1
|
Yin Y, Zhang Y, Zhou X, Gui B, Wang W, Jiang W, Zhang YB, Sun J, Wang C. Ultrahigh-surface area covalent organic frameworks for methane adsorption. Science 2024; 386:693-696. [PMID: 39509500 DOI: 10.1126/science.adr0936] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Developing porous materials with ultrahigh surface areas for gas storage (for example, methane) is attractive but challenging. Here, we report two isostructural three-dimensional covalent organic frameworks (COFs) with a rare self-catenated alb-3,6-Ccc2 topology and a pore size of 1.1 nanometer. Notably, these imine-linked microporous COFs show both high gravimetric Brunauer-Emmett-Teller (BET) surface areas (~4400 square meters per gram) and volumetric BET surface areas (~1900 square meters per cubic centimeter). Moreover, their volumetric methane uptake reaches up to 264 cubic centimeter (standard temperature and pressure) per cubic centimeter [cm3 (STP) cm-3] at 100 bar and 298 kelvin, and they exhibit the highest volumetric working capacity of 237 cm3 (STP) cm-3 at 5 to 100 bar and 298 kelvin among all reported porous crystalline materials.
Collapse
Affiliation(s)
- Ying Yin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ya Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xu Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wenqi Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Yang M, Su K, Yuan D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem Commun (Camb) 2024; 60:10476-10487. [PMID: 39225058 DOI: 10.1039/d4cc04150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porous organic cages (POCs) are constructed from purely organic synthons by covalent linkages with intrinsic cavities and have shown potential applications in many areas. However, the majority of POC synthesis methods reported thus far have relied on dynamically reversible imine linkages, which can be metastable and unstable under humid or harsh chemical conditions. This instability significantly hampers their research prospects and practical applications. Consequently, strategies to enhance the chemical stability of POCs by modifying imine bonds and developing robust covalent linkages are imperative for realizing the full potential of these materials. In this review, we aim to highlight recent advancements in synthesizing chemical-stable POCs through these approaches and their associated applications. Additionally, we propose further strategies for creating stable POCs and discuss future opportunities for practical applications.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Rondelli M, Pasán J, Fernández I, Martín T. Predisposition in Dynamic Covalent Chemistry: The Role of Non-Covalent Interactions in the Assembly of Tetrahedral Boronate Cages. Chemistry 2024; 30:e202400896. [PMID: 38507133 DOI: 10.1002/chem.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Directional bonding strategies guide the design of complex molecular architectures, yet challenges arise due to emergent behavior. Rigid structures face geometric constraints and sensitivity to mismatches, hindering the efficient assembly of molecular organic cages (MOCs). Harnessing intramolecular non-covalent interactions offers a promising solution, broadening geometrical possibilities and enhancing adaptability to boost assembly yields. However, identifying these interactions remains challenging, with their full potential sometimes latent until final assembly. This study explores these challenges by synthesizing boronic acid tripods with varied oxygen positions at the tripodal feet and investigating their role in assembling tetrahedral boronate MOCs. Our results reveal substantial differences in the assembly efficiency among tripods. While the building blocks with oxygen in the benzylic position relative to the central aromatic ring form the MOCs in high yields, those with the oxygen atom directly bound to the central aromatic ring, only yield traces. Through X-ray crystallography and DFT analyses, we elucidate how intramolecular interactions profoundly influence the geometry of the building blocks and cages in a relay-like fashion, highlighting the importance of considering intramolecular interactions in the rational design of (supra)molecular architectures.
Collapse
Affiliation(s)
- Manuel Rondelli
- Molecular Science Department, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientícas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| | - Jorge Pasán
- Departamento de Química, Facultad de Ciencias, Laboratorio de Materiales para Análisis Químico (MAT4LL) Universidad de La Laguna, 38200, Tenerife, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Tomás Martín
- Molecular Science Department, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientícas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain
| |
Collapse
|
4
|
Rondelli M, Delgado-Hernández S, Daranas AH, Martín T. Conformational control enables boroxine-to-boronate cage metamorphosis. Chem Sci 2023; 14:12953-12960. [PMID: 38023528 PMCID: PMC10664459 DOI: 10.1039/d3sc02920d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The discovery of molecular organic cages (MOCs) is inhibited by the limited organic-chemical space of the building blocks designed to fulfill strict geometric requirements for efficient assembly. Using intramolecular attractive or repulsive non-covalent interactions to control the conformation of flexible systems can effectively augment the variety of building blocks, ultimately facilitating the exploration of new MOCs. In this study, we introduce a set of boronic acid tripods that were designed using rational design principles. Conformational control was induced by extending the tripod's arms by a 2,3-dimethylbenzene unit, leading to the efficient formation of a tetrapodal nanometer-sized boroxine cage. The new building block's versatility was demonstrated by performing cage metamorphosis upon adding an aromatic tetraol. This led to a quantitative boroxine-to-boronate transformation and a topological shift from tetrahedral to trigonal bipyramidal.
