1
|
Jiang K, Westbrook RJE, Xia T, Zhong C, Lu J, Khasbaatar A, Liu K, Lin FR, Jang SH, Zhang J, Li Y, Diao Y, Wei Z, Yip HL, Ginger DS, Jen AKY. Photoluminescent delocalized excitons in donor polymers facilitate efficient charge generation for high-performance organic photovoltaics. Nat Commun 2025; 16:3176. [PMID: 40180927 PMCID: PMC11968943 DOI: 10.1038/s41467-025-58352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Efficient delocalization of photo-generated excitons is a key to improving the charge-separation efficiencies in state-of-the-art organic photovoltaic (OPV) absorber. While the delocalization in non-fullerene acceptors has been widely studied, we expand the scope by studying the properties of the conjugated polymer donor D18 on both the material and device levels. Combining optical spectroscopy, X-ray diffraction, and simulation, we show that D18 exhibits stronger π-π interactions and interchain packing compared to classic donor polymers, as well as higher external photoluminescence quantum efficiency (~26%). Using picosecond transient absorption spectroscopy and streak camera photoluminescence measurements, we show that the initial D18 excitons form delocalized intermediates, which decay radiatively with high efficiency in neat films. In single-component OPV cells based on D18, these intermediate excitations can be harvested with an internal quantum efficiency >30%, while in blends with acceptor Y6 they provide a pathway to free charge generation that partially bypasses performance-limiting charge-transfer states at the D18:Y6 interface. Our study demonstrates that donor polymers can be further optimized using similar design strategies that have been successful for non-fullerene acceptors, opening the door to even higher OPV efficiencies.
Collapse
Affiliation(s)
- Kui Jiang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Tian Xia
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Cheng Zhong
- Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Azzaya Khasbaatar
- Department of Chemical & Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kaikai Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong.
| | - Sei-Hum Jang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jie Zhang
- Center for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yuqing Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Ying Diao
- Department of Chemical & Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Lu H, Li D, Liu W, Ran G, Wu H, Wei N, Tang Z, Liu Y, Zhang W, Bo Z. Designing A-D-A Type Fused-Ring Electron Acceptors with a Bulky 3D Substituent at the Central Donor Core to Minimize Non-Radiative Losses and Enhance Organic Solar Cell Efficiency. Angew Chem Int Ed Engl 2024; 63:e202407007. [PMID: 38806441 DOI: 10.1002/anie.202407007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Designing and synthesizing narrow band gap acceptors that exhibit high photoluminescence quantum yield (PLQY) and strong crystallinity is a highly effective, yet challenging, approach to reducing non-radiative energy losses (▵Enr) and boosting the performance of organic solar cells (OSCs). We have successfully designed and synthesized an A-D-A type fused-ring electron acceptor, named DM-F, which features a planar molecular backbone adorned with bulky three-dimensional camphane side groups at its central core. These bulky substituents effectively hinder the formation of H-aggregates of the acceptors, promoting the formation of more J-aggregates and notably elevating the PLQY of the acceptor in the film. As anticipated, DM-F showcases pronounced near-infrared absorption coupled with impressive crystallinity. Organic solar cells (OSCs) leveraging DM-F exhibit a high EQEEL value and remarkably low ▵Enr of 0.14 eV-currently the most minimal reported value for OSCs. Moreover, the power conversion efficiency (PCE) of binary and ternary OSCs utilizing DM-F has reached 16.16 % and 20.09 %, respectively, marking a new apex in reported efficiency within the OSCs field. In conclusion, our study reveals that designing narrow band gap acceptors with high PLQY is an effective way to reduce ▵Enr and improve the PCE of OSCs.
Collapse
Affiliation(s)
- Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Dawei Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Hongbo Wu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Li Y, Ren J, Liu S, Zhao B, Liang Z, Jee MH, Qin H, Su W, Woo HY, Gao C. Tailoring the Molecular Planarity of Perylene Diimide-Based Third Component toward Efficient Ternary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401176. [PMID: 38529741 DOI: 10.1002/smll.202401176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Incorporating a third component into binary organic solar cells (b-OSCs) has provided a potential platform to boost power conversion efficiency (PCEs). However, gaining control over the non-equilibrium blend morphology via the molecular design of the perylene diimide (PDI)-based third component toward efficient ternary organic solar cells (t-OSCs) still remains challenging. Herein, two novel PDI derivatives are developed with tailored molecular planarity, namely ufBTz-2PDI and fBTz-2PDI, as the third component for t-OSCs. Notably, after performing a cyclization reaction, the twisted ufBTz-2PDI with an amorphous character transferred to the highly planar fBTz-2PDI followed by a semi-crystalline character. When incorporating the semi-crystalline fBTz-2PDI into the D18:L8-BO system, the resultant t-OSC achieved an impressive PCE of 18.56%, surpassing the 17.88% attained in b-OSCs. In comparison, the addition of amorphous ufBTz-2PDI into the binary system facilitates additional charge trap sites and results in a deteriorative PCE of 14.37%. Additionally, The third component fBTz-2PDI possesses a good generality in optimizing the PCEs of several b-OSCs systems are demonstrated. The results not only provided a novel A-DA'D-A motif for further designing efficient third component but also demonstrated the crucial role of modulated crystallinity of the PDI-based third component in optimizing PCEs of t-OSCs.
Collapse
Affiliation(s)
- Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Jiaqi Ren
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Shujuan Liu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Baofeng Zhao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi, Key Lab of Photonic Technique for Information School of Electronics Science & Engineering Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hongmei Qin
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Wenyan Su
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Chao Gao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| |
Collapse
|
4
|
You X, Shen H, Wu Q, Li Y, Wu D, Xia J. Perylene Diimide-based Non-fullerene Acceptors With A-D-A'-D-A Architecture For Organic Solar Cells. Chem Asian J 2023; 18:e202201186. [PMID: 36529711 DOI: 10.1002/asia.202201186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
The vinylene-bridged helical PDI dimer (PDI2) has been an alternative PDI building block for non-fullerene acceptor (NFAs). However, the development of PDI2 derivatives still lag behind, and most of PDI2 derivatives based organic solar cells (OSCs) only achieved a moderate power conversion efficiencies (PCE) of less than 8%. In this contribution, an acceptor-donor-acceptor-donor-acceptor (A-D-A'-D-A) architecture was introduced to facilitate the improvement of photovoltaic properties. Two acceptors named diIDTIC-PDI2 and diFIDTIC-PDI2 were designed and synthesized, in which a PDI2 moiety flanked with two indacenodithiophene (IDT) units was employed as the D-A'-D core and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) or fluorinated IC (IC2F) acted as terminal groups, respectively. The photovoltaic performances of these two acceptors were explored using PM1 as the electron donor. Compared to diIDTIC-PDI2, the fluorinated diFIDTIC-PDI2 based OSCs obtained enhanced photovoltaic performance with the best PCE of 9.77%, a VOC of 0.957 V, JSC of 13.58 mA cm-2 and FF of 75.1%. These results illustrate that engineering terminal groups is a robust strategy of enhancing the efficiency of PDI based acceptors with A-D-A'-D-A architecture.
Collapse
Affiliation(s)
- Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 4, 30070, P. R. China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 4, 30070, P. R. China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Wang C, Jing Y, Chen L, Xiong W. Direct Interfacial Charge Transfer in All-Polymer Donor-Acceptor Heterojunctions. J Phys Chem Lett 2022; 13:8733-8739. [PMID: 36095150 PMCID: PMC9511559 DOI: 10.1021/acs.jpclett.2c02130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Direct charge transfer at wet-processed organic/organic heterojunction interfaces is observed using femtosecond interfacial sensitive spectroscopy. UV-vis absorption and ultraviolet photoelectron spectroscopy both indicate that a new interfacial energy gap (∼1.2 eV) exists when an interface is formed between regioregular poly(3-hexylthiophene-2,5-diyl) and poly(benzimidazobenzophenanthroline). Resonant pumping at 1.2 eV creates an electric field-induced second-order optical signal, suggesting the existence of a transient electric field due to separated electrons and holes at interfaces, which recombine through a nongeminate