1
|
Liu Y, Qian Y, Chen L, Ge C, Zhang Y, Tang H, Fang S, Li Q, Huang F, Li H. Self-Sorting via Macrocyclization by External Templation in Water. Org Lett 2025; 27:5027-5031. [PMID: 40334118 DOI: 10.1021/acs.orglett.5c01426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Here, by condensing each of two bisformyl precursors with the corresponding bishydrazide partner in water, two ultrasized macrocycles could be self-assembled. One was self-assembled within the cavity of cucurbit[8]uril (CB[8]) acting as an external template, forming a ring-in-ring complex. The other requires the presence of both CB[10] and a π-electron-rich guest as an external/internal template, thus forming a ternary complex "Russian doll". When all seven precursors were combined in water, self-sorting occurred without forming hybridized products.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yongwei Qian
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Liya Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yiming Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shuai Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
2
|
Shi TH, Tuo DH, Azuma S, Tokuda S, Masaki M, Yasuhara K, Asakawa H, Furukawa S, Akine S, Ohtani S, Kato K, Ogoshi T. Internal and External Pockets in Pillar[ n]arene Sheets and Their Host-Guest Binding Beyond Cavity Volume Limitations. J Am Chem Soc 2025. [PMID: 40019768 DOI: 10.1021/jacs.4c16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Constructing binding pockets by hierarchically assembling tailored building blocks and understanding structure-property relationships are challenging goals. Herein, amphiphilic pillar[5]arene and pillar[6]arene were prepared and used to construct 2D sheets, which consisted of well-defined hydrophobic and hydrophilic interlayers. In the hydrophobic interlayers, internal hydrophobic pockets were created by packing pairs of pillar[n]arenes, and external hydrophobic pockets were simultaneously generated from gaps between pillar[n]arenes due to electrostatic attractions. Aromatic hydrocarbons were accommodated in these hydrophobic pockets by ball milling. Due to the external pockets, bulky guests larger than the pillar[n]arene cavity sizes were also captured in the sheets.
Collapse
Affiliation(s)
- Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - De-Hui Tuo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Shogo Azuma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shun Tokuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Minamo Masaki
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Hitoshi Asakawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shuhei Furukawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8317, Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
3
|
Tang H, Feng T, Wu Y, Ge C, Fang S, Wang L, Li H. Self-Assembled Triangular Prismatic Cages with Kinetic Inertness. Org Lett 2024; 26:8335-8339. [PMID: 39321091 DOI: 10.1021/acs.orglett.4c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Two triangular prismatic cages were synthesized by combining a trishydrazide and two bisformyl precursors in strongly acidic water, where the dynamic nature of hydrazone was turned ON. An anionic guest was used as the template to drive the cage formation. Performing counterion exchange removed both the template and the Brønsted acid. The removal of the latter afforded the cages' kinetic inertness by turning OFF the reversibility of hydrazone. The cages can thus be used for recognizing various guests in water without observable degradation, driven by the hydrophobic effect. Upon being accommodated within the cage cavities, an anthracene derivative was protected from UV-stimulated oxidation, which would occur otherwise in the bulk solution without the protection from the host.
Collapse
Affiliation(s)
- Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tinglong Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yating Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shuai Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
4
|
Foyle ÉM, Goodwin RJ, Cox CJT, Smith BR, Colebatch AL, White NG. Expedient Decagram-Scale Synthesis of Robust Organic Cages That Bind Sulfate Strongly and Selectively in Water. J Am Chem Soc 2024; 146:27127-27137. [PMID: 39312466 DOI: 10.1021/jacs.4c09930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Selective anion recognition remains a key challenge in supramolecular chemistry: only a very small number of systems that can function in water are known, and these nearly always preferentially bind hydrophobic anions. In this work, we report three robust hexa-cationic cages that can be prepared on scales up to 14 g in two simple and high-yielding steps from commercially available materials. One of these cages displays unusually strong sulfate binding in water (Ka = 12,000 M-1), and demonstrates high selectivity for this anion over H2PO4-/HPO42- in DMSO/buffer mixtures. These results demonstrate that relatively large, three-dimensional supramolecular hosts can be prepared in high yields and on large scales, and can be highly potent receptors.
Collapse
Affiliation(s)
- Émer M Foyle
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rosemary J Goodwin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Cameron J T Cox
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, Scotland, U.K
| | - Bailee R Smith
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Chen Q, Zhu K. Advancements and strategic approaches in catenane synthesis. Chem Soc Rev 2024; 53:5677-5703. [PMID: 38659402 DOI: 10.1039/d3cs00499f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Catenanes, a distinctive category of mechanically interlocked molecules composed of intertwined macrocycles, have undergone significant advancements since their initial stages characterized by inefficient statistical synthesis methods. Through the aid of molecular recognition processes and principles of self-assembly, a diverse array of catenanes with intricate structures can now be readily accessed utilizing template-directed synthetic protocols. The rapid evolution and emergence of this field have catalyzed the design and construction of artificial molecular switches and machines, leading to the development of increasingly integrated functional systems and materials. This review endeavors to explore the pivotal advancements in catenane synthesis from its inception, offering a comprehensive discussion of the synthetic methodologies employed in recent years. By elucidating the progress made in synthetic approaches to catenanes, our aim is to provide a clearer understanding of the future challenges in further advancing catenane chemistry from a synthetic perspective.