Collapse
Affiliation(s)
- Manuel Rondelli
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Doctoral and Postgraduate School, University of La Laguna (ULL) 38200 La Laguna Tenerife Spain
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL) 38206 La Laguna Tenerife Spain
| | - Antonio H Daranas
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica "Antonio González", ULL Avda. Astrofísico Francisco Sánchez, 2 38206 La Laguna Tenerife Spain
| | - Tomás Martín
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) Avda. Astrofísico Francisco Sánchez, 3 38206 La Laguna Tenerife Spain
- Instituto Universitario de Bio-Orgánica "Antonio González", ULL Avda. Astrofísico Francisco Sánchez, 2 38206 La Laguna Tenerife Spain
| |
Collapse
|
5
|
Rondelli M, Daranas AH, Martín T. Importance of Precursor Adaptability in the Assembly of Molecular Organic Cages. J Org Chem 2023; 88:2113-2121. [PMID: 36730713 PMCID: PMC9942191 DOI: 10.1021/acs.joc.2c02523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For molecular architectures based on dynamic covalent chemistry (DCvC), strict preorganization is a paradigmatic concept and the generally accepted strategy for their rational design. This results in the creation of highly rigid building blocks which are expected to fulfill the ideal geometry of the assembly, coming at a price that small geometric mismatches result in unpredicted and/or unproductive reaction outcomes. In this study, we show that feet of a tripodal platform have a great influence on the assembly of tetrahedral organic cages based on boronate ester formation. The aryl benzyl ether-functionalized building blocks perform significantly better than their alkyl-functionalized equivalents. Experimentally and using density functional theory geometry optimization of the cage structures, we prove that unexpectedly, this is not due to solubility but because of the enhanced capability of the aryl benzyl ether-functionalized building blocks to fit the ideal geometry of the assembly. This introduces the concept of building block adaptability to overcome geometrical mismatches in DCvC systems.
Collapse
Affiliation(s)
- Manuel Rondelli
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de
Investigaciones Científicas (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez,
3, 38206 La Laguna, Tenerife, Spain,Doctoral
and Postgraduate School, University of La
Laguna, Avda. Astrofísico
Francisco Sánchez, 38203 La Laguna, Tenerife, Spain
| | - Antonio H. Daranas
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de
Investigaciones Científicas (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez,
3, 38206 La Laguna, Tenerife, Spain,Instituto
Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez,
2, 38206 La Laguna, Tenerife, Spain,
| | - Tomás Martín
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de
Investigaciones Científicas (IPNA-CSIC), Avda. Astrofísico Francisco Sánchez,
3, 38206 La Laguna, Tenerife, Spain,Instituto
Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez,
2, 38206 La Laguna, Tenerife, Spain,
| |
Collapse
|
6
|
Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE, Badjić JD. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022; 61:e202207418. [PMID: 35723284 PMCID: PMC9544755 DOI: 10.1002/anie.202207418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/23/2022]
Abstract
Living systems use chemical fuels to transiently assemble functional structures. As a step toward constructing abiotic mimics of such structures, we herein describe dissipative formation of covalent basket cage CBC 5 by reversible imine condensation of cup-shaped aldehyde 2 (i.e., basket) with trivalent aromatic amine 4. This nanosized [4+4] cage (V=5 nm3 , Mw =6150 Da) has shape of a truncated tetrahedron with four baskets at its vertices and four aromatic amines forming the faces. Importantly, tris-aldehyde basket 2 and aliphatic tris-amine 7 undergo condensation to give small [1+1] cage 6. The imine metathesis of 6 and aromatic tris-amine 4 into CBC 5 was optimized to bias the equilibrium favouring 6. Addition of tribromoacetic acid (TBA) as a chemical fuel perturbs this equilibrium to result in the transient formation of CBC 5, with subsequent consumption of TBA via decarboxylation driving the system back to the starting state.
