistic Dualism in the Acridine/Copper Photocatalytic System. ACS Catal 2022; 12:8729-8739. [PMID: 36643936 PMCID: PMC9833479 DOI: 10.1021/acscatal.2c02332] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dual catalytic systems involving photocatalytic activation and transition metal-catalyzed steps have enabled innovative approaches to the construction of carbon-carbon and carbon-heteroatom bonds. However, the mechanistic complexity of the dual catalytic processes presents multiple challenges for understanding of the roles of divergent catalytic species that can impede the development of future synthetic methods. Here, we report a dual catalytic process that enables the previously inaccessible, broad-scope, direct conversion of carboxylic acids to aromatic sulfones-centrally important carbonyl group bioisosteric replacements and synthetic intermediates-by a tricomponent decarboxysulfonylative cross-coupling with aryl halides. Detailed mechanistic and computational studies revealed the roles of the copper catalyst, base, and halide anions in channeling the acridine/copper system via a distinct dual catalytic manifold. In contrast to the halide-free decarboxylative conjugate addition that involves cooperative dual catalysis via low-valent copper species, the halide counteranions divert the decarboxysulfonylative cross-coupling with aryl halides through a two-phase, orthogonal relay catalytic manifold, comprising a kinetically coupled (via antithetical inhibitory and activating roles of the base in the two catalytic cycles), mechanistically discrete sequence of a photoinduced, acridine-catalyzed decarboxylative process and a thermal copper-catalyzed arylative coupling. The study underscores the importance of non-innocent roles of counteranions and key redox steps at the interface of catalytic cycles for enabling previously inaccessible dual catalytic transformations.
Collapse
Affiliation(s)
- Viet D. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Samuel G. Greco
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
27
|
Wang H, Yang R, Xu B. Synthesis of Cyclopropenes and Fluorinated Cyclopropanes via Michael Initiated Ring Closure of Alkyl Triflones. Chemistry 2022; 28:e202104364. [DOI: 10.1002/chem.202104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Wang
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Ren‐Yin Yang
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles Ministry of Education College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
28
|
Zhang CS, Zhang BB, Zhong L, Chen XY, Wang ZX. DFT insight into asymmetric alkyl-alkyl bond formation via nickel-catalysed enantioconvergent reductive coupling of racemic electrophiles with olefins. Chem Sci 2022; 13:3728-3739. [PMID: 35432909 PMCID: PMC8966719 DOI: 10.1039/d1sc05605k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
A DFT study has been conducted to understand the asymmetric alkyl–alkyl bond formation through nickel-catalysed reductive coupling of racemic alkyl bromide with olefin in the presence of hydrosilane and K3PO4. The key findings of the study include: (i) under the reductive experimental conditions, the Ni(ii) precursor is easily activated/reduced to Ni(0) species which can serve as an active species to start a Ni(0)/Ni(ii) catalytic cycle. (ii) Alternatively, the reaction may proceed via a Ni(i)/Ni(ii)/Ni(iii) catalytic cycle starting with a Ni(i) species such as Ni(i)–Br. The generation of a Ni(i) active species via comproportionation of Ni(ii) and Ni(0) species is highly unlikely, because the necessary Ni(0) species is strongly stabilized by olefin. Alternatively, a cage effect enabled generation of a Ni(i) active catalyst from the Ni(ii) species involved in the Ni(0)/Ni(ii) cycle was proposed to be a viable mechanism. (iii) In both catalytic cycles, K3PO4 greatly facilitates the hydrosilane hydride transfer for reducing olefin to an alkyl coupling partner. The reduction proceeds by converting a Ni–Br bond to a Ni–H bond via hydrosilane hydride transfer to a Ni–alkyl bond via olefin insertion. On the basis of two catalytic cycles, the origins for enantioconvergence and enantioselectivity control were discussed. The enantioconvergent alkyl–alkyl coupling involves two competitive catalytic cycles with nickel(0) and nickel(i) active catalysts, respectively. K3PO4 plays a crucial role to enable the hydride transfer from hydrosilane to nickel–bromine species.![]()
Collapse
Affiliation(s)
- Chao-Shen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Zhong
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
29
|
Nambo M, Crudden CM. Sequential Transformations of Organosulfones on the Basis of Properties of Sulfonyl Groups. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules, Nagoya University
| | | |
Collapse
|
30
|
Nambo M, Maekawa Y, Crudden CM. Desulfonylative Transformations of Sulfones by Transition-Metal Catalysis, Photocatalysis, and Organocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
| | - Yuuki Maekawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario, Canada, K7L 4 V1
| | - Cathleen M. Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario, Canada, K7L 4 V1
| |
Collapse
|
31
|
Butcher TW, Amberg WM, Hartwig JF. Transition‐Metal‐Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C−C Bond Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Willi M. Amberg
- Department of Chemistry and Applied Biosciences Laboratory of Organic Chemistry ETH Zϋrich 8093 Zϋrich Switzerland
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
32
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient
ortho
‐Selective Trifluoromethane‐sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Songlin Bai
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Xiangbing Qi
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| |
Collapse
|
33
|
Luo Z, Liu ZQ, Yang TT, Zhuang X, Hong CM, Zou FF, Xue ZY, Li QH, Liu TL. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP)-Assisted Catalyst-Free Sulfonation of Allylic Alcohols with Sulfinyl Amides. Org Lett 2022; 24:741-745. [PMID: 34989575 DOI: 10.1021/acs.orglett.1c04206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly regioselective and catalyst-free sulfonation of allylic alcohols with sulfinyl amides has been realized. Such a mix-and-go procedure provides a convenient approach to synthetically various allylic sulfones under mild reaction conditions. Furthermore, this novel reaction shows ample substrate scope and outstanding functional group tolerance and could also be scaled-up. Meanwhile, it is the first example that sulfinyl amides act as a powerful sulfur nucleophile in the reactions. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) as a solvent plays a critical role in allylic sulfonation.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting-Ting Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi-Yong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Ghorai D, Cristòfol À, Kleij AW. Nickel‐Catalyzed Allylic Substitution Reactions: An Evolving Alternative. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Debasish Ghorai
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluis Companys 23 08010– Barcelona Spain
| |
Collapse
|
35
|
Huang M, Hu J, Krummenacher I, Friedrich A, Braunschweig H, Westcott SA, Radius U, Marder TB. Base-Mediated Radical Borylation of Alkyl Sulfones. Chemistry 2022; 28:e202103866. [PMID: 34713940 PMCID: PMC9299846 DOI: 10.1002/chem.202103866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/06/2022]
Abstract
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2 neop2 ), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.
Collapse
Affiliation(s)
- Mingming Huang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
36
|
Sheppard TD, Nishikata T, Tsuchiya N. Tertiary Alkylative Suzuki–Miyaura Couplings. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1732-4597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSuzuki–Miyaura coupling is an extremely useful way to construct Csp2–Csp2 carbon bonds. On the other hand, Csp2–Csp3 coupling reactions do not work well, and tert-alkylative Suzuki–Miyaura coupling is particularly challenging due to problematic oxidative addition and β-hydride elimination side reactions. In this short review, we will introduce recent examples of tert-alkylative Suzuki–Miyaura couplings with tert-alkyl electrophiles or -boron reagents. The review will mainly focus on catalyst and product structures and on the proposed mechanisms.1 Introduction2 Ni-Catalyzed tert-Alkylative Couplings3 Pd-Catalyzed tert-Alkylative Couplings4 Fe-Catalyzed tert-Alkylative Couplings5 tert-Alkylative Couplings with 1-Alkenyl Borons6 tert-Alkylative Couplings under Photoirradiation7 Stereospecific tert-Alkylative Couplings8 Conclusion
Collapse
Affiliation(s)
- Tom D. Sheppard
- Department of Chemistry, University College London, Christopher Ingold Laboratories
| | | | - Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University
| |
Collapse
|
37
|
Patel S, Paul B, Paul H, Shankhdhar R, Chatterjee I. Redox-active alkylsulfones as precursors for alkyl radicals under photoredox catalysis. Chem Commun (Camb) 2022; 58:4857-4860. [DOI: 10.1039/d2cc00163b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light photoredox catalytic method for the generation of alkyl radicals using redox-active alkylsulfones to form a new C–C bond is reported.
Collapse
Affiliation(s)
- Sandeep Patel
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Biprajit Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Hrishikesh Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Rajat Shankhdhar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
38
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient ortho-Selective Trifluoromethane-sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2021; 61:e202115611. [PMID: 34904339 DOI: 10.1002/anie.202115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/14/2022]
Abstract
A metal- and oxidant-free, practical and efficient method for the synthesis of highly versatile and synthetically useful ortho-trifluoromethanesulfonylated anilines from arylhydroxylamines and trifluoromethanesulfinic chloride was developed. This rapid transformation proceeded smoothly with good yields and excellent ortho-selectivity in the absence of any metals or ligands. Mechanistically, the reaction comprised a noncanonical O-trifluoromethanesulfinylation of the arylhydroxylamine, and the subsequent [2,3]-sigmatropic rearrangement to afford ortho-trifluoromethanesulfonylated aniline derivatives. The practical application of this reaction was demonstrated by further conversion into a series of functional molecules under different reaction conditions.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
39
|
Yang RY, Gao X, Gong K, Wang J, Zeng X, Wang M, Han J, Xu B. Synthesis of ArCF 2X and [ 18F]Ar-CF 3 via Cleavage of the Trifluoromethylsulfonyl Group. Org Lett 2021; 24:164-168. [PMID: 34882424 DOI: 10.1021/acs.orglett.1c03803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile synthesis of ArCF2X and [18F]Ar-CF3 type compounds from readily available ArCF2SO2CF3 has been developed. Diverse nucleophiles, including weak nucleophiles such as halides (18F-, Cl-, Br-, and I-), RSH, and ROH, could react with ArCF2SO2CF3 efficiently to give the corresponding difluoromethylene products. The control experiments and the Hammett plot indicated that the reaction might proceed through a difluorocarbocation intermediate generated from the steric hindrance-assisted cleavage of the trifluoromethylsulfonyl group.
Collapse
Affiliation(s)
- Ren-Yin Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| | - Xinyan Gao
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Kehao Gong
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Juan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| | - Xiaojun Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai 200032, China
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 201620, China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| |
Collapse
|
40
|
Chatelain P, Muller C, Sau A, Brykczyńska D, Bahadori M, Rowley CN, Moran J. Desulfonative Suzuki–Miyaura Coupling of Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paul Chatelain
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Cyprien Muller
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Abhijit Sau
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | | | | | | | - Joseph Moran
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| |
Collapse
|
41
|
Chatelain P, Muller C, Sau A, Brykczyńska D, Bahadori M, Rowley CN, Moran J. Desulfonative Suzuki-Miyaura Coupling of Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021; 60:25307-25312. [PMID: 34570414 DOI: 10.1002/anie.202111977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Sulfonyl fluorides have emerged as powerful "click" electrophiles to access sulfonylated derivatives. Yet, they are relatively inert towards C-C bond forming transformations, notably under transition-metal catalysis. Here, we describe conditions under which aryl sulfonyl fluorides act as electrophiles for the Pd-catalyzed Suzuki-Miyaura cross-coupling. This desulfonative cross-coupling occurs selectively in the absence of base and, unusually, even in the presence of strong acids. Divergent one-step syntheses of two analogues of bioactive compounds showcase the expanded reactivity of sulfonyl fluorides to encompass both S-Nu and C-C bond formation. Mechanistic experiments and DFT calculations suggest oxidative addition occurs at the C-S bond followed by desulfonation to form a Pd-F intermediate that facilitates transmetalation.
Collapse
Affiliation(s)
- Paul Chatelain
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| | - Cyprien Muller
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| | - Abhijit Sau
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| | | | | | | | - Joseph Moran
- University of Strasbourg, CNRS, ISIS UMR 7006, 67000, Strasbourg, France
| |
Collapse
|
42
|
Gong L, Zhang Q, Xie D, Zhang W, Xu SY, Zhang X, Niu D. Selective synthesis of enol ethers via nickel-catalyzed cross coupling of α-oxy-vinylsulfones with alkylzinc reagents. Chem Commun (Camb) 2021; 57:12273-12276. [PMID: 34734604 DOI: 10.1039/d1cc05347g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe here a Ni-catalyzed Negishi coupling reaction to prepare 1,2-dialkyl enol ethers in a stereoconvergent fashion. This method employs readily available and bench-stable α-oxy-vinylsulfones as electrophiles. The C-sulfone bond in the α-oxy-vinylsulfone motif is cleaved chemoselectively in these reactions. The mild conditions are tolerant of a variety of functional groups on both partners, thus representing a general strategy for enol ether synthesis. This unique reactivity of α-oxy-vinylsulfones indicates their further application as electrophilic partners in cross-coupling reactions.
Collapse
Affiliation(s)
- Liang Gong
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China. .,College of Pharmacy, Third Military Medical University, Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Qian Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Demeng Xie
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Wei Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Shi-Yang Xu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China.
| |
Collapse
|
43
|
Butcher TW, Amberg WM, Hartwig JF. Transition-Metal-Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C-C Bond Formation. Angew Chem Int Ed Engl 2021; 61:e202112251. [PMID: 34658121 DOI: 10.1002/anie.202112251] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/09/2022]
Abstract
Alkyl fluorides modulate the conformation, lipophilicity, metabolic stability, and p K a of compounds containing aliphatic motifs and, therefore, have been valuable for medicinal chemistry. Despite significant research in organofluorine chemistry, the synthesis of alkyl fluorides, especially chiral alkyl fluorides, remains a challenge. Most commonly, alkyl fluorides are prepared by the formation of C-F bonds (fluorination), and numerous strategies for nucleophilic, electrophilic, and radical fluorination have been reported in recent years. Although strategies to access alkyl fluorides by C-C bond formation (monofluoroalkylation) are inherently convergent and complexity-generating, they have studied less than methods based on fluorination. This Review provides an overview of recent developments in the synthesis of chiral (enantioenriched or racemic) secondary and tertiary alkyl fluorides by monofluoroalkylation catalyzed by transition-metal complexes. We expect this contribution will illuminate the potential of monofluoroalkylations to simplify the synthesis of complex alkyl fluorides and suggest further research directions in this growing field.
Collapse
Affiliation(s)
| | - Willi M Amberg
- University of California Berkeley, Chemistry, UNITED STATES
| | - John F Hartwig
- University of California, Department of Chemistry, 718 LATIMER HALL #1460, 94720-1460, Berkeley, UNITED STATES
| |
Collapse
|
44
|
Newman-Stonebraker SH, Smith SR, Borowski JE, Peters E, Gensch T, Johnson HC, Sigman MS, Doyle AG. Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis. Science 2021; 374:301-308. [PMID: 34648340 DOI: 10.1126/science.abj4213] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Sleight R Smith
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Julia E Borowski
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ellyn Peters
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Tobias Gensch
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Heather C Johnson
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
45
|
Sengoku T, Ogawa D, Iwama H, Inuzuka T, Yoda H. A heavy-metal-free desulfonylative Giese-type reaction of benzothiazole sulfones under visible-light conditions. Chem Commun (Camb) 2021; 57:9858-9861. [PMID: 34490858 DOI: 10.1039/d1cc03833h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A visible-light-induced desulfonylative Giese-type reaction has been developed. Essential to the success is the employment of Hantzsch ester to activate benzothiazole sulfones without any heavy-metal additives. Not only benzylic benzothiazole sulfones but also alkyl ones were viable substrates and reacted with electron-deficient alkenes and a propiol amide.
Collapse
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Daichi Ogawa
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Haruka Iwama
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| |
Collapse
|
46
|
Nambo M, Crudden CM. Transition Metal-Catalyzed Cross-Couplings of Benzylic Sulfone Derivatives. CHEM REC 2021; 21:3978-3989. [PMID: 34523788 DOI: 10.1002/tcr.202100210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
In recent years, the use of organosulfones as a new class of cross-coupling partner in transition-metal catalyzed reactions has undergone significant advancement. In this personal account, our recent investigations into desulfonylative cross-coupling reactions of benzylic sulfone derivatives catalyzed by Pd, Ni, and Cu catalysis is described. Combined with the facile α-functionalizations of sulfones, our methods can be used to form valuable multiply-arylated structures such as di-, tri-, and, tetraarylmethanes from readily available substrates. The reactivity of sulfones can be increased by introducing electron-withdrawing substituents such as 3,5-bis(trifluoromethyl)phenyl and trifluoromethyl groups, which enable more challenging cross-coupling reactions. Reactive intermediates including Cu-carbene complexes were identified as key intermediates in sulfone activation, representing new types of C-SO2 bond activation processes. These results indicate sulfones are powerful functional groups, enabling new catalytic desulfonylative transformations.
Collapse
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-860, Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-860, Japan.,Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
47
|
Wang Q, Liu A, Wang Y, Ni C, Hu J. Copper-Mediated Cross-Coupling of Diazo Compounds with Sulfinates. Org Lett 2021; 23:6919-6924. [PMID: 34410732 DOI: 10.1021/acs.orglett.1c02481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A copper-mediated cross-coupling reaction between a diazo compound and a sodium alkane(arene)sulfinate gives a sulfone as the product. This reaction proceeds under mild conditions and features excellent functional group compatibility. A wide range of sodium alkane(arene)sulfinates were successfully applied in this chemistry. Mechanistic studies revealed that the overall reaction efficiency of the sulfinates was in line with their nucleophilicity in this reaction.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yan Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
48
|
Yang RY, Xu B. Chemo-, regio- and stereoselective synthesis of monofluoroalkenes via a tandem fluorination-desulfonation sequence. Chem Commun (Camb) 2021; 57:7802-7805. [PMID: 34268540 DOI: 10.1039/d1cc03207k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A widely applicable approach for the synthesis of Z-monofluoroalkenes from readily available alkyl triflones and NFSI has been reported. The reaction proceeded under mild conditions, affording mono-fluorinated alkenes in good to excellent yields with excellent chemo- regio- and stereoselectivity. The mechanism may involve electrophilic fluorination of triflones followed by the highly stereoselective concerted bimolecular elimination (E2) of CF3SO2H.
Collapse
Affiliation(s)
- Ren-Yin Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
49
|
Mills LR, Edjoc RK, Rousseaux SAL. Design of an Electron-Withdrawing Benzonitrile Ligand for Ni-Catalyzed Cross-Coupling Involving Tertiary Nucleophiles. J Am Chem Soc 2021; 143:10422-10428. [PMID: 34197103 DOI: 10.1021/jacs.1c05281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The design of new ligands for cross-coupling is essential for developing new catalytic reactions that access valuable products such as pharmaceuticals. In this report, we exploit the reactivity of nitrile-containing additives in Ni catalysis to design a benzonitrile-containing ligand for cross-coupling involving tertiary nucleophiles. Kinetic and Hammett studies are used to elucidate the role of the optimized ligand, which demonstrate that the benzonitrile moiety acts as an electron-acceptor to promote reductive elimination over β-hydride elimination and stabilize low-valent Ni. With these conditions, a protocol for decyanation-metalation and Ni-catalyzed arylation is conducted, enabling access to quaternary α-arylnitriles from disubstituted malononitriles.
Collapse
Affiliation(s)
- L Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Racquel K Edjoc
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
50
|
Zhao B, Rogge T, Ackermann L, Shi Z. Metal-catalysed C-Het (F, O, S, N) and C-C bond arylation. Chem Soc Rev 2021; 50:8903-8953. [PMID: 34190223 DOI: 10.1039/c9cs00571d] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of C-aryl bonds has been the focus of intensive research over the last decades for the construction of complex molecules from simple, readily available feedstocks. Traditionally, these strategies involve the coupling of organohalides (I, Br, Cl) with organometallic reagents (Mg, Zn, B, Si, Sn,…) such as Kumada-Corriu, Negishi, Suzuki-Miyaura, Hiyama and Sonogashira cross-couplings. More recently, alternative methods have provided access to these products by reactions with less reactive C-Het (F, O, S, N) and C-C bonds. Compared to traditional methods, the direct cleavage and arylation of these chemical bonds, the essential link in accessible feedstocks, has become increasingly important from the viewpoint of step-economy and functional-group compatibility. This comprehensive review aims to outline the development and advances of this topic, which was organized into (1) C-F bond arylation, (2) C-O bond arylation, (3) C-S bond arylation, (4) C-N bond arylation, and (5) C-C bond arylation. Substantial attention has been paid to the strategies and mechanistic investigations. We hope that this review can trigger chemists to discover more efficient methodologies to access arylation products by cleavage of these C-Het and C-C bonds.
Collapse
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | |
Collapse
|