Collapse
Affiliation(s)
- Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Nazarova A, Shiabiev I, Shibaeva K, Mostovaya O, Mukhametzyanov T, Khannanov A, Evtugyn V, Zelenikhin P, Shi X, Shen M, Padnya P, Stoikov I. Thiacalixarene Carboxylic Acid Derivatives as Inhibitors of Lysozyme Fibrillation. Int J Mol Sci 2024; 25:4721. [PMID: 38731940 PMCID: PMC11083589 DOI: 10.3390/ijms25094721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Shiabiev
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ksenia Shibaeva
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Olga Mostovaya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Timur Mukhametzyanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Arthur Khannanov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Pavel Padnya
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A. M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
7
|
Jiang T, Wang Z, Yu W, Wang J, Yu S, Bao X, Wei B, Xuan Q. Mix-Key: graph mixup with key structures for molecular property prediction. Brief Bioinform 2024; 25:bbae165. [PMID: 38706318 PMCID: PMC11070654 DOI: 10.1093/bib/bbae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Molecular property prediction faces the challenge of limited labeled data as it necessitates a series of specialized experiments to annotate target molecules. Data augmentation techniques can effectively address the issue of data scarcity. In recent years, Mixup has achieved significant success in traditional domains such as image processing. However, its application in molecular property prediction is relatively limited due to the irregular, non-Euclidean nature of graphs and the fact that minor variations in molecular structures can lead to alterations in their properties. To address these challenges, we propose a novel data augmentation method called Mix-Key tailored for molecular property prediction. Mix-Key aims to capture crucial features of molecular graphs, focusing separately on the molecular scaffolds and functional groups. By generating isomers that are relatively invariant to the scaffolds or functional groups, we effectively preserve the core information of molecules. Additionally, to capture interactive information between the scaffolds and functional groups while ensuring correlation between the original and augmented graphs, we introduce molecular fingerprint similarity and node similarity. Through these steps, Mix-Key determines the mixup ratio between the original graph and two isomers, thus generating more informative augmented molecular graphs. We extensively validate our approach on molecular datasets of different scales with several Graph Neural Network architectures. The results demonstrate that Mix-Key consistently outperforms other data augmentation methods in enhancing molecular property prediction on several datasets.
Collapse
Affiliation(s)
- Tianyi Jiang
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Zeyu Wang
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Wenchao Yu
- the College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jinhuan Wang
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Shanqing Yu
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| | - Xiaoze Bao
- the College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Bin Wei
- the College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Qi Xuan
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, 310023, Hangzhou, China
- Binjiang Institute of Artificial Intelligence, Zhejiang University of Technology, 310056, Hangzhou, China
| |
Collapse
|
8
|
Cougnon FBL, Stefankiewicz AR, Ulrich S. Dynamic covalent synthesis. Chem Sci 2024; 15:879-895. [PMID: 38239698 PMCID: PMC10793650 DOI: 10.1039/d3sc05343a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.
Collapse
Affiliation(s)
- Fabien B L Cougnon
- Department of Chemistry and Nanoscience Centre, University of Jyväskylä Jyväskylä Finland
| | - Artur R Stefankiewicz
- Centre for Advanced Technology and Faculty of Chemistry, Adam Mickiewicz University Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
9
|
Zhang L, Xu Y, Wei W. Water-soluble organic macrocycles based on dye chromophores and their applications. Chem Commun (Camb) 2023; 59:13562-13570. [PMID: 37901908 DOI: 10.1039/d3cc04159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Traditional water-soluble organic macrocyclic receptors generally lack photofunctionality, thus monitoring the drug delivery and the phototheranostic applications of these host-guest macrocyclic systems has been greatly restricted. To address this issue, incorporating π-conjugated dye chromophores as building blocks into macrocyclic molecules is a straightforward and promising strategy. This approach not only imparts intrinsic optical features to the macrocycles themselves but also enhances the host-guest binding ability due to the large planar structures of the dyes. In this feature article, we focus on recent advances in water-soluble macrocyclic compounds based on organic dye chromophores, such as naphthalimide (NDI), perylene diimides (PDI), azobenzene (azo), tetraphenylethylene (TPE) and anthracene, and provide an overview of their various applications including molecular recognition, drug release, biological imaging, photothermal therapy, etc. We hope that this article could be helpful and instructive for the design of water-soluble dye-based macrocycles and the further development of their biomedical applications, particularly in combination with drug therapy and phototheranostics.
Collapse
Affiliation(s)
- Luying Zhang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yanqing Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Wei
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
10
|
Chen Y, Tang H, Chen H, Li H. Self-Assembly via Condensation of Imine or Its N-Substituted Derivatives. Acc Chem Res 2023; 56:2838-2850. [PMID: 37751270 DOI: 10.1021/acs.accounts.3c00475] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
ConspectusCompared to traditionally used irreversible chemical reactions, dynamic covalent chemistry (DCC) including imine formation represents a more advanced technique in the preparation of molecules with complex structures and topologies, whose syntheses require the formation of many bonds. By allowing the occurrence of error checking and self-correcting, it is likely that the target molecules with high enough thermodynamic stability could be self-assembled in high or even quantitative yield. Two questions are raised herein. First, it becomes a central problem in self-assembly that how to endow a target product with high enough thermodynamic stability so that it can be produced as the major or the only product within the self-assembly library. Second, the reversible nature of dynamic bonds jeopardizes the intrinsic stability of the products. More specifically, the imine bond which represents the mostly used dynamic covalent bond, is apt to undergo hydrolysis in the presence of water. Developing new approaches to make imine more robust and compatible with water is thus of importance. In this account, we summarized the progress made in our group in the field of self-assembly based on C═N bond formation. In organic solvent where an imine bond is relatively robust, we focus on studying how to enhance the thermodynamic stability of a target molecule by introducing intramolecular forces. These noncovalent interactions either release enthalpy to favor the formation of the target molecule or preorganize the building blocks into specific conformations that mimic the product, so that the entropy loss of the formation of the latter is thus suppressed. In water, which often leads to imine hydrolysis, we developed two strategies to enhance the water-compatibility. By taking advantage of multivalency, namely, multiple bonds are often more robust than a single bond, self-assembly via condensation of imine was performed successfully in water, a solvent that is considered as forbidden zone of imine. Another approach is to replace typical imine with its more robust and water compatible derivatives, namely, either hydrazone or oxime, whose C═N bonds are generally less electrophilic compared to typical imine. With the water-compatible dynamic bonds in hand, a variety topological nontrivial molecules such as catenanes and knots was self-assembled successfully in aqueous media, driven by hydrophobic effect. When the self-assembled molecules in the form of rings and cages were designed for supramolecular purposes, water-compatibility endows a merit that allows the hosts to take advantage of hydrophobic effect to drive host-guest recognition, enabling various tasks to be accomplished, such as separation of guest isomers with similar physical properties, recognition of highly hydrated anions, as well as stabilization of guest dimers.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hongliang Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 31125, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 31125, China
| |
Collapse
|
11
|
Wang D, Zhao Y. Rigid-Flexible Hybrid Porous Molecular Crystals with Guest-Induced Reversible Crystallinity. Angew Chem Int Ed Engl 2023; 62:e202217903. [PMID: 36720717 DOI: 10.1002/anie.202217903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A weak CH/O hydrogen-bonded organic framework (HOF) with both rigidity and flexibility that could easily and reversibly switch from a non-crystalline to a crystalline phase was constructed. The specific solvent molecule acts as a "key" to control the crystallinity, while the highly rigid triangle macrocycle as the building block is the "lock". The introduction and removal of the "key" could influence the local flexibility of the whole framework and lead to switchable crystallinity. Furthermore, the obtained HOF exhibits excellent separation efficiency for benzene and cyclohexane (94.4 %).