Collapse
Affiliation(s)
| | - Tyler J. Finnegan
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Carson E. Ward
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Curtis E. Moore
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University100 West 18th AvenueColumbusOH 43210USA
| |
Collapse
|
7
|
Cui M, Jia G. Organometallic Chemistry of Transition Metal Alkylidyne Complexes Centered at Metathesis Reactions. J Am Chem Soc 2022; 144:12546-12566. [PMID: 35793547 DOI: 10.1021/jacs.2c01192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metals form a variety of alkylidyne complexes with either a d0 metal center (high-valent) or a non-d0 metal center (low-valent). One of the most interesting properties of alkylidyne complexes is that they can undergo or mediate metathesis reactions. The most well-studied metathesis reactions are alkyne metathesis involving high-valent alkylidynes. High-valent alkylidynes can also undergo metathesis reactions with heterotriple bonded species such as N≡CR, P≡CR, and N≡NR+. Metathesis reactions involving low-valent alkylidynes are less known. Highly efficient alkyne metathesis catalysts have been developed based on Mo(VI) and W(VI) alkylidynes. Catalytic cross-metathesis of nitriles with alkynes has also been achieved with M(VI) (M = W, Mo) alkylidyne or nitrido complexes. The metathesis activity of alkylidyne complexes is sensitively dependent on metals, supporting ligands and substituents of alkylidynes. Beyond metathesis, metal alkylidynes can also promote other reactions including alkyne polymerization. The remaining shortcomings and opportunities in the field are assessed.
Collapse
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, SAR, Hong Kong, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, SAR, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
8
|
Greenlee AJ, Chen H, Wendell CI, Moore JS. Tandem Imine Formation and Alkyne Metathesis Enabled by Catalyst Choice. J Org Chem 2022; 87:8429-8436. [PMID: 35678630 DOI: 10.1021/acs.joc.2c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-rung molecular ladder 8 was prepared in one pot via tandem imine condensation and alkyne metathesis. Catalyst VI is demonstrated to successfully engender the metathesis of imine-bearing substrate 7, while catalyst III does not. The susceptibility of catalyst VI to deactivation by hydrolysis and ligand exchange is demonstrated. Assembly and disassembly of ladder 8 in one pot were demonstrated in the presence and absence of a Lewis acid catalyst.
Collapse
Affiliation(s)
- Andrew J Greenlee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heyu Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chloe I Wendell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Badjic JD, Liyana Gunawardana VW, Finnegan TJ, Ward CE, Moore CE. Dissipative Formation of Covalent Basket Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| | | | | | | | | |
Collapse
|
10
|
Abstract
![]()
For numerous enabling features and strategic virtues, contemporary
alkyne metathesis is increasingly recognized as a formidable synthetic
tool. Central to this development was the remarkable evolution of
the catalysts during the past decades. Molybdenum alkylidynes carrying
(tripodal) silanolate ligands currently set the standards; their functional
group compatibility is exceptional, even though they comprise an early
transition metal in its highest oxidation state. Their performance
is manifested in case studies in the realm of dynamic covalent chemistry,
advanced applications to solid-phase synthesis, a revival of transannular
reactions, and the assembly of complex target molecules at sites,
which one may not intuitively trace back to an acetylenic ancestor.
In parallel with these innovations in material science and organic
synthesis, new insights into the mode of action of the most advanced
catalysts were gained by computational means and the use of unconventional
analytical tools such as 95Mo and 183W NMR spectroscopy.
The remaining shortcomings, gaps, and desiderata in the field are
also critically assessed.
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
11
|
Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Self‐Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yixin Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Binbin Chen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yintao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Chenqi Ge
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Chi Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Lixin Liang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xiuqiong Zeng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qi Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
12
|
Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Self-Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water. Angew Chem Int Ed Engl 2021; 60:18815-18820. [PMID: 34129262 DOI: 10.1002/anie.202106428] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Indexed: 11/11/2022]
Abstract
Self-assembly of host molecules in aqueous media via metal-ligand coordination is well developed. However, the preparation of purely covalent counterparts in water has remained a formidable task. An anionic tetrahedron cage was successfully self-assembled in a [4+4] manner by condensing a trisamine and a trisformyl in water. Even although each individual imine bond is rather labile and apt to hydrolyze in water, the tetrahedron is remarkably stable or inert due to multivalence. The tetrahedral cages, as well as its neutral counterparts dissolved in organic solvent, have homochirality, namely that their four propeller-shaped trisformyl residues adopt the same rotational conformation. The cage is able to take advantage of hydrophobic effect to accommodate a variety of guest molecules in water. When a chiral guest was recognized, the formation of one enantiomer of the cage became more favored relative to the other. As a consequence, the cage could be produced in an enantioselective manner. The tetrahedron is able to maintain its chirality after removal of the chiral guest-probably on account of the cooperative occurrence of intramolecular forces that restrict the intramolecular flipping of phenyl units in the cage framework.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Binbin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yintao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chenqi Ge
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Lixin Liang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiuqiong Zeng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
13
|
Thompson RR, Rotella ME, Zhou X, Fronczek FR, Gutierrez O, Lee S. Impact of Ligands and Metals on the Formation of Metallacyclic Intermediates and a Nontraditional Mechanism for Group VI Alkyne Metathesis Catalysts. J Am Chem Soc 2021; 143:9026-9039. [PMID: 34110130 PMCID: PMC8227475 DOI: 10.1021/jacs.1c01843] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The
intermediacy of metallacyclobutadienes as part of a [2 + 2]/retro-[2
+ 2] cycloaddition-based mechanism is a well-established paradigm
in alkyne metathesis with alternative species viewed as off-cycle
decomposition products that interfere with efficient product formation.
Recent work has shown that the exclusive intermediate isolated from
a siloxide podand-supported molybdenum-based catalyst was not the
expected metallacyclobutadiene but instead a dynamic metallatetrahedrane.
Despite their paucity in the chemical literature, theoretical work
has shown these species to be thermodynamically more stable as well
as having modest barriers for cycloaddition. Consequentially, we report
the synthesis of a library of group VI alkylidynes as well as the
roles metal identity, ligand flexibility, secondary coordination sphere,
and substrate identity all have on isolable intermediates. Furthermore,
we report the disparities in catalyst competency as a function of
ligand sterics and metal choice. Dispersion-corrected DFT calculations
are used to shed light on the mechanism and role of ligand and metal
on the intermediacy of metallacyclobutadiene and metallatetrahedrane
as well as their implications to alkyne metathesis.
Collapse
Affiliation(s)
- Richard R Thompson
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Madeline E Rotella
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xin Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Semin Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Huang S, Lei Z, Jin Y, Zhang W. By-design molecular architectures via alkyne metathesis. Chem Sci 2021; 12:9591-9606. [PMID: 34349932 PMCID: PMC8293811 DOI: 10.1039/d1sc01881g] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
Shape-persistent purely organic molecular architectures have attracted tremendous research interest in the past few decades. Dynamic Covalent Chemistry (DCvC), which deals with reversible covalent bond formation reactions, has emerged as an efficient synthetic approach for constructing these well-defined molecular architectures. Among various dynamic linkages, the formation of ethynylene linkages through dynamic alkyne metathesis is of particular interest due to their high chemical stability, linearity, and rigidity. In this review, we focus on the synthetic strategies of discrete molecular architectures (e.g., macrocycles, molecular cages) containing ethynylene linkages using alkyne metathesis as the key step, and their applications. We will introduce the history and challenges in the synthesis of those architectures via alkyne metathesis, the development of alkyne metathesis catalysts, the reported novel macrocycle structures, molecular cage structures, and their applications. In the end, we offer an outlook of this field and remaining challenges. The recent synthesis of novel shape-persistent 2D and 3D molecular architectures via alkyne metathesis is reviewed and the critical role of catalysts is also highlighted.![]()
Collapse
Affiliation(s)
- Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| |
Collapse
|
15
|
Xie H, Finnegan TJ, Liyana Gunawardana VW, Pavlović RZ, Moore CE, Badjić JD. A Hexapodal Capsule for the Recognition of Anions. J Am Chem Soc 2021; 143:3874-3880. [PMID: 33656878 DOI: 10.1021/jacs.0c12329] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Han Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Tyler J. Finnegan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Vageesha W. Liyana Gunawardana
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E. Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Zhang ZQ, Ren QX, Tian WF, Sun WH, Cao XP, Shi ZF, Chow HF, Kuck D. Synthesis of Enantiopure Hydrocarbon Cages Based on an Optically Resolved C3-Symmetric Triaminotribenzotriquinacene. Org Lett 2021; 23:1478-1483. [PMID: 33525871 DOI: 10.1021/acs.orglett.1c00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of the enantiomerically pure, D3-symmetric covalent hydrocarbon cages (+)-(M,M)-4 and (-)-(P,P)-4 bearing two C3-symmetrically functionalized tribenzobenzotriquinacene (TBTQ) vertices is reported. The enantiomerically pure TBTQ building blocks (+)-(M)-5 and (-)-(P)-5 were prepared via the diastereomeric TBTQ triamides obtained by use of both Boc-d- and Boc-l-phenylglycine as chiral auxiliaries.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qing-Xia Ren
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wan-Fa Tian
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wen-Hua Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zi-Fa Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hak-Fun Chow
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Ge Y, Huang S, Hu Y, Zhang L, He L, Krajewski S, Ortiz M, Jin Y, Zhang W. Highly active alkyne metathesis catalysts operating under open air condition. Nat Commun 2021; 12:1136. [PMID: 33602910 PMCID: PMC7893043 DOI: 10.1038/s41467-021-21364-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
Alkyne metathesis represents a rapidly emerging synthetic method that has shown great potential in small molecule and polymer synthesis. However, its practical use has been impeded by the limited availability of user-friendly catalysts and their generally high moisture/air sensitivity. Herein, we report an alkyne metathesis catalyst system that can operate under open-air conditions with a broad substrate scope and excellent yields. These catalysts are composed of simple multidentate tris(2-hydroxyphenyl)methane ligands, which can be easily prepared in multi-gram scale. The catalyst substituted with electron withdrawing cyano groups exhibits the highest activity at room temperature with excellent functional group tolerance (-OH, -CHO, -NO2, pyridyl). More importantly, the catalyst provides excellent yields (typically >90%) in open air, comparable to those operating under argon. When dispersed in paraffin wax, the active catalyst can be stored on a benchtop under ambient conditions without any decrease in activity for one day (retain 88% after 3 days). This work opens many possibilities for developing highly active user-friendly alkyne metathesis catalysts that can function in open air. Alkyne metathesis catalysts usually suffer from high moisture/air sensitivity, which limit their wide applicability. Here, the authors report efficient alkyne metathesis catalysts that can operate under open-air conditions with a broad functional group tolerance.
Collapse
Affiliation(s)
- Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Yiming Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu, China
| | | | - Michael Ortiz
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
18
|
Abstract
The discovery of materials is an important element in the development of new technologies and abilities that can help humanity tackle many challenges. Materials discovery is frustratingly slow, with the large time and resource cost often providing only small gains in property performance. Furthermore, researchers are unwilling to take large risks that they will only know the outcome of months or years later. Computation is playing an increasing role in allowing rapid screening of large numbers of materials from vast search space to identify promising candidates for laboratory synthesis and testing. However, there is a problem, in that many materials computationally predicted to have encouraging properties cannot be readily realised in the lab. This minireview looks at how we can tackle the problem of confirming that hypothetical materials are synthetically realisable, through consideration of all the stages of the materials discovery process, from obtaining the components, reacting them to a material in the correct structure, through to processing into a desired form. In an ideal world, a material prediction would come with an associated 'recipe' for the successful laboratory preparation of the material. We discuss the opportunity to thus prevent wasted effort in experimental discovery programmes, including those using automation, to accelerate the discovery of novel materials.
Collapse
Affiliation(s)
- Filip T Szczypiński
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - Steven Bennett
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
19
|
|
20
|
Hillenbrand J, Leutzsch M, Gordon CP, Copéret C, Fürstner A. 183 W NMR Spectroscopy Guides the Search for Tungsten Alkylidyne Catalysts for Alkyne Metathesis. Angew Chem Int Ed Engl 2020; 59:21758-21768. [PMID: 32820864 PMCID: PMC7756321 DOI: 10.1002/anie.202009975] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Triarylsilanolates are privileged ancillary ligands for molybdenum alkylidyne catalysts for alkyne metathesis but lead to disappointing results and poor stability in the tungsten series. 1 H,183 W heteronuclear multiple bond correlation spectroscopy, exploiting a favorable 5 J-coupling between the 183 W center and the peripheral protons on the alkylidyne cap, revealed that these ligands upregulate the Lewis acidity to an extent that the tungstenacyclobutadiene formed in the initial [2+2] cycloaddition step is over-stabilized and the catalytic turnover brought to a halt. Guided by the 183 W NMR shifts as a proxy for the Lewis acidity of the central atom and by an accompanying chemical shift tensor analysis of the alkylidyne unit, the ligand design was revisited and a more strongly π-donating all-alkoxide ligand prepared. The new expanded chelate complex has a tempered Lewis acidity and outperforms the classical Schrock catalyst, carrying monodentate tert-butoxy ligands, in terms of rate and functional-group compatibility.
Collapse
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Christopher P. Gordon
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Christophe Copéret
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
21
|
Alexandre P, Zhang W, Rominger F, Elbert SM, Schröder RR, Mastalerz M. A Robust Porous Quinoline Cage: Transformation of a [4+6] Salicylimine Cage by Povarov Cyclization. Angew Chem Int Ed Engl 2020; 59:19675-19679. [PMID: 32521080 PMCID: PMC7689861 DOI: 10.1002/anie.202007048] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Porous shape-persistent organic cages have become the object of interest in recent years because they are soluble and thus processable from solution. A variety of cages can be achieved by applying dynamic covalent chemistry (DCC), but they are less chemically stable. Here the transformation of a salicylimine cage into a quinoline cage by a twelve-fold Povarov reaction as the key step is described. Besides the chemical stability of the cage over a broad pH regime, it shows a unique absorption and emission depending on acid concentration. Furthermore, thin films for the vapor detection of acids were investigated, showing color switches from pale-yellow to red, and characteristic emission profiles.
Collapse
Affiliation(s)
- Pierre‐Emmanuel Alexandre
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Wen‐Shan Zhang
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Sven M. Elbert
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Rasmus R. Schröder
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Michael Mastalerz
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
22
|
Hillenbrand J, Leutzsch M, Gordon CP, Copéret C, Fürstner A. 183
W NMR Spectroscopy Guides the Search for Tungsten Alkylidyne Catalysts for Alkyne Metathesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Christopher P. Gordon
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|
23
|
Alexandre P, Zhang W, Rominger F, Elbert SM, Schröder RR, Mastalerz M. A Robust Porous Quinoline Cage: Transformation of a [4+6] Salicylimine Cage by Povarov Cyclization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pierre‐Emmanuel Alexandre
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wen‐Shan Zhang
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Rasmus R. Schröder
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre for Advanced Materials Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
24
|
Duan H, Li Y, Li Q, Wang P, Liu X, Cheng L, Yu Y, Cao L. Host–Guest Recognition and Fluorescence of a Tetraphenylethene‐Based Octacationic Cage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Honghong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Qingfang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Pinpin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Lin Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry EducationCollege of Chemistry and Materials ScienceNorthwest University Xi'an 710069 P. R. China
| |
Collapse
|
25
|
Duan H, Li Y, Li Q, Wang P, Liu X, Cheng L, Yu Y, Cao L. Host-Guest Recognition and Fluorescence of a Tetraphenylethene-Based Octacationic Cage. Angew Chem Int Ed Engl 2020; 59:10101-10110. [PMID: 31692185 DOI: 10.1002/anie.201912730] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 12/19/2022]
Abstract
We report the synthesis and characterization of a three-dimensional tetraphenylethene-based octacationic cage that shows host-guest recognition of polycyclic aromatic hydrocarbons (e.g. coronene) in organic media and water-soluble dyes (e.g. sulforhodamine 101) in aqueous media through CH⋅⋅⋅π, π-π, and/or electrostatic interactions. The cage⊃coronene exhibits a cuboid internal cavity with a size of approximately 17.2×11.0×6.96 Å3 and a "hamburger"-type host-guest complex, which is hierarchically stacked into 1D nanotubes and a 3D supramolecular framework. The free cage possesses a similar cavity in the crystalline state. Furthermore, a host-guest complex formed between the octacationic cage and sulforhodamine 101 had a higher absolute quantum yield (ΦF =28.5 %), larger excitation-emission gap (Δλex-em =211 nm), and longer emission lifetime (τ=7.0 ns) as compared to the guest (ΦF =10.5 %; Δλex-em =11 nm; τ=4.9 ns), and purer emission (ΔλFWHM =38 nm) as compared to the host (ΔλFWHM =111 nm).
Collapse
Affiliation(s)
- Honghong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yawen Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Qingfang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Pinpin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lin Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
26
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Thompson RR, Rotella ME, Du P, Zhou X, Fronczek FR, Kumar R, Gutierrez O, Lee S. Siloxide Podand Ligand as a Scaffold for Molybdenum-Catalyzed Alkyne Metathesis and Isolation of a Dynamic Metallatetrahedrane Intermediate. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00430] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard R. Thompson
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Madeline E. Rotella
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Pu Du
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Xin Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Semin Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| |
Collapse
|
28
|
Kinney ZJ, Kirinda VC, Hartley CS. Macrocycles of higher ortho-phenylenes: assembly and folding. Chem Sci 2019; 10:9057-9068. [PMID: 31762983 PMCID: PMC6857672 DOI: 10.1039/c9sc02975c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 01/24/2023] Open
Abstract
The sizes and geometries of macrocycles assembled from ortho-phenylenes are predicted by the stabilities and bite angles of possible conformers.
Higher-order structure in abiotic foldamer systems represents an important but largely unrealized goal. As one approach to this challenge, covalent assembly can be used to assemble macrocycles with foldamer subunits in well-defined spatial relationships. Such systems have previously been shown to exhibit self-sorting, new folding motifs, and dynamic stereoisomerism, yet there remain important questions about the interplay between folding and macrocyclization and the effect of structural confinement on folding behavior. Here, we explore the dynamic covalent assembly of extended ortho-phenylenes (hexamer and decamer) with rod-shaped linkers. Characteristic 1H chemical shift differences between cyclic and acyclic systems can be compared with computational conformer libraries to determine the folding states of the macrocycles. We show that the bite angle provides a measure of the fit of an o-phenylene conformer within a shape-persistent macrocycle, affecting both assembly and ultimate folding behavior. For the o-phenylene hexamer, the bite angle and conformer stability work synergistically to direct assembly toward triangular [3 + 3] macrocycles of well-folded oligomers. For the decamer, the energetic accessibility of conformers with small bite angles allows [2 + 2] macrocycles to be formed as the predominant species. In these systems, the o-phenylenes are forced into unusual folding states, preferentially adopting a backbone geometry with distinct helical blocks of opposite handedness. The results show that simple geometric restrictions can be used to direct foldamers toward increasingly complex folds.
Collapse
Affiliation(s)
- Zacharias J Kinney
- Department of Chemistry & Biochemistry , Miami University , Oxford , OH 45056 , USA .
| | - Viraj C Kirinda
- Department of Chemistry & Biochemistry , Miami University , Oxford , OH 45056 , USA .
| | - C Scott Hartley
- Department of Chemistry & Biochemistry , Miami University , Oxford , OH 45056 , USA .
| |
Collapse
|
29
|
From Concept to Crystals via Prediction: Multi‐Component Organic Cage Pots by Social Self‐Sorting. Angew Chem Int Ed Engl 2019; 58:16275-16281. [DOI: 10.1002/anie.201909237] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Indexed: 12/11/2022]
|
30
|
Greenaway RL, Santolini V, Pulido A, Little MA, Alston BM, Briggs ME, Day GM, Cooper AI, Jelfs KE. From Concept to Crystals via Prediction: Multi‐Component Organic Cage Pots by Social Self‐Sorting. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rebecca L. Greenaway
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Valentina Santolini
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| | - Angeles Pulido
- School of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ UK
- Current address: The Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Marc A. Little
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Ben M. Alston
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Michael E. Briggs
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Graeme M. Day
- School of ChemistryUniversity of Southampton Highfield Southampton SO17 1BJ UK
| | - Andrew I. Cooper
- Department of Chemistry and Materials Innovation FactoryUniversity of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Kim E. Jelfs
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White City Campus, Wood Lane London W12 0BZ UK
| |
Collapse
|
31
|
Pattillo CC, Moore JS. A tetrahedral molecular cage with a responsive vertex. Chem Sci 2019; 10:7043-7048. [PMID: 31588271 PMCID: PMC6676470 DOI: 10.1039/c9sc02047k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/09/2019] [Indexed: 12/27/2022] Open
Abstract
Dynamic covalent chemistry (DCC) is a widely used method for the self-assembly of three-dimensional molecular architectures. The orthogonality of dynamic reactions is emerging as a versatile strategy for controlling product distributions in DCC, yet the application of this approach to the synthesis of 3D organic molecular cages is limited. We report the first system which employs the orthogonality of alkyne metathesis and dynamic imine exchange to prepare a molecular cage with a reversibly removable vertex. This study demonstrates the rational and controlled application of chemical orthogonality in DCC to prepare organic cages of expanded functionality which respond to chemical stimuli.
Collapse
Affiliation(s)
- Christopher C Pattillo
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA .
| | - Jeffrey S Moore
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA .
| |
Collapse
|
32
|
Berardo E, Greenaway RL, Turcani L, Alston BM, Bennison MJ, Miklitz M, Clowes R, Briggs ME, Cooper AI, Jelfs KE. Computationally-inspired discovery of an unsymmetrical porous organic cage. NANOSCALE 2018; 10:22381-22388. [PMID: 30474677 DOI: 10.1039/c8nr06868b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A completely unsymmetrical porous organic cage was synthesised from a C2v symmetrical building block that was identified by a computational screen. The cage was formed through a 12-fold imine condensation of a tritopic C2v symmetric trialdehyde with a ditopic C2 symmetric diamine in a [4 + 6] reaction. The cage was rigid and microporous, as predicted by the simulations, with an apparent Brunauer-Emmett-Teller surface area of 578 m2 g-1. The reduced symmetry of the tritopic building block relative to its topicity meant there were 36 possible structural isomers of the cage. Experimental characterisation suggests a single isomer with 12 unique imine environments, but techniques such as NMR could not conclusively identify the isomer. Computational structural and electronic analysis of the possible isomers was used to identify the most likely candidates, and hence to construct a 3-dimensional model of the amorphous solid. The rational design of unsymmetrical cages using building blocks with reduced symmetry offers new possibilities in controlling the degree of crystallinity, porosity, and solubility, of self-assembled materials.
Collapse
Affiliation(s)
- Enrico Berardo
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Yuki Ohishi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
34
|
Ono K, Iwasawa N. Dynamic Behavior of Covalent Organic Cages. Chemistry 2018; 24:17856-17868. [DOI: 10.1002/chem.201802253] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Kosuke Ono
- Department of ChemistryFaculty of ScienceTokyo University of Science Tokyo 162-8601 Japan
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
35
|
Greenaway RL, Santolini V, Bennison MJ, Alston BM, Pugh CJ, Little MA, Miklitz M, Eden-Rump EGB, Clowes R, Shakil A, Cuthbertson HJ, Armstrong H, Briggs ME, Jelfs KE, Cooper AI. High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nat Commun 2018; 9:2849. [PMID: 30030426 PMCID: PMC6054661 DOI: 10.1038/s41467-018-05271-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023] Open
Abstract
Supramolecular synthesis is a powerful strategy for assembling complex molecules, but to do this by targeted design is challenging. This is because multicomponent assembly reactions have the potential to form a wide variety of products. High-throughput screening can explore a broad synthetic space, but this is inefficient and inelegant when applied blindly. Here we fuse computation with robotic synthesis to create a hybrid discovery workflow for discovering new organic cage molecules, and by extension, other supramolecular systems. A total of 78 precursor combinations were investigated by computation and experiment, leading to 33 cages that were formed cleanly in one-pot syntheses. Comparison of calculations with experimental outcomes across this broad library shows that computation has the power to focus experiments, for example by identifying linkers that are less likely to be reliable for cage formation. Screening also led to the unplanned discovery of a new cage topology-doubly bridged, triply interlocked cage catenanes.
Collapse
Affiliation(s)
- R L Greenaway
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - V Santolini
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - M J Bennison
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - B M Alston
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - C J Pugh
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - M A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - M Miklitz
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - E G B Eden-Rump
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - R Clowes
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - A Shakil
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - H J Cuthbertson
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - H Armstrong
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - M E Briggs
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - K E Jelfs
- Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - A I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.
| |
Collapse
|