1
|
Di Marzo E, Ferrando RM, Polito L, Ragona L, Pagano K, D'Orazio G, Lay L. Gold nanoparticles functionalized with ABO blood sugar antigen as nanotools for biomedical applications. Carbohydr Res 2025; 553:109508. [PMID: 40347930 DOI: 10.1016/j.carres.2025.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Gold nanoparticles (AuNPs) hold great promise for medical applications due to their inertness, stability, unique optical properties, and biocompatibility. They can be synthesized with controlled size and surface properties and functionalized with bioactive molecules to create multifunctional platforms with enhanced therapeutic benefits. However, challenges such as biodistribution, circulation times, and clearance rates limit their medical use. The addition of endogenous carbohydrates on the surface of AuNPs, recognized as self-antigens by the immune system, can enhance biocompatibility and increase circulation time. ABO blood sugar antigens are particularly promising for developing stealth AuNPs due to their clinical significance. Recently, ABO blood sugar antigen therapy has gained attention for its potential in biomedicine, such as in the treatment of solid tumors. Consequently, we applied a photo-microfluidic approach to develop a set of four ultra-small AuNPs decorated with ABO blood sugar antigen derivatives (ABO-AuNPs), which mimic the four blood group types. These ABO-AuNPs were fully characterized by transmission electron microscopy and NMR spectroscopy. The obtained nanoparticles could serve as nanoplatforms in biomedical research, including targeted drug delivery, bioimaging, and diagnostic assays, paving the way for further research into their clinical applications, including exploration in precision medicine.
Collapse
Affiliation(s)
- Elena Di Marzo
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Ruth Mateu Ferrando
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Laura Polito
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138, Milano, Italy
| | - Laura Ragona
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133, Milano, Italy
| | - Katiuscia Pagano
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133, Milano, Italy
| | - Giuseppe D'Orazio
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy.
| | - Luigi Lay
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy.
| |
Collapse
|
2
|
Wan J, Ji Y, Wang L, Yang R, Li K, Xian Q, Wang X, Lu G, Xiao G. Highly Stereoselective 1,2-cis-Xylosylation Enabled by Reagent Modulation, Remote Participation, and Electron-Withdrawing Synergistic Effects. Angew Chem Int Ed Engl 2025; 64:e202424048. [PMID: 40050239 DOI: 10.1002/anie.202424048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 05/21/2025]
Abstract
Stereoselective constructions of 1,2-cis-glycosidic bonds are long-standing challenges in chemical synthesis. In particular, achieving highly stereoselective 1,2-cis-xylosylation remains a difficult task in carbohydrates chemistry. Here, we report that highly stereoselective 1,2-cis-xylosylation could be achieved via synergistic combinations of reagent modulation, remote participation, and electron-withdrawing effects. A variety of α-xylosides motifs have been effectively prepared by this 1,2-cis-xylosylation protocol, including hemicellulose xyloglucan, xyloglucosyl trisaccharide motif from mammalian cells, core M3 matriglycan motif, and even α-(1→3)-xylosides up to 12-mer. Furthermore, DFT calculations provided the origins of this stereoselective and synergistic 1,2-cis-xylosylation through SN1 and SN2 pathways.
Collapse
Affiliation(s)
- Jie Wan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yujie Ji
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 Danan Road, Jinan, 250100, China
| | - Leilei Wang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Kaifeng Li
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Qingyun Xian
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 Danan Road, Jinan, 250100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
3
|
Zhang L, Zheng Z, Zhang Y, Wu X, Tu Y, Liu C, Wang Z, Wang L, Yang Y, Zhang Q. Chemical Synthesis and Antigenic Evaluation of Oligosaccharides of Bordetella hinzii O-Antigen Containing Unique Amidated 2,3-Diacetamido-2,3-dideoxy-alduronic Acids. JACS AU 2025; 5:1903-1913. [PMID: 40313848 PMCID: PMC12041961 DOI: 10.1021/jacsau.5c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Bordetella hinzii is a zoonotic pathogen, which can cause brain abscess, pneumonia, bacteremia, and urinary tract infection. Vaccines are economical and effective means for combating infectious diseases. Herein, we present the first total synthesis of the highly functionalized mono- and oligosaccharides of B. hinzii O-antigen for vaccine development. The rare 2,3-diacetamidopyranoses were generated from 3-O-acetyl-2-nitroglycals via an organocatalyzed one-pot relay glycosylation method. The postglycosylation oxidation strategy was used to overcome the poor reactivity of 2,3-diacetamido-aldouronic acid building blocks in glycosylation reactions. Direct amidation of alduronic acid with NH3 in the late stage reduced the protecting group operation and increased the synthetic efficiency. Di-tert-butylsilylidene-directed α-galactosylation method was used to construct challenging 1,2-cis-glycosidic bond. Six oligosaccharides of B. hinzii O-antigen were obtained and further conjugated to human serum albumin for antigenicity evaluation (the sera antibodies were obtained from vaccinated mouse via inactivated B. hinzii). The terminal tetrasaccharide of B. hinzii O-antigen has been identified as a potential glycol-epitope and might be useful for vaccine development against B. hinzii.
Collapse
Affiliation(s)
- Lin Zhang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhichao Zheng
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yumeng Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, Engineering Research Center
of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaopei Wu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuanhong Tu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Can Liu
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhen Wang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Liming Wang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - You Yang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, Engineering Research Center
of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qingju Zhang
- National
Research Centre for Carbohydrate Synthesis, College of Chemistry and
Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
- Jiangxi
Provincial Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
4
|
Guo F, Tan Q, Guo J, Li K, Wang X, Cao W, Xiao G. Total Synthesis of the Tridecasaccharide Motif from Angelica Sinensis APS-1 II Polysaccharide with Anti-Leukemia Activity and Structure-Activity Relationship Studies. Angew Chem Int Ed Engl 2025; 64:e202422887. [PMID: 39888241 DOI: 10.1002/anie.202422887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
A polysaccharide APS-1 II from a medicinal plant Angelica sinensis (Oliv.) Diels represents a potential therapeutic agent against leukemia. However, the synthetic accessibility of the highly branched and complex APS-1 II polysaccharide with multiple 1, 2-cis-glycosidic linkages remains a difficult task, impeding the in-depth structure-activity relationship biological studies and the development of carbohydrates-based therapeutics against leukemia. Here, we report the first chemical synthesis of tridecasaccharide repeating unit together with shorter sequences 4-mer, 6-mer and 9-mer from APS-1 II polysaccharide via one-pot orthogonal glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which precluded the potential issues such as aglycone transfer associated with one-pot assembly with thioglycosides. The synthetic pathway also features the following aspects: 1) three contiguous and challenging 1, 2-cis-Fuc bonds were highly stereoselectively constructed via the newly developed stereoselective 1, 2-cis-fucosylation method; 2) several 1, 2-trans-glycosidic linkages were formed via neighboring group participation effect, while 1,2-cis-Glc linkage was stereoselectively assembled via N,N-dimethylformamide reagent modulation; 3) the final [1+1+2+9] one-pot assembly of the target tridecasaccharide via strategic utilizations of glycosyl N-phenyltrifluoroacetimidates, ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates. Biological studies revealed that human leukemia K562 and mouse L1210 cells could be effectively inhibited by tridecasaccharide repeating unit and substructure nonasaccharide.
Collapse
Affiliation(s)
- Fuqiang Guo
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Qiang Tan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jiahui Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Kaifeng Li
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxin Road, Kunming, 650214, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
5
|
Zhang M, Gan J, Peng P, Li T. Stereoselective Synthesis of 1,2-Cis O-Linked Glycosyl Amino Acids via Additive-Modulation for Glycopeptide Synthesis. Chemistry 2025; 31:e202404786. [PMID: 39956856 DOI: 10.1002/chem.202404786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
A highly stereoselective strategy to facilitate the synthesis of 1,2-cis-O-linked glycosyl amino acids was established via a additive-modulated trichloroacetimidate glycosylation approach. This mild and practical protocol demonstrates broad applicability with diverse glycosyl donors, including D-gluco-, D-galacto-, 2-deoxy-2-azido-D-gluco-, 2-deoxy-2-azido-D-galacto-, D-xylo-, L-fuco-pyranosyl and L-arabinofuranosyl trichloroacetimidates, and orthogonally protected amino acids such as Ser, Thr, Tyr, and 4-hydroxyproline (Hyp) as acceptors. These 1,2-cis linked glycosyl amino acids serve as valuable building blocks for glycopeptide synthesis via solid-phase peptide synthesis (SPPS), offering significant potential for advancing glycoprotein research.
Collapse
Affiliation(s)
- Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| | - Jinjuan Gan
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| | - Tianlu Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
6
|
Bargmann AD, Sousa MC, Sammakia T. Synthesis of Nucleotide Diphosphate Uronic Acids via the Coupling of Activated Nucleotides with Uronic Acid-1-phosphates. J Org Chem 2025; 90:4652-4658. [PMID: 40128194 DOI: 10.1021/acs.joc.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The stereoselective synthesis of nucleotide diphosphate (NDP) uronic acids from simple sugar precursors, including d-gluco-, d-galacto-, and d-mannopyranoside derivatives, is described. Key to this convergent synthesis is the coupling of unprotected uronic acid 1-phosphate with a nucleotide phosphorimidazolide to directly form the NDP-uronic acid, of which 11 derivatives were prepared. The coupling is compatible with the carboxylic acid functionality present in uronic acid-1-phosphates, with conversions of >95% and isolated yields typically above 60%. Key features of this work include (i) stereoselective synthesis of α-d-phosphoglycosides from perbenzylated α- and β-d-thioglycosides, (ii) selective and mild oxidation of galactose-, glucose-, and mannose-1-phosphates to the corresponding uronic acid-1-phosphate, and (iii) mild coupling conditions to directly provide nucleotide diphosphate uronic acids from unprotected uronic acid-1-phosphates and nucleotide phosphorimidazolides. This chemistry is currently in use to develop inhibitors of key enzymes involved in antibiotic resistance.
Collapse
Affiliation(s)
- Austin D Bargmann
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marcelo C Sousa
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Tarek Sammakia
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Hu C, He F, Wu R, Zhou W, Ma W, Hao T, Cai P, Ye F, Xu Z, Zhou H, Wang P, Ding K, Li T. Precision Synthesis and Antiliver Fibrosis Activity of a Highly Branched Acidic 63-Mer Pectin Polysaccharide. J Am Chem Soc 2025; 147:8422-8432. [PMID: 39999120 DOI: 10.1021/jacs.4c16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Natural polysaccharides possess various biological functions and have become increasingly important as drug candidates for biomedical development. However, the accessibility to multiple-branched and large-sized acidic polysaccharides with well-defined structures and the identification of related active glycan domains remain challenging. Here, we report the precision synthesis of a highly branched acidic pectin polysaccharide up to a 63-mer containing 10 different glycosidic linkages from Lycium barbarum. The synthetic strategy relies on highly stereoselective modular assembly of an orthogonally protected decasaccharide backbone, efficient synthesis of three side chain glycans by the integration of stereocontrolled one-pot chemoselective glycosylations and a hydrogen-bond-mediated aglycone delivery approach, and convergent assembly of the target polysaccharide in a branched site-specific glycosylation manner via flexible orthogonal protecting group manipulations. Structure-activity relationship studies of synthetic polysaccharide 63-mer and its short fragments (9-mer, 10-mer, 11-mer, and 33-mer) suggest that the decasaccharide as an active glycan domain exhibits better antiliver fibrosis activity.
Collapse
Affiliation(s)
- Chaoyu Hu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruixue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wanqi Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhui Hao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengjun Cai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Farong Ye
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kan Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan 528400, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ghosh B, Enlow C, Ma Z, Warden AN, Axelrod AJ. Isothiourea - catalyzed α-selective glycosylations. Chem Commun (Camb) 2025; 61:3856-3859. [PMID: 39936368 PMCID: PMC12044668 DOI: 10.1039/d4cc05456c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Herein, we present a catalytic strategy to efficiently form both α-1,2-cis and α-1,2-trans glycosyl linkages from either glycosyl bromide or chloride donors using the commercially available HyperBTM isothiourea in both good yields and selectivities.
Collapse
Affiliation(s)
- Bhaswati Ghosh
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Charles Enlow
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Zhichen Ma
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Ashley N Warden
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
| | - Abram J Axelrod
- Department of Chemistry Purdue University, 720 Clinic Drive, West Lafayette, IN 47906, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Pickles IB, Chen Y, Moroz O, Brown HA, de Boer C, Armstrong Z, McGregor NGS, Artola M, Codée JDC, Koropatkin NM, Overkleeft HS, Davies GJ. Precision Activity-Based α-Amylase Probes for Dissection and Annotation of Linear and Branched-Chain Starch-Degrading Enzymes. Angew Chem Int Ed Engl 2025; 64:e202415219. [PMID: 39601378 DOI: 10.1002/anie.202415219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
α-Amylases are the workhorse enzymes of starch degradation. They are central to human health, including as targets for anti-diabetic compounds, but are also the key enzymes in the industrial processing of starch for biofuels, corn syrups, brewing and detergents. Dissection of the activity, specificity and stability of α-amylases is crucial to understanding their biology and allowing their exploitation. Yet, functional characterization lags behind DNA sequencing and genomics; and new tools are required for rapid analysis of α-amylase function. Here, we design, synthesize and apply new branched α-amylase activity-based probes. Using both α-1,6 branched and unbranched α-1,4 maltobiose activity-based probes we were able to explore the stability and substrate specificity of both a panel of human gut microbial α-amylases and a panel of industrially relevant α-amylases. We also demonstrate how we can detect and annotate the substrate specificity of α-amylases in the complex cell lysate of both a prominent gut microbe and a diverse compost sample by in-gel fluorescence and mass spectrometry. A toolbox of starch-active activity-based probes will enable rapid functional dissection of α-amylases. We envisage activity-based probes contributing to better selection and engineering of enzymes for industrial application as well as fundamental analysis of enzymes in human health.
Collapse
Affiliation(s)
- Isabelle B Pickles
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Yurong Chen
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Olga Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Haley A Brown
- University of Michigan Medical School, 6605D Med Sci II, 1150W, Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Casper de Boer
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Zachary Armstrong
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Marta Artola
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Nicole M Koropatkin
- University of Michigan Medical School, 6605D Med Sci II, 1150W, Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, North Yorkshire, YO10 5DD, UK
| |
Collapse
|
10
|
Østerlid KE, Sorieul C, Unione L, Li S, García-Sepúlveda C, Carboni F, Del Bino L, Berni F, Arda A, Overkleeft HS, van der Marel GA, Romano MR, Jiménez-Barbero J, Adamo R, Codée JDC. Long, Synthetic Staphylococcus aureus Type 8 Capsular Oligosaccharides Reveal Structural Epitopes for Effective Immune Recognition. J Am Chem Soc 2025; 147:2829-2840. [PMID: 39792791 PMCID: PMC11760181 DOI: 10.1021/jacs.4c16118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the S. aureus cell wall and have been proposed as promising candidate antigens. Thirteen different CP serotypes have been identified to date, of which types 5 and 8 are the most prominent. CP8 is composed of trisaccharide repeating units that are built up from an N-acetyl-4-O-acetyl-β-d-mannosaminuronic acid, that carries a C-4-O-acetyl, an N-acetyl-α-d-fucosamine, and an N-acetyl-α-l-fucosamine. Synthetic oligosaccharides are valuable tools to unravel the immunogenicity of bacterial oligosaccharides at the molecular level. However, the rare monosaccharides, cis-glycosidic linkages, and O-acetylation represent significant challenges for the synthesis of CP8 fragments. Here the stereoselective assembly of well-defined CP8 fragments, comprising a trimer, hexamer, nonamer, and dodecamer, is presented. This is the first time that fragments larger than a single repeating trisaccharide, which has been proven to be insufficient for antigenic activity, have been assembled. Structural studies have revealed a linear conformation for the oligosaccharides, with each trisaccharide repeat tilted ∼90° with respect to the flanking repeats, which is stabilized by the acetyl groups that prevent rotation around the glycosidic linkages. The N-acetyl groups in each repeating unit point in the same direction, generating a hydrophobic flank in the trisaccharide repeats. We applied the oligomers to generate model glycoconjugate vaccine modalities, which we then used to raise anti-CP8 antibodies. The antibody interaction and immunization studies have revealed a clear length dependent structure-activity relationship for the oligosaccharides, with an oligosaccharide of at least three repeating units required for an adequate immune response.
Collapse
Affiliation(s)
- Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Charlotte Sorieul
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luca Unione
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Sizhe Li
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Cristian García-Sepúlveda
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | | | | | - Francesca Berni
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ana Arda
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | - Jesús Jiménez-Barbero
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research
and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
- Department
of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- Centro
de
Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | | | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
11
|
Yi HZ, Liang SM, Li JJ, Liu H, Liao JX, Liu DY, Zhang QJ, Cai MZ, Sun JS. Collective total synthesis of chartreusin derivatives and bioactivity investigations. Chem Sci 2025; 16:1241-1249. [PMID: 39677934 PMCID: PMC11635980 DOI: 10.1039/d4sc05629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Capitalizing on Hauser annulation and Yu glycosylation, the chemical synthesis of chartreusin-type aromatic polycyclic polyketide glycosides has been investigated, culminating in the successful establishment of chemical approaches toward chartreusin derivatives with intricate chemical structures but promising bioactivities. Based on the chemical synthesis strategy, the first and collective chemical syntheses of chartreusin, D329C, and elsamicins A and B have been accomplished. The chemical strategy was featured by two complementary routes to secure chartarin 10-O-monosaccharide glycosides, the key intermediates in chartreusin derivative synthesis, as well as the highly stereoselective construction of the difficult glycosidic linkages. Through the synthetic investigations, viable donors and acceptors of 3-C-methyl-branched sugars were determined for the first time. Moreover, facilitated by the established chemical synthetic strategy, the cytotoxic activities of chartreusin derivatives against human cancer cell lines were assessed and profound antineoplastic effects for chartreusin and elsamicins A and B were recorded. Based on RNA-seq analysis, the underlying working mechanisms against ES-2 cells were investigated, and the appended sugar chain-determined function mechanisms were disclosed.
Collapse
Affiliation(s)
- Hong-Zhou Yi
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- School of Life Science and Health Engineering, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Shu-Min Liang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jing-Jing Li
- Affiliated Hospital of Shandong Secondary Medicinal University 4948 Shengli East Street Weifang 261042 China
| | - Hui Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jin-Xi Liao
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - De-Yong Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Qing-Ju Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Ming-Zhong Cai
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jian-Song Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
- School of Life Science and Health Engineering, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
12
|
Miao H, Yu R, Zheng J, Shang J, Zhang L, Ma M, Yang Y. Ph 3PO-Modulated Kdo Glycosidation for Stereoselective Synthesis of β-Kdo-Containing Disaccharides. Org Lett 2024; 26:10634-10639. [PMID: 39614817 DOI: 10.1021/acs.orglett.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A Ph3PO-modulated β-selective Kdo glycosidation approach is developed for the stereoselective synthesis of β-Kdo glycosides. With the readily available per-O-acetylated Kdo ynenoate as the donor, the glycosylation with a series of alcohols in the presence of Ph3PAuOTf and Ph3PO in toluene at low temperatures afforded the desired Kdo glycosides with good to excellent β-selectivities. Furthermore, the Ph3PO-modulated approach was effectively applied to the synthesis of β-(2→4)- and β-(2→8)-linked Kdo-Kdo disaccharides for further biological studies.
Collapse
Affiliation(s)
- He Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rurong Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jibin Zheng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jintao Shang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lvfeng Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minghui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Zou X, Qin C, Tian G, Zhang J, Hu J, Yin J. Chemical Synthesis of Conjugation-Ready Trisaccharides Corresponding to Biological Repeating Units of Pseudomonas aeruginosa Serotype 10 and 19 O-Antigens. Org Lett 2024; 26:9198-9202. [PMID: 39418393 DOI: 10.1021/acs.orglett.4c03167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Here we report the chemical synthesis of conjugation-ready trisaccharides, representing biological repeating units of Pseudomonas aeruginosa serotype 10 and 19 O-antigens. The α-d-QuiN3 glycosidic bond was stereoselectively synthesized through TMSI─Ph3P═O mediated 1,2-cis glycosylation. Selective oxidation of the C6-OH group at the disaccharide stage allowed for benzylidene-promoted construction of the α-l-GalN3 glycosidic bond and simplification of the postglycosylation process at the trisaccharide stage. The low reaction temperature and neighboring electron-donating effect facilitated the efficient synthesis of the trisaccharide.
Collapse
Affiliation(s)
- Xiaopeng Zou
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, China
| | - Chunjun Qin
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, China
| | - Guangzong Tian
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, China
| | - Junxi Zhang
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Yin
- School of Biotechnology, Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Zhou W, Wu R, Li J, Zhu D, Yu B. A Ligand-Controlled Approach Enabling Gold(I)-Catalyzed Stereoinvertive Glycosylation with Primal Glycosyl ortho-Alkynylbenzoate Donors. J Am Chem Soc 2024; 146:27915-27924. [PMID: 39314057 DOI: 10.1021/jacs.4c10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A diarylurea-containing phosphine ligand-modulated stereoinvertive O-glycosylation with primal furanosyl and pyranosyl ortho-alkynylbenzoate (ABz) donors under gold(I) catalysis is disclosed. Both α- and β-configured glycosides could be obtained from the corresponding stereochemically pure β- and α-glycosyl donors with high yields and good to excellent stereoselectivities, respectively. This method accommodates a variety of glycosyl donors and alcoholic acceptors, leading to both 1,2-cis and 1,2-trans glycosidic linkages, and has been applied to the convenient preparation of a series of linear arabinan glycans. Mechanistic investigations reveal that the counteranion could bridge the diarylurea residue on the phosphine ligand with the alcoholic acceptor via hydrogen bond interactions, thereby permitting stereoinvertive displacement at the anomeric position.
Collapse
Affiliation(s)
- Weiping Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjie Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinchan Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dapeng Zhu
- Center for Chemical Glycobiology, Zhang jiang Institute for Advanced Study, Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
15
|
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI 2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024; 29:4710. [PMID: 39407638 PMCID: PMC11477539 DOI: 10.3390/molecules29194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
16
|
Tian G, Hu J, Qin C, Li L, Ning Y, Zhu S, Xie S, Zou X, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of an Aminoglycoside Trisaccharide Repeating Unit of Pseudomonas aeruginosa Serotype O5 O-Antigen Containing a Rare Dimeric-Man pN3NA. J Am Chem Soc 2024; 146:18427-18439. [PMID: 38946080 DOI: 10.1021/jacs.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-β-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The β-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Yunzhan Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Suqing Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
17
|
Crawford CJ, Schultz-Johansen M, Luong P, Vidal-Melgosa S, Hehemann JH, Seeberger PH. Automated Synthesis of Algal Fucoidan Oligosaccharides. J Am Chem Soc 2024; 146:18320-18330. [PMID: 38916244 PMCID: PMC11240576 DOI: 10.1021/jacs.4c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fucoidan, a sulfated polysaccharide found in algae, plays a central role in marine carbon sequestration and exhibits a wide array of bioactivities. However, the molecular diversity and structural complexity of fucoidan hinder precise structure-function studies. To address this, we present an automated method for generating well-defined linear and branched α-fucan oligosaccharides. Our syntheses include oligosaccharides with up to 20 cis-glycosidic linkages, diverse branching patterns, and 11 sulfate monoesters. In this study, we demonstrate the utility of these oligosaccharides by (i) characterizing two endo-acting fucoidan glycoside hydrolases (GH107), (ii) utilizing them as standards for NMR studies to confirm suggested structures of algal fucoidans, and (iii) developing a fucoidan microarray. This microarray enabled the screening of the molecular specificity of four monoclonal antibodies (mAb) targeting fucoidan. It was found that mAb BAM4 has cross-reactivity to β-glucans, while mAb BAM2 has reactivity to fucoidans with 4-O-sulfate esters. Knowledge of the mAb BAM2 epitope specificity provided evidence that a globally abundant marine diatom, Thalassiosira weissflogii, synthesizes a fucoidan with structural homology to those found in brown algae. Automated glycan assembly provides access to fucoidan oligosaccharides. These oligosaccharides provide the basis for molecular level investigations into fucoidan's roles in medicine and carbon sequestration.
Collapse
Affiliation(s)
- Conor J Crawford
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Mikkel Schultz-Johansen
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Phuong Luong
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Vidal-Melgosa
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Jan-Hendrik Hehemann
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
18
|
Hao T, Feng K, Jin H, Li J, Zhou C, Liu X, Zhao W, Yu F, Li T. Acceptor-Reactivity-Controlled Stereoconvergent Synthesis and Immunological Activity of a Unique Pentasaccharide from the Cell Wall Polysaccharide of Cutibacterium acnes C7. Angew Chem Int Ed Engl 2024; 63:e202405297. [PMID: 38651620 DOI: 10.1002/anie.202405297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility to structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1) acceptor-reactivity-controlled glycosylation to stereoselectively construct two challenging rare 1,2-cis-ManA2,3(NAc)2 (β-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2) combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3) bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4) stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.
Collapse
Affiliation(s)
- Tianhui Hao
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Hongzhen Jin
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Jiawei Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenkai Zhou
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingbang Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Fan Yu
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Chen Z, Xiao G. Total Synthesis of Nona-decasaccharide Motif from Ganoderma sinense Polysaccharide Enabled by Modular and One-Pot Stereoselective Glycosylation Strategy. J Am Chem Soc 2024; 146:17446-17455. [PMID: 38861463 DOI: 10.1021/jacs.4c05188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Polysaccharides from a medicinal fungus Ganoderma sinense represent important and adjunctive therapeutic agents for treating various diseases, including leucopenia and hematopoietic injury. However, the synthetic accessibility to long, branched, and complicated carbohydrates chains from Ganoderma sinense polysaccharides remains a challenging task in chemical synthesis. Here, we report the modular chemical synthesis of nona-decasaccharide motif from Ganoderma sinense polysaccharide GSPB70-S with diverse biological activities for the first time through one-pot stereoselective glycosylation strategy on the basis of glycosyl ortho-(1-phenyvinyl)benzoates, which not only sped up carbohydrates synthesis but also reduced chemical waste and avoided aglycones transfer issues inherent to one-pot glycosylation on the basis of thioglycosides. The synthetic route also highlights the following key steps: (1) preactivation-based one-pot glycosylation for highly stereoselective constructions of several 1,2-cis-glycosidic linkages, including three α-d-GlcN-(1 → 4) linkages and one α-d-Gal-(1 → 4) bond via the reagent N-methyl-N-phenylformamide modulation; (2) orthogonal one-pot assembly of 1,2-trans-glycosidic linkages in various linear and branched glycans fragments by strategic combinations of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl ortho-(1-phenyvinyl)benzoates; and (3) the final [1 × 4 + 15] Yu glycosylation for efficient assembly of nona-decasaccharide target. Additionally, shorter sequences of 4-mer, 5-mer, and 6-mer are also prepared for structure-activity relationship biological studies. The present work shows that this one-pot stereoselective glycosylation strategy can offer a reliable and effective means to streamline chemical synthesis of long, branched, and complex carbohydrates with many 1,2-cis-glycosidic bonds.
Collapse
Affiliation(s)
- Zhiyuan Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
20
|
Yang X, Zhang H, Zhao Q, Li Q, Li T, Gao J. Total Synthesis of the Repeating Units of Highly Functionalized O-Antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19. JACS AU 2024; 4:2351-2362. [PMID: 38938791 PMCID: PMC11200240 DOI: 10.1021/jacsau.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
The first total synthesis of the repeating units of the O-antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19 was achieved via a linear glycosylation strategy. This also represents the first synthesis of an oligosaccharide containing an α-linked N-acetyl-l-galactosaminuronic acid (l-GalpNAcA) unit. All of the glycosyl linkages, including three challenging 1,2-cis-glycosidic bonds of amino sugars, were effectively constructed with high to exclusive stereoselectivity, while orthogonal protection tactics were employed to facilitate regioselective glycosylations and the introduction of a variety of functionalities. An acetyl group migration phenomenon was found during the synthesis of the O-acylated repeating unit of the P. aeruginosa ATCC 27577 antigen. All synthetic targets carried an amino functional group in the linker at the reducing end, thus facilitating further regioselective elaboration and biological studies. The synthetic strategy established here should be useful for the preparation of other similar oligosaccharides.
Collapse
Affiliation(s)
- Xiaoyu Yang
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Han Zhang
- Department
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan ,Shandong 250355, China
| | - Qingpeng Zhao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Qingjiang Li
- Department
of Chemistry, University of Massachusetts
Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Gao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| |
Collapse
|
21
|
Shou K, Zhang Y, Ji Y, Liu B, Zhou Q, Tan Q, Li F, Wang X, Lu G, Xiao G. Highly stereoselective α-glycosylation with GalN 3 donors enabled collective synthesis of mucin-related tumor associated carbohydrate antigens. Chem Sci 2024; 15:6552-6561. [PMID: 38699257 PMCID: PMC11062124 DOI: 10.1039/d4sc01348d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Mucin-related tumor-associated carbohydrate antigens (TACAs) are important and interesting targets for cancer vaccine therapy. However, efficient access to a library of mucin-related TACAs remains a challenging task. One of the key issues is the challenging construction of α-GalNAc linkages. Here, we report highly stereoselective α-glycosylation with GalN3N-phenyl trifluoroacetimidate donors, which features excellent yields, outstanding stereoselectivities, broad substrate scope and mild reaction conditions. This method is successfully applied to highly stereoselective synthesis of GalN3-α-O-Ser, which served as the common intermediate for collective synthesis of a wide range of TACAs including TN antigen, STN antigen, 2,6 STF antigen, 2,3 STF antigen, glycophorin and cores 1-8 mucin-type O-glycans. In particular, the rationale for this highly stereoselective α-glycosylation is provided for the first time using DFT calculations and mechanistic studies, highlighting the crucial roles of reagent combinations (TMSI and Ph3PO) and the H-bonding directing effect of the N3 group.
Collapse
Affiliation(s)
- Kunxiu Shou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yujie Ji
- School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Qingli Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Qiang Tan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Fuying Li
- Department of Chemistry, Kunming University 2 Puxing Road Kunming 650214 China
| | - Xiufang Wang
- Department of Chemistry, Kunming University 2 Puxing Road Kunming 650214 China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
22
|
Miao H, Lu S, Chen H, Shang J, Zheng J, Yang Y. Additive-assisted synthesis of α-Kdo glycosides with peracetylated glycosyl ynenoate as a donor. Org Biomol Chem 2024; 22:2365-2369. [PMID: 38416050 DOI: 10.1039/d4ob00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A DMF-modulated glycosylation approach for the stereoselective synthesis of α-Kdo glycosides with readily accessible peracetylated Kdo ynenoate as a donor was described. By utilizing this approach, we completed the synthesis of various linkage types of Kdo-Kdo disaccharides and the α-Kdo-containing protected trisaccharide variant relevant to the lipopolysaccharide of Coxiella burnetii strain Nine Mile.
Collapse
Affiliation(s)
- He Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Siqian Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hongyu Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jintao Shang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jibin Zheng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
23
|
Gao Y, Chen W, Zhao J, Yang M, Zhang Y, Chen C, Yao L, Xu J, Wang F, Zhang B, Gu G, Tang B, Cai F. Exploring the Dual Functions of Distal Acyl Group Direction in Various Nucleophilic Environments. J Org Chem 2024; 89:2375-2396. [PMID: 38288704 DOI: 10.1021/acs.joc.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A universal glycosylation strategy could significantly simplify glycoside synthesis. One approach to achieving this goal is through acyl group direction for the corresponding 1,2-, 1,3-, 1,4-, or 1,6-trans glycosylation; however, this approach has been challenging for glycosidic bonds that require distal equatorial-acyl group direction. We developed an approach in weakly nucleophilic environments for selective 1,4-trans glycosylation directed by the equatorial-4-O-acyl group. Here, we explored this condition in other distal acyl groups and found that, besides 1,n-trans direction, acyl groups also mediated hydrogen bonding between acyl groups and alcohols. The latter showed a diverse effect and classified the acyl group direction into axial and equatorial categories. Corresponding glycosylation conditions were distinguished as guidance for acyl group direction from either category. Hence, acyl group direction may serve as a general glycosylation strategy.
Collapse
Affiliation(s)
- Yongtao Gao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Wenjie Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Juan Zhao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Min Yang
- Center for Analysis and Characterization, School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd, Shanghai 201210, China
| | - Yongliang Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Linbin Yao
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Jiayuan Xu
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Fei Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
| | - Bencan Tang
- Faculty of Science and Engineering, The University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Feng Cai
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266237, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Li T, Zhang M, Lv P, Yang Y, Schmidt RR, Peng P. Synthesis of Core M3 Matriglycan Constituents via an Additive-Controlled 1,2- cis-Xylopyranosylation with O-Xylosyl Imidates as Donors. J Org Chem 2024; 89:804-809. [PMID: 38146924 DOI: 10.1021/acs.joc.3c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
A highly stereoselective strategy for 1,2-cis-xylopyranoside bond formation was established via a preactivation-based, additive-modulated trichloroacetimidate glycosidation strategy. The current protocol is mild, practical, and successful with various xylopyranosyl donors and glycosyl acceptors, including acceptors that are reported to be less reactive due to steric hindrance. The utility of this method was demonstrated with the facile assembly of matriglycan constituent tetra- and hexasaccharides.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Panpan Lv
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Yue Yang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| |
Collapse
|
25
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
26
|
Sun X, Chen Z, Yang R, Wang M, Wang X, Zhang Q, Xiao G. Modular and Stereoselective One-Pot Total Synthesis of Icosasaccharide Motif from Cordyceps sinensis EPS-1A Glycan. Org Lett 2023; 25:7364-7368. [PMID: 37787453 DOI: 10.1021/acs.orglett.3c02842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The first stereoselective one-pot synthesis of the icosasaccharide motif of EPS-1A glycan from Cordyceps sinensis has been achieved. The synthetic approach highlights the following features: (1) merging reagent modulation and remote anchimeric assistance α-glycosylation strategy for the highly stereoselective formation of five and ten continuous 1,2-cis glucosidic bonds; (2) the strategic employment of glycosyl N-phenyltrifluoroacetimidates and glycosyl o-(1-phenylvinyl)benzoates as the matched pair for efficient orthogonal one-pot synthesis; and (3) [11 + 8 + 1] orthogonal one-pot glycosylation for the efficient assembly of the target icosasaccharide.
Collapse
Affiliation(s)
- Xingchun Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhiyuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Mei Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
27
|
Duan L, Nie Q, Hu Y, Wang L, Guo K, Zhou Z, Song X, Tu Y, Liu H, Hansen T, Sun JS, Zhang Q. Stereoselective Synthesis of the O-antigen of A. baumannii ATCC 17961 Using Long-Range Levulinoyl Group Participation. Angew Chem Int Ed Engl 2023; 62:e202306971. [PMID: 37327196 DOI: 10.1002/anie.202306971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.
Collapse
Affiliation(s)
- Liangshen Duan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Kaiyan Guo
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Zhuoyi Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Xu Song
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| |
Collapse
|
28
|
Ishiwata A, Tanaka K, Ito Y, Cai H, Ding F. Recent Progress in 1,2- cis glycosylation for Glucan Synthesis. Molecules 2023; 28:5644. [PMID: 37570614 PMCID: PMC10420028 DOI: 10.3390/molecules28155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/13/2023] Open
Abstract
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
29
|
Liang XY, Liu AL, Shawn Fan HJ, Wang L, Xu ZN, Ding XG, Huang BS. TsOH-catalyzed acyl migration reaction of the Bz-group: innovative assembly of various building blocks for the synthesis of saccharides. Org Biomol Chem 2023; 21:1537-1548. [PMID: 36723045 DOI: 10.1039/d2ob02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed an efficient method to achieve the regioselective acyl migration of benzoyl ester. In all the cases, the reactions required only the commercially available organic acid catalyst TsOH·H2O. This method enables the benzoyl group to migrate from secondary groups to primary hydroxyl groups, or from equatorial secondary hydroxyl groups to axial hydroxyl groups. The 1,2 or 1,3 acyl migration would potentially occur via five- and six-membered cyclic ortho acid intermediates. A wide range of orthogonally protected monosaccharides, which are useful intermediates for the synthesis of natural oligosaccharides, were synthesized. Finally, to demonstrate the utility of the method, a tetrasaccharide portion from a mycobacterial cell wall polysaccharide was assembled.
Collapse
Affiliation(s)
- Xing-Yong Liang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - An-Lin Liu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hua-Jun Shawn Fan
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Lei Wang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Zhi-Ning Xu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xin-Gang Ding
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Bo-Shun Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology and Howard Hughes Medical Institute, 1200 East California Boulevard, Pasadena, California 91125, USA.
| |
Collapse
|
30
|
Wang Q, Mu J, Zeng J, Wan L, Zhong Y, Li Q, Li Y, Wang H, Chen F. Additive-controlled asymmetric iodocyclization enables enantioselective access to both α- and β-nucleosides. Nat Commun 2023; 14:138. [PMID: 36627283 PMCID: PMC9831021 DOI: 10.1038/s41467-022-35610-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
β-Nucleosides and their analogs are dominant clinically-used antiviral and antitumor drugs. α-Nucleosides, the anomers of β-nucleosides, exist in nature and have significant potential as drugs or drug carriers. Currently, the most widely used methods for synthesizing β- and α-nucleosides are via N-glycosylation and pentose aminooxazoline, respectively. However, the stereoselectivities of both methods highly depend on the assisting group at the C2' position. Herein, we report an additive-controlled stereodivergent iodocyclization method for the selective synthesis of α- or β-nucleosides. The stereoselectivity at the anomeric carbon is controlled by the additive (NaI for β-nucleosides; PPh3S for α-nucleosides). A series of β- and α-nucleosides are prepared in high yields (up to 95%) and stereoselectivities (β:α up to 66:1, α:β up to 70:1). Notably, the introduced iodine at the C2' position of the nucleoside is readily functionalized, leading to multiple structurally diverse nucleoside analogs, including stavudine, an FDA-approved anti-HIV agent, and molnupiravir, an FDA-approved anti-SARS-CoV-2 agent.
Collapse
Affiliation(s)
- Qi Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiayi Mu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jie Zeng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, 430205, Wuhan, China
| | - Linxi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yangyang Zhong
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiuhong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yitong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huijing Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. .,Engineering Center of Catalysis and synthesis for Chiral Molecules, Department of chemistry, Fudan University, Shanghai, 200433, China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| |
Collapse
|
31
|
Ma Z, Hu Y, Li X, Liu R, Xia E, Xu P, Yang Y. Stereoselective synthesis of α-glucosides with glucosyl (Z)-Ynenoates as donors. Carbohydr Res 2023; 523:108710. [PMID: 36370627 DOI: 10.1016/j.carres.2022.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
A SPhosAuNTf2-promoted DMF-modulated glycosylation approach with glycosyl (Z)-ynenoates as donors was developed for highly α-selective synthesis of various linkage types of α-glucans. The substituent groups were also found to play a significant role in the α-selective glucosylation reactions. The glycosylation approach was effectively applied to the stereospecific synthesis of the α-1,6-linked triglucoside.
Collapse
Affiliation(s)
- Zhi Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Hu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rongkun Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - E Xia
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
32
|
Zhao Q, Zhou S, Wang Y, Yang X, Meng Y, Zhang Y, Gao J. Stereoselective synthesis of the 3,6-branched Fuzi α-glucans up to 15-mer via a one-pot and convergent glycosylation strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Ma Y, Jiang Q, Wang X, Xiao G. Total Synthesis of Cordyceps militaris Glycans via Stereoselective Orthogonal One-Pot Glycosylation and α-Glycosylation Strategies. Org Lett 2022; 24:7950-7954. [DOI: 10.1021/acs.orglett.2c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuxin Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiong Jiang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
34
|
Naini A, Bartetzko MP, Sanapala SR, Broecker F, Wirtz V, Lisboa MP, Parameswarappa SG, Knopp D, Przygodda J, Hakelberg M, Pan R, Patel A, Chorro L, Illenberger A, Ponce C, Kodali S, Lypowy J, Anderson AS, Donald RGK, von Bonin A, Pereira CL. Semisynthetic Glycoconjugate Vaccine Candidates against Escherichia coli O25B Induce Functional IgG Antibodies in Mice. JACS AU 2022; 2:2135-2151. [PMID: 36186572 PMCID: PMC9516715 DOI: 10.1021/jacsau.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a major health concern due to emerging antibiotic resistance. Along with O1A, O2, and O6A, E. coli O25B is a major serotype within the ExPEC group, which expresses a unique O-antigen. Clinical studies with a glycoconjugate vaccine of the above-mentioned O-types revealed O25B as the least immunogenic component, inducing relatively weak IgG titers. To evaluate the immunological properties of semisynthetic glycoconjugate vaccine candidates against E. coli O25B, we here report the chemical synthesis of an initial set of five O25B glycan antigens differing in length, from one to three repeat units, and frameshifts of the repeat unit. The oligosaccharide antigens were conjugated to the carrier protein CRM197. The resulting semisynthetic glycoconjugates induced functional IgG antibodies in mice with opsonophagocytic activity against E. coli O25B. Three of the oligosaccharide-CRM197 conjugates elicited functional IgGs in the same order of magnitude as a conventional CRM197 glycoconjugate prepared with native O25B O-antigen and therefore represent promising vaccine candidates for further investigation. Binding studies with two monoclonal antibodies (mAbs) revealed nanomolar anti-O25B IgG responses with nanomolar K D values and with varying binding epitopes. The immunogenicity and mAb binding data now allow for the rational design of additional synthetic antigens for future preclinical studies, with expected further improvements in the functional antibody responses. Moreover, acetylation of a rhamnose residue was shown to be likely dispensable for immunogenicity, as a deacylated antigen was able to elicit strong functional IgG responses. Our findings strongly support the feasibility of a semisynthetic glycoconjugate vaccine against E. coli O25B.
Collapse
Affiliation(s)
- Arun Naini
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Max Peter Bartetzko
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Someswara Rao Sanapala
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Felix Broecker
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Victoria Wirtz
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Marilda P. Lisboa
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | | | - Daniel Knopp
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Jessica Przygodda
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Matthias Hakelberg
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Rosalind Pan
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Axay Patel
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Laurent Chorro
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arthur Illenberger
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Christopher Ponce
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Srinivas Kodali
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Jacqueline Lypowy
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | | | - Robert G. K. Donald
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arne von Bonin
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Claney L. Pereira
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| |
Collapse
|
35
|
Yang R, Sun X, Zhang Y, Xiao G. The total synthesis of rhynchosporosides via orthogonal one-pot glycosylation and stereoselective α-glycosylation strategies. Org Biomol Chem 2022; 20:6755-6758. [PMID: 35971976 DOI: 10.1039/d2ob01243j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient and collective synthesis of rhynchosporosides causing scald diseases has been achieved, which features orthogonal one-pot glycosylation on the basis of PTFAI glycosylation, Yu glycosylation, and PVB glycosylation and merging reagent modulation and remote anchimeric assistance (RMRAA) α-glucosylation strategies. The issues inherent to the thioglycoside-based orthogonal one-pot glycosylation strategy, such as aglycone transfer, have been precluded by this orthogonal one-pot glycosylation strategy, which can streamline glycan chemical synthesis.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Xingchun Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China. .,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| |
Collapse
|
36
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Chemical synthesis of polysaccharides. Curr Opin Chem Biol 2022; 69:102154. [DOI: 10.1016/j.cbpa.2022.102154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
|
38
|
Chaube MA, Trattnig N, Lee D, Belkhadir Y, Pfrengle F. Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses. European J Org Chem 2022; 2022:e202200313. [PMID: 36035813 PMCID: PMC9401017 DOI: 10.1002/ejoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and β-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) β-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.
Collapse
Affiliation(s)
- Manishkumar A. Chaube
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nino Trattnig
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| | - Du‐Hwa Lee
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
39
|
O'Sullivan J, Muñoz-Muñoz J, Turnbull G, Sim N, Penny S, Moschos S. Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Adv 2022; 12:20432-20446. [PMID: 35919168 PMCID: PMC9281799 DOI: 10.1039/d2ra01999j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic Acid Therapeutics (NATs) are establishing a leading role for the management and treatment of genetic diseases following FDA approval of nusinersen, patisiran, and givosiran in the last 5 years, the breakthrough of milasen, with more approvals undoubtedly on the way. Givosiran takes advantage of the known interaction between the hepatocyte specific asialoglycoprotein receptor (ASGPR) and N-acetyl galactosamine (GalNAc) ligands to deliver a therapeutic effect, underscoring the value of targeting moieties. In this review, we explore the history of GalNAc as a ligand, and the paradigm it has set for the delivery of NATs through precise targeting to the liver, overcoming common hindrances faced with this type of therapy. We describe various complex oligosaccharides (OSs) and ask what others could be used to target receptors for NAT delivery and the opportunities awaiting exploration of this chemical space.
Collapse
Affiliation(s)
- Joseph O'Sullivan
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Jose Muñoz-Muñoz
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Graeme Turnbull
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Neil Sim
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Stuart Penny
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Sterghios Moschos
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| |
Collapse
|
40
|
Zhang Y, Hu Y, Liu S, He H, Sun R, Lu G, Xiao G. Total synthesis of Lentinus giganteus glycans with antitumor activities via stereoselective α-glycosylation and orthogonal one-pot glycosylation strategies. Chem Sci 2022; 13:7755-7764. [PMID: 35865907 PMCID: PMC9258330 DOI: 10.1039/d2sc02176e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yanlei Hu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Shanshan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
41
|
Abronina PI, Malysheva NN, Zinin AI, Kolotyrkina NG, Kononov L. Stereocontrolling Effect of a Single Triisopropylsilyl Group in 1,2‐cis‐Glucosylation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina I. Abronina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Nelly N. Malysheva
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander I. Zinin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Natalya G. Kolotyrkina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Leonid Kononov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry Leninsky prosp., 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
42
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N-Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α-Selective 1,2-cis Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202201510. [PMID: 35266604 DOI: 10.1002/anie.202201510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/31/2022]
Abstract
The anomeric configuration can greatly affect the biological functions and activities of carbohydrates. Herein, we report that N-phenyltrifluoroacetimidoyl (PTFAI), a well-known leaving group for catalytic glycosylation, can act as a stereodirecting group for the challenging 1,2-cis α-glycosylation. Utilizing rapidly accessible 1,6-di-OPTFAI glycosyl donors, TMSOTf-catalyzed glycosylation occurred with excellent α-selectivity and broad substrate scope, and the remaining 6-OPTFAI group can be cleaved chemoselectively. The remote participation of 6-OPTFAI is supported by the first characterization of the crucial 1,6-bridged bicyclic oxazepinium ion intermediates by low-temperature NMR spectroscopy. These cations were found to be relatively stable and mainly responsible for the present stereoselectivities. Further application is highlighted in glycosylation reactions toward trisaccharide heparins as well as the convergent synthesis of chacotriose derivatives using a bulky 2,4-di-O-glycosylated donor.
Collapse
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yingying Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Ao Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Qian Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kaidi Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 200032, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
43
|
Hou H, Tian G, Fu J, Qin C, Chen G, Zou X, Hu J, Yin J. Highly stereoselective construction of 1,2- cis-D-quinovosamine glycosides for the synthesis of Pseudomonas aeruginosa O-antigen disaccharide. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2055049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hongli Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guodong Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Zhang C, Zuo H, Lee GY, Zou Y, Dang QD, Houk KN, Niu D. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat Chem 2022; 14:686-694. [DOI: 10.1038/s41557-022-00918-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
45
|
Liu X, Song Y, Liu A, Zhou Y, Zhu Q, Lin Y, Sun H, Zhu K, Liu W, Ding N, Xie W, Sun H, Yu B, Xu P, Li W. More than a Leaving Group: N‐Phenyltrifluoroacetimidate as a Remote Directing Group for Highly α‐Selective 1,2‐cis Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianglai Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yingying Song
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Ao Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yueer Zhou
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Qian Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Yetong Lin
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Huiyong Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Kaidi Zhu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Ning Ding
- Fudan University Department of Medicinal Chemistry CHINA
| | - Weijia Xie
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Haopeng Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Biao Yu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Peng Xu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wei Li
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry 639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|
46
|
Zhou SY, Liu HJ, Zhang QJ, Liao JX, Liu DY, Li MD, Sun JS. Investigations to mechanism and applications of the glycosylation protocol employing 8-methyltosylaminoethynyl-1-naphthyl (MTEAN) glycoside donors. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2045021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Si-Yu Zhou
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Hui-Juan Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Qing-Ju Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Jin-Xi Liao
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - De-Yong Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | - Ming-Dong Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jian-Song Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
47
|
Xiao K, Hu Y, Wan Y, Li X, Nie Q, Yan H, Wang L, Liao J, Liu D, Tu Y, Sun J, Codée JDC, Zhang Q. Hydrogen bond activated glycosylation under mild conditions. Chem Sci 2022; 13:1600-1607. [PMID: 35282639 PMCID: PMC8826775 DOI: 10.1039/d1sc05772c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy. A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.![]()
Collapse
Affiliation(s)
- Ke Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - XinXin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jinxi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Deyong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jiansong Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China .,Key Laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
48
|
Zhang Y, Wang L, Overkleeft HS, van der Marel GA, Codée JDC. Assembly of a Library of Pel-Oligosaccharides Featuring α-Glucosamine and α-Galactosamine Linkages. Front Chem 2022; 10:842238. [PMID: 35155372 PMCID: PMC8826555 DOI: 10.3389/fchem.2022.842238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa, a pathogenic Gram-negative bacterium for which currently antibiotic resistance is posing a significant problem and for which no vaccines are available, protects itself by the formation of a biofilm. The Pel polysaccharide, a cationic polymer composed of cis-linked galactosamine (GalN), N-acetyl galactosamine (GalNAc), glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) monosaccharides, is an important constituent of the biofilm. Well-defined Pel oligosaccharides will be valuable tools to probe the biosynthesis machinery of this polysaccharide and may serve as diagnostic tools or be used as components of glycoconjugate vaccines. We here, report on the development of synthetic chemistry to access well-defined Pel-oligosaccharides. The chemistry hinges on the use of di-tert-butylsilylidene protected GalN and GlcN building blocks, which allow for completely cis-selective glycosylation reactions. We show the applicability of the chemistry by the assembly of a matrix of 3 × 6 Pel heptasaccharides, which has been generated from a single set of suitably protected Pel heptasaccharides, in which a single glucosamine residue is incorporated and positioned at different places along the Pel oligo-galactosamine chain.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Liming Wang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | | | | | - Jeroen D. C. Codée
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen D. C. Codée,
| |
Collapse
|
49
|
Zhang M, Li T, Peng P. Recent development in additive modulated stereoselective glycosidation reactions. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2027432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Tianlu Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
50
|
Stereoselective gold(I)-catalyzed approach to the synthesis of complex α-glycosyl phosphosaccharides. Nat Commun 2022; 13:421. [PMID: 35058448 PMCID: PMC8776814 DOI: 10.1038/s41467-022-28025-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
AbstractGlycosyl phosphosaccharides represent a large and important family of complex glycans. Due to the distinct nature of these complex molecules, efficient approaches to access glycosyl phosphosaccharides are still in great demand. Here, we disclose a highly efficient and stereoselective approach to the synthesis of biologically important and complex α-glycosyl phosphosaccharides, employing direct gold(I)-catalyzed glycosylation of the weakly nucleophilic phosphoric acid acceptors. In this work, the broad substrate scope is demonstrated with more than 45 examples, including glucose, xylose, glucuronate, galactose, mannose, rhamnose, fucose, 2-N3-2-deoxymannose, 2-N3-2-deoxyglucose, 2-N3-2-deoxygalactose and unnatural carbohydrates. Here, we show the glycosyl phosphotriester prepared herein was successfully applied to the one-pot synthesis of a phosphosaccharide from Leishmania donovani, and an effective preparation of a trisaccharide diphosphate of phosphosaccharide fragments from Hansenula capsulate via iterative elongation strategy is realized.
Collapse
|