Collapse
Affiliation(s)
- Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266000, Qingdao, China
| |
Collapse
|
12
|
Lu Y, Dutschke PD, Kinas J, Hepp A, Jin GX, Hahn FE. Organometallic Borromean Rings and [2]Catenanes Featuring Di-NHC Ligands. Angew Chem Int Ed Engl 2023; 62:e202217681. [PMID: 36629746 DOI: 10.1002/anie.202217681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
We report herein a series of organometallic Borromean rings (BRs) and [2]catenanes prepared from benzobiscarbene ligands. The reaction of dinickel complexes of the benzobiscarbenes 1 a-1 c with a thiazolothiazole bridged bipyridyl ligand L2 led by self-assembly to a series of organometallic BRs. Solvophobic effects played a crucial role in the formation and stability of the interlocked species. The stability of BRs is related to the N-alkyl substituents at the precursors 1 a-1 c, where longer alkyl substitutes improve stability and inter-ring interactions. Solvophobic effects are also important for the stability of [2]catenanes prepared from 1 a-1 c and a flexible bipyridyl ligand L3 . In solution, an equilibrium between the [2]catenanes and their macrocyclic building blocks was observed. High proportions of [2]catenanes were obtained in concentrated solutions or polar solvents. The proportion of [2]catenanes in solution could be further enhanced by lengthening of the N-alkyl substitutes.
Collapse
Affiliation(s)
- Ye Lu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Patrick D Dutschke
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jenny Kinas
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
| |
Collapse
|
13
|
Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation. Molecules 2023; 28:molecules28030976. [PMID: 36770651 PMCID: PMC9921396 DOI: 10.3390/molecules28030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
A bowl-shaped molecule can be self-assembled by condensing a triscationic hexaaldehyde compound and three equiv. of a dihydrazide linkers in pure water. The molecular bowl is thus composed of a triscationic π-electron deficient platform, as well as a hexagonal rim that contains six acylhydrazone functions. When the counteranions are chloride, the solid-state structure reveals that this molecular bowl undergoes dimerization via N-H···Cl hydrogen bonds, forming a cage-like dimer with a huge inner cavity. This molecular bowl can employ its cavity to accommodate a hydrophobic guest, namely 1-adamantanecarboxylic acid in aqueous media.
Collapse
|
14
|
Selective gradient separation of aminophenol isomers by cucurbit[6]uril. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Perylene bisimide-based nanocubes for selective vapour phase ultra-trace detection of aniline derivatives. Anal Chim Acta 2022; 1238:340632. [DOI: 10.1016/j.aca.2022.340632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
16
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity
Nor
‐
Seco
‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022; 61:e202207209. [DOI: 10.1002/anie.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Ran Cen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Jisen Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Qing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 P. R. China
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland, College Park College Park MD 20742 USA
| |
Collapse
|
17
|
Dong X, Dai X, Li G, Zhang Y, Xu X, Liu Y. Conformationally Confined Emissive Cationic Macrocycle with Photocontrolled Organelle-Specific Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201962. [PMID: 35713271 PMCID: PMC9376817 DOI: 10.1002/advs.202201962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The optimization of molecular conformation and aggregation modes is of great significance in creation of new luminescent materials for biochemical research and medical diagnostics. Herein, a highly emissive macrocycle (1) is reported, which is constructed by the cyclization reaction of triphenylamine with benzyl bromide and exhibits very distinctive photophysical performance both in aqueous solution and the solid state. Structural analysis reveals that the 1 can form self-interpenetrated complex and emit bright yellow fluorescence in the crystal lattice. The distorted yet symmetrical structure can endow 1 with unique two-photon absorption property upon excitation by near-infrared light. Also, 1 can be utilized as an efficient photosensitizer to produce singlet oxygen (1 O2 ) both in inanimate milieu and under cellular environment. More intriguingly, due to the strong association of 1 with negatively charged biomacromolecules, organelle-specific migration is achieved from lysosome to nucleus during the 1 O2 -induced cell apoptosis process. To be envisaged, this conformationally confined cationic macrocycle with photocontrolled lysosome-to-nucleus translocation may provide a feasible approach for in situ identifying different biospecies and monitoring physiological events at subcellular level.
Collapse
Affiliation(s)
- Xiaoyun Dong
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xianyin Dai
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Guorong Li
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Ying‐Ming Zhang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xiufang Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| |
Collapse
|
18
|
Liu M, Cen R, Li J, Li Q, Tao Z, Xiao X, Isaacs L. Double‐Cavity Nor‐Seco‐Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Liu
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Ran Cen
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Jisen Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Qing Li
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Zhu Tao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Xin Xiao
- Guizhou University School of Chemistry and Chemical Engineering 550025 Guiyang CHINA
| | - Lyle Isaacs
- University of Maryland at College Park Department of Chemistry and Biochemistry Building 091 20742 College Park UNITED STATES
| |
Collapse
|
19
|
Lei Y, Li Z, Wu G, Zhang L, Tong L, Tong T, Chen Q, Wang L, Ge C, Wei Y, Pan Y, Sue ACH, Wang L, Huang F, Li H. A trefoil knot self-templated through imination in water. Nat Commun 2022; 13:3557. [PMID: 35729153 PMCID: PMC9213439 DOI: 10.1038/s41467-022-31289-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022] Open
Abstract
The preparation of topologically nontrivial molecules is often assisted by covalent, supramolecular or coordinative templates that provide spatial pre-organization for all components. Herein, we report a trefoil knot that can be self-assembled efficiently in water without involving additional templates. The direct condensation of three equivalents of a tetraformyl precursor and six equivalents of a chiral diamine produces successfully a [3 + 6] trefoil knot whose intrinsic handedness is dictated by the stereochemical configuration of the diamine linkers. Contrary to the conventional wisdom that imine condensation is not amenable to use in water, the multivalent cooperativity between all the imine bonds within the framework makes this trefoil knot robust in the aqueous environment. Furthermore, the presence of water is proven to be essential for the trefoil knot formation. A topologically trivial macrocycle composed of two tetraformyl and four diamino building blocks is obtained when a similar reaction is performed in organic media, indicating that hydrophobic effect is a major driving force behind the scene.
Collapse
Affiliation(s)
- Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lijie Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, PR China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Tianyi Tong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Lingxiang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310027, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, PR China.
| |
Collapse
|
20
|
Sainaba AB, Venkateswarulu M, Bhandari P, Arachchige KSA, Clegg JK, Mukherjee PS. An Adaptable Water-Soluble Molecular Boat for Selective Separation of Phenanthrene from Isomeric Anthracene. J Am Chem Soc 2022; 144:7504-7513. [PMID: 35436087 DOI: 10.1021/jacs.2c02540] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Anthracene crude oil is a common source of phenanthrene for its industrial use. The isolation of phenanthrene from this source is a challenging task due to very similar physical properties to its isomer anthracene. We report here a water-soluble Pd(II) molecular boat (MB1) with unusual structural topology that was obtained by assembling a flexible tetrapyridyl donor (L) with a cis-Pd(II) acceptor. The flexible backbone of the boat enabled it to breathe in the presence of a guest optimizing the fit within the cavity. The boat binds phenanthrene more strongly than anthracene, which enabled separation of phenanthrene with an >98% purity from an equimolar mixture of the two isomers using MB1 as an extracting agent. MB1 represents a unique example of a coordination receptor suitable for selective aqueous extraction of phenanthrene from anthracene with reusability of several cycles.
Collapse
Affiliation(s)
- Arppitha Baby Sainaba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Kitanosono T, Hisada T, Yamashita Y, Kobayashi S. Water-driven solid self-assembled catalysis. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Grajewski J. Recent Advances in the Synthesis and Applications of Nitrogen-Containing Macrocycles. Molecules 2022; 27:1004. [PMID: 35164269 PMCID: PMC8839354 DOI: 10.3390/molecules27031004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macrocyclic nitrogen-containing compounds are versatile molecules. Supramolecular, noncovalent interactions of these macrocycles with guest molecules enables them to act as catalysts, fluorescent sensors, chiral or nonchiral selectors, or receptors of small molecules. In the solid state, they often display a propensity to form inclusion compounds. All of these properties are usually closely connected with the presence of nitrogen atoms in the macrocyclic ring. As most of the reviews published so far on macrocycles were written from the viewpoint of functional groups, synthetic methods, or the structure, search methods for literature reports in terms of the physicochemical properties of these compounds may be unobvious. In this minireview, the emphasis was put on the synthesis and applications of nitrogen-containing macrocyclic compounds, as they differ from their acyclic analogs, and at the same time are the driving force for further research.
Collapse
Affiliation(s)
- Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
23
|
Chen Q, Lei Y, Wu G, Li Q, Pan Y, Li H. Ultramacrocyclization in water via external templation. Chem Sci 2022; 13:798-803. [PMID: 35173945 PMCID: PMC8768864 DOI: 10.1039/d1sc06236k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/19/2021] [Indexed: 12/04/2022] Open
Abstract
Condensing a dihydrazide and each of a series of cationic bisaldehyde compounds bearing polymethylene chains in weakly acidic water produces either a macrocycle in a [1 + 1] manner or its dimer namely a [2]catenane, or their mixture. The product distribution is determined by the length of the bisaldehydes. Addition of cucurbit[8]uril (CB[8]) drives the catenane/macrocycle equilibria to the side of macrocycles, by forming ring-in-ring complexes with the latter. When the polymethylene unit of the bisaldehyde is replaced with a more rigid p-xylene linker, its self-assembly with the dihydrazide leads to quantitative formation of a [2]catenane. Upon addition of CB[8], the [2]catenane is transformed into an ultra-large macrocycle condensed in a [2 + 2] manner, which is encircled by two CB[8] rings. The framework of this macrocycle contains one hundred and two atoms, whose synthesis would be a formidable task without the external template CB[8]. Removal of CB[8] with a competitive guest leads to recovery of the [2]catenane.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Chemistry Institution, Zhejiang University Hangzhou 310027 China
| | - Ye Lei
- Department of Chemistry Institution, Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Institution, Zhejiang University Hangzhou 310027 China
| | - Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou University Guiyang 550025 China
| | - Yuanjiang Pan
- Department of Chemistry Institution, Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Institution, Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 310027 China
| |
Collapse
|
24
|
Yang F, Li Y, Li R, Wang X, Cui X, Wei W, Xu Y. Fine-Tuning Macrocycle Cavity to Selectively Bind Guests in Water for Near-Infrared Photothermal Conversion. Org Chem Front 2022. [DOI: 10.1039/d2qo00443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational and specific synthesis of the required organic macrocycles to bind the size-matched targeted guests without undesired macrocyclic byproducts remains a great challenge. Herein, based on a new naphthalimide...
Collapse
|
25
|
Wu H, Wang Y, Song B, Wang HJ, Zhou J, Sun Y, Jones LO, Liu W, Zhang L, Zhang X, Cai K, Chen XY, Stern CL, Wei J, Farha OK, Anna JM, Schatz GC, Liu Y, Fraser Stoddart J. A contorted nanographene shelter. Nat Commun 2021; 12:5191. [PMID: 34465772 PMCID: PMC8408160 DOI: 10.1038/s41467-021-25255-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nanographenes have kindled considerable interest in the fields of materials science and supramolecular chemistry as a result of their unique self-assembling and optoelectronic properties. Encapsulating the contorted nanographenes inside artificial receptors, however, remains challenging. Herein, we report the design and synthesis of a trigonal prismatic hexacationic cage, which has a large cavity and adopts a relatively flexible conformation. It serves as a receptor, not only for planar coronene, but also for contorted nanographene derivatives with diameters of approximately 15 Å and thicknesses of 7 Å. A comprehensive investigation of the host-guest interactions in the solid, solution and gaseous states by experimentation and theoretical calculations reveals collectively an induced-fit binding mechanism with high binding affinities between the cage and the nanographenes. Notably, the photostability of the nanographenes is improved significantly by the ultrafast deactivation of their excited states within the cage. Encapsulating the contorted nanographenes inside the cage provides a noncovalent strategy for regulating their photoreactivity.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yu Wang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hui-Juan Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Nankai District, Tianjin, China
| | - Jiawang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yixun Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Kang Cai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Nankai District, Tianjin, China
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Nankai District, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai District, Tianjin, China.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia.
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| |
Collapse
|
26
|
Caprice K, Pál D, Besnard C, Galmés B, Frontera A, Cougnon FBL. Diastereoselective Amplification of a Mechanically Chiral [2]Catenane. J Am Chem Soc 2021; 143:11957-11962. [PMID: 34323081 PMCID: PMC8397304 DOI: 10.1021/jacs.1c06557] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Achiral [2]catenanes composed of rings with inequivalent sides may adopt chiral co-conformations. Their stereochemistry depends on the relative orientation of the interlocked rings and can be controlled by sterics or an external stimulus (e.g., a chemical stimulus). Herein, we have exploited this stereodynamic property to amplify a mechanically chiral (P)-catenane upon binding to (R)-1,1'-binaphthyl 2,2'-disulfonate, with a diastereomeric excess of 85%. The chirality of the [2]catenane was ascertained in the solid state by single crystal X-ray diffraction and in solution by NMR and CD spectroscopies. This study establishes a robust basis for the development of a new synthetic approach to access enantioenriched mechanically chiral [2]catenanes.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dávid Pál
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Bartomeu Galmés
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
27
|
Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Self‐Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yixin Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Binbin Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yintao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Chenqi Ge
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Chi Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lixin Liang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xiuqiong Zeng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qi Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
28
|
Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Self-Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew Chem Int Ed Engl 2021; 60:18815-18820. [PMID: 34129262 DOI: 10.1002/anie.202106428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Indexed: 11/11/2022]
Abstract
Self-assembly of host molecules in aqueous media via metal-ligand coordination is well developed. However, the preparation of purely covalent counterparts in water has remained a formidable task. An anionic tetrahedron cage was successfully self-assembled in a [4+4] manner by condensing a trisamine and a trisformyl in water. Even although each individual imine bond is rather labile and apt to hydrolyze in water, the tetrahedron is remarkably stable or inert due to multivalence. The tetrahedral cages, as well as its neutral counterparts dissolved in organic solvent, have homochirality, namely that their four propeller-shaped trisformyl residues adopt the same rotational conformation. The cage is able to take advantage of hydrophobic effect to accommodate a variety of guest molecules in water. When a chiral guest was recognized, the formation of one enantiomer of the cage became more favored relative to the other. As a consequence, the cage could be produced in an enantioselective manner. The tetrahedron is able to maintain its chirality after removal of the chiral guest-probably on account of the cooperative occurrence of intramolecular forces that restrict the intramolecular flipping of phenyl units in the cage framework.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Binbin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yintao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Lixin Liang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiuqiong Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
29
|
Zhang HB, Kanagaraj K, Rebek J, Yu Y. Hydrophobic and Metal-Coordinated Confinement Effects Trigger Recognition and Selectivity. J Org Chem 2021; 86:8873-8881. [PMID: 34114823 DOI: 10.1021/acs.joc.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis and characterization of a new water-soluble cavitand 1. The container features 2-aminobenzimidazole panels at the "rim" and pyridiniums at the "feet". In the solid state, a single-crystal X-ray structure of the organic-soluble precursor 2 showed a stable vase form. The structure is stabilized by hydrogen-bonded bridges between adjacent panels through solvents and ions. In aqueous solution, binding of hydrophobic and amphiphilic guest molecules to 1 was investigated using 1H NMR. Alkanes, alcohols, acids, diols, and diacids formed 1:1 host-guest complexes, and the guest conformations were deduced from characteristic chemical shift changes. In the presence of [Pd(ethylenediamine)(H2O)2·2NO3], cavitand 1 formed a complex incorporating two metals. The metal-coordinated cavitand also bound hydrophobic linear alkanes and difluorobenzene isomers in aqueous medium. The metallo-cavitand showed shape and size selectivity and was used to separate o-difluorobenzene from its isomers as observed by 19F NMR spectroscopy. The primary amino function of the cavitands offers possibilities for further elaboration to covalent clusters of these container compounds.
Collapse
Affiliation(s)
- Hui-Bin Zhang
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Kuppusamy Kanagaraj
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Julius Rebek
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.,Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
30
|
Ding MH, Liao J, Tang LL, Ou GC, Zeng F. High-yield synthesis of a novel water-soluble macrocycle for selective recognition of naphthalene. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Xu YY, Liu HK, Wang ZK, Song B, Zhang DW, Wang H, Li Z, Li X, Li ZT. Olive-Shaped Organic Cages: Synthesis and Remarkable Promotion of Hydrazone Condensation through Encapsulation in Water. J Org Chem 2021; 86:3943-3951. [PMID: 33599126 DOI: 10.1021/acs.joc.0c02792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two organic cages have been prepared in situ in water through the 2 + 3 hydrazone coupling of two pyridinium-derived trialdehydes and oxalohydrazide. The highly water-soluble cages encapsulate and solubilize linear neutral molecules. Such encapsulation has been applied for the promotion of both two- or three-component hydrazone condensation in water. For two-component reactions, the yields of the resulting monohydrazones are increased from 5-10 to 90-96%. For three-component reactions of hydrazinecarbohydrazide with 11 aromatic aldehydes, in the presence of the organic cages, the bihydrazone products can be produced in 88-96% yields. In contrast, without the promotion of the organic cages, 9 of the reactions do not afford the corresponding dihydrazone product.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhiming Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518055, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
32
|
Mi Y, Zhao C, Xue S, Ding N, Du Y, Su H, Li S, Pang S. Highly Selective Separation Intermediate-Size Anionic Pollutants from Smaller and Larger Analogs via Thermodynamically and Kinetically Cooperative-Controlled Crystallization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003243. [PMID: 33747732 PMCID: PMC7967070 DOI: 10.1002/advs.202003243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Selective separation of organic species, particularly that of intermediate-size ones from their analogs, remains challenging because of their similar structures and properties. Here, a novel strategy is presented, cooperatively (thermodynamically and kinetically) controlled crystallization for the highly selective separation of intermediate-size anionic pollutants from their analogs in water through one-pot construction of cationic metal-organic frameworks (CMOFs) with higher stabilities and faster crystallization, which are based on the target anions as charge-balancing anions. 4,4'-azo-triazole and Cu2+ are chosen as suitable ligand and metal ion for CMOF construction because they can form stronger intermolecular interaction with p-toluenesulfonate anion (Ts-) compared to its analogs. For this combination, a condition is established, under which the crystallization rate of a Ts--based CMOF is remarkably high while those of analog-based CMOFs are almost zero. As a result, the faster crystallization and higher stability cooperatively endow the cationic framework with a close-to-100% selectivity for Ts- over its analogs in two-component mixtures, and this preference is retained in a practical mixture containing more than seven competing (analogs and inorganic) anions. The nature of the free Ts- anion in the cationic framework also allows the resultant CMOF to be recyclable via anion exchange.
Collapse
Affiliation(s)
- Yongsheng Mi
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Chaofeng Zhao
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shaomin Xue
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Ning Ding
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yao Du
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Hui Su
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shenghua Li
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Siping Pang
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
33
|
Lei Y, Chen Q, Liu P, Wang L, Wang H, Li B, Lu X, Chen Z, Pan Y, Huang F, Li H. Molecular Cages Self‐Assembled by Imine Condensation in Water. Angew Chem Int Ed Engl 2021; 60:4705-4711. [DOI: 10.1002/anie.202013045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/16/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qiong Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Peiren Liu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lingxiang Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hongye Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bingda Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Feihe Huang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
34
|
Lei Y, Chen Q, Liu P, Wang L, Wang H, Li B, Lu X, Chen Z, Pan Y, Huang F, Li H. Molecular Cages Self‐Assembled by Imine Condensation in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qiong Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Peiren Liu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lingxiang Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hongye Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bingda Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Instrumentation and Service Centre for Molecular Sciences Westlake University Hangzhou 310024 China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Feihe Huang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
35
|
Ibáñez S, Gusev DG, Peris E. Unexpected Influence of Substituents on the Binding Affinities of Polycyclic Aromatic Hydrocarbons with a Tetra-Au(I) Metallorectangle. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Susana Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| | - Dmitry G. Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 Canada
| | - Eduardo Peris
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Av. Vicente Sos Baynat s/n, Castellón E-12071, Spain
| |
Collapse
|
36
|
Sun X, Zeng H, Tang T. Molecular simulation of folding and aggregation of multi-core polycyclic aromatic compounds. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
|
38
|
Jiao T, Wu G, Zhang Y, Shen L, Lei Y, Wang C, Fahrenbach AC, Li H. Self‐Assembly in Water with N‐Substituted Imines. Angew Chem Int Ed Engl 2020; 59:18350-18367. [DOI: 10.1002/anie.201910739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Libo Shen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | | | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
39
|
Garci A, Beldjoudi Y, Kodaimati MS, Hornick JE, Nguyen MT, Cetin MM, Stern CL, Roy I, Weiss EA, Stoddart JF. Mechanical-Bond-Induced Exciplex Fluorescence in an Anthracene-Based Homo[2]catenane. J Am Chem Soc 2020; 142:7956-7967. [PMID: 32233402 DOI: 10.1021/jacs.0c02128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collisional intermolecular interactions between excited states form short-lived dimers and complexes that lead to the emergence of excimer/exciplex emission of lower energy, a phenomenon which must be differentiated from the photoluminescence (PL) arising from the monomeric molecules. Although the utilization of noncovalent bonding interactions, leading to the generation of excimer/exciplex PL, has been investigated extensively, precise control of the aggregates and their persistence at very low concentrations remains a rare phenomenon. In the search for a fresh approach, we sought to obtain exciplex PL from permanent structures by incorporating anthracene moieties into pyridinium-containing mechanically interlocked molecules. Beyond the optical properties of the anthracene moieties, their π-extended nature enforces [π···π] stacking that can overcome the Coulombic repulsion between the pyridinium units, affording an efficient synthesis of an octacationic homo[2]catenane. Notably, upon increasing the ionic strength by adding tetrabutylammonium hexafluorophosphate, the catenane yield increases significantly as a result of the decrease in Coulombic repulsions between the pyridinium units. Although the ground-state photophysical properties of the free cyclophane and the catenane are similar and show a charge-transfer band at ∼455 nm, their PL characters are distinct, denoting different excited states. The cyclophane emits at ∼562 nm (quantum yield ϕF = 3.6%, emission lifetime τs = 3 ns in MeCN), which is characteristic of a disubstituted anthracene-pyridinium linker. By contrast, the catenane displays an exciplex PL at low concentration (10-8 M) with an emission band centered on 650 nm (ϕF = 0.5%, τs = 14 ns) in MeCN and at 675 nm in aqueous solution. Live-cell imaging performed in MIAPaCa-2 prostate cancer cells confirmed that the catenane exciplex emission can be detected at micromolar concentrations.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohamad S Kodaimati
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jessica E Hornick
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Minh T Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M Mustafa Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, P. R. China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Li ZW, Wang X, Wei LQ, Ivanović-Burmazović I, Liu GF. Subcomponent Self-Assembly of Covalent Metallacycles Templated by Catalytically Active Seven-Coordinate Transition Metal Centers. J Am Chem Soc 2020; 142:7283-7288. [PMID: 32243756 DOI: 10.1021/jacs.0c01035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coordination geometries of transition metals play vital roles in the self-assembly process of supramolecular coordination complexes. Herein, seven-coordinate 3d metal ions were applied as templates and catalytically active sites for subcomponent self-assembly that resulted in a new category of covalent metallacycles. Single-crystal structures showed that the sizes, configurations, and functionalization of covalent metallacycles could be tuned by the selection of rigid dihydrazide, transition metal ions, and prefunctionalized subcomponents, respectively. Moreover, metallacycles decorated with carboxylic groups could be employed as precursors to prepare aerogels through hierarchical self-assembly, which also exhibited high catalytic activity for cycloaddition of CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Zhi-Wei Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Gao-Feng Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
41
|
Mao J, Hai Y, Ye H, You L. Adaptive Covalent Networks Enabled by Dual Reactivity: The Evolution of Reversible Covalent Bonds, Their Molecular Assemblies, and Guest Recognition. J Org Chem 2020; 85:5351-5361. [PMID: 32250630 DOI: 10.1021/acs.joc.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive chemistry allows transformation and selection within molecular networks, and adaptive systems composed of different types of dynamic covalent reactions (DCRs) are challenging. Herein, we demonstrate dual reactivity-based covalent networks encompassing the regulation of and switching between C-N- and C-S-based reversible covalent assemblies. The creation and exchange of C-N- or C-S-derived assemblies exhibiting diverse architectures, including linear structures, macrocycles, and cages, were achieved. The shift of reactivity then permitted the interconversion between C-N- and C-S-containing assemblies. Moreover, the adaption of intramolecular and intermolecular scaffolds was feasible via linker design. The latent hemiaminal chirality center offered a pathway for the induction of chirality within assemblies. Finally, switchable structural change and controlled extraction of ions were realized with Hg2+ as a guest for macrocycles. The remarkable complexity of networks described herein could open the door for the utility in sophisticated functional systems.
Collapse
Affiliation(s)
- Jialin Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Khan I, Wang J, Zou H, Ye H, Zha D, Zhang Y, You L. Noncovalent and Dynamic Covalent Chemistry Strategies for Driving Thermoresponsive Phase Transition with Multistimuli and Controlled Encapsulation/Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2962-2973. [PMID: 31867942 DOI: 10.1021/acsami.9b18588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the development of multiresponsive thermally sensitive polymers through both supramolecular and reversible covalent strategies as well as their use in controlled encapsulation and release. Novel acylhydrazone-based dynamic covalent polymers displaying lower critical solution temperature (LCST) or upper critical solution temperature (UCST) were synthesized. A remarkable control over thermal phase transition can be tuned through multimodes, such as anions, cations, solvent, pH, and competing components. In particular, anion recognition allowed disassembly and thus led to a significant decrease of UCST in dimethyl sulfoxide, and the combination of anion and solvent effects offered additional handle for control. Moreover, the use of anions, cations, as well as pH change was employed for the modulation of LCST-type polymer in water. Furthermore, switching on/off thermoresponsiveness was readily achieved by dynamic covalent exchange. Mechanistic studies also shed light on stimuli-induced changes in aggregation behaviors. Finally, thermally controlled encapsulation and release of hydrophobic and hydrophilic dyes were realized with great repeatability and reversibility, respectively, showing potential in delivery and sensing. The results and strategies described should provide opportunities for many aspects, including dynamic assemblies, complex systems, and adaptive materials.
Collapse
Affiliation(s)
- Imran Khan
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Junling Wang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
| | - Yi Zhang
- School of Materials Science and Energy Engineering , Foshan University , Foshan , Guangdong 528000 , China
| | - Lei You
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
43
|
Fu QT, Yan X, Zhang XY, He Y, Zhang WD, Liu Y, Li Y, Gu ZG. Photochromic organic cage-encapsulated Au nanoparticles: light-regulated cavities for catalytic reduction of 4-nitrophenol. Dalton Trans 2020; 49:12145-12149. [DOI: 10.1039/d0dt02044c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulated Au nanoparticles in a diarylethene-based photochromic cage with adjustable particle sizes under UV and visible light exhibited different catalytic rates for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Qiu-Ting Fu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xin-Yue Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yue He
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
44
|
Blanco-Gómez A, Neira I, Barriada JL, Melle-Franco M, Peinador C, García MD. Thinking outside the "Blue Box": from molecular to supramolecular pH-responsiveness. Chem Sci 2019; 10:10680-10686. [PMID: 32206250 PMCID: PMC7069232 DOI: 10.1039/c9sc04489b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Abstract
We present herein the development of a new polycationic cyclophane: the "red box", second in a series of hydrazone-based analogues of the well-known organic receptor cyclobis(paraquat-p-phenylene)cyclophane ("blue box"). The macrocycle has been prepared in an excellent yield in aqueous media, and shows both a remarkable pH-responsiveness and unusual hydrolytic stability of the two hydrazone C[double bond, length as m-dash]N bonds, associated with charge delocalization of the amine lone pair. Whilst in aqueous media the "red box" is able to complex a variety of aromatic substrates, both in its acidic and basic form, in organic media the cyclophane is only able to capture those in the acidic form, resulting in supramolecular pH-responsiveness.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - Iago Neira
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - José L Barriada
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Carlos Peinador
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - Marcos D García
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| |
Collapse
|
45
|
Zhang D, Ronson TK, Lavendomme R, Nitschke JR. Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages. J Am Chem Soc 2019; 141:18949-18953. [PMID: 31729877 PMCID: PMC6900757 DOI: 10.1021/jacs.9b10741] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Here we report a new supramolecular strategy for the
selective
separation of specific polycyclic aromatic hydrocarbons (PAHs) from
mixtures. The use of a triethylene glycol-functionalized formylpyridine
subcomponent allowed the construction of an FeII4L4 tetrahedron 1 that was capable of transferring
between water and nitromethane layers, driven by anion metathesis.
Cage 1 selectively encapsulated coronene from among a
mixture of eight different types of PAHs in nitromethane, bringing
it into a new nitromethane phase by transiting through an intermediate
water phase. The bound coronene was released from 1 upon
addition of benzene, and both the cage and the purified coronene could
be separated via further phase separation.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Roy Lavendomme
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , United Kingdom
| |
Collapse
|
46
|
Haynes IW, Wu G, Haque MA, Li H, Do TD. Conformational Preference of Macrocycles Investigated by Ion-Mobility Mass Spectrometry and Distance Geometry Modeling. Anal Chem 2019; 91:13439-13447. [DOI: 10.1021/acs.analchem.9b02100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Isaac W. Haynes
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Md. Ashraful Haque
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Thanh D. Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
47
|
Omoto K, Tashiro S, Shionoya M. Molecular recognition of planar and non-planar aromatic hydrocarbons through multipoint Ag-π bonding in a dinuclear metallo-macrocycle. Chem Sci 2019; 10:7172-7176. [PMID: 31588284 PMCID: PMC6764282 DOI: 10.1039/c9sc02619c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Exploration of a novel structural motif of host-guest interactions is one of the most fundamental topics to develop macrocycle-based host-guest/supramolecular systems. Herein, we present an unprecedented mode of inclusion of aromatic hydrocarbons into a macrocyclic cavity via multipoint Ag-π bonding as a driving force. A dinuclear AgI-macrocycle encapsulated one molecule of anthracene, a typical planar aromatic hydrocarbon, in solution and in the solid state. Single-crystal X-ray diffraction analysis of the host-guest inclusion complex revealed the binding of anthracene via multipoint Ag-π bonding to both AgI ions arranged within the open-ended nano-cavity of the dinuclear AgI-macrocycle. Notably, this binding motif based on Ag-π bonding was also applied to the inclusion of triptycene, a non-planar aromatic hydrocarbon with a steric tripodal structure, to evaluate the rotational motion of the molecular paddle-wheel in the AgI-macrocycle.
Collapse
Affiliation(s)
- Kenichiro Omoto
- Department of Chemistry , Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Shohei Tashiro
- Department of Chemistry , Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Mitsuhiko Shionoya
- Department of Chemistry , Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan .
| |
Collapse
|
48
|
Kruve A, Caprice K, Lavendomme R, Wollschläger JM, Schoder S, Schröder HV, Nitschke JR, Cougnon FBL, Schalley CA. Ion‐Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angew Chem Int Ed Engl 2019; 58:11324-11328. [DOI: 10.1002/anie.201904541] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Anneli Kruve
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Kenji Caprice
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jan M. Wollschläger
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Stefan Schoder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Hendrik V. Schröder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fabien B. L. Cougnon
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Christoph A. Schalley
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
- School of Life SciencesNorthwestern Polytechnical University 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
49
|
Kruve A, Caprice K, Lavendomme R, Wollschläger JM, Schoder S, Schröder HV, Nitschke JR, Cougnon FBL, Schalley CA. Ion‐Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anneli Kruve
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Kenji Caprice
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jan M. Wollschläger
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Stefan Schoder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Hendrik V. Schröder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fabien B. L. Cougnon
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Christoph A. Schalley
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
- School of Life SciencesNorthwestern Polytechnical University 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
50
|
Kumar R, Aggarwal H, Bhowal R, Chopra D, Srivastava A. An Electron‐Rich Helical Host for the Exclusive Removal of a Planar Electron‐Deficient Organic Compound. Chemistry 2019; 25:10756-10762. [DOI: 10.1002/chem.201902418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/04/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Rajesh Kumar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Himanshu Aggarwal
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Rohit Bhowal
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Deepak Chopra
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| | - Aasheesh Srivastava
- Department of ChemistryIndian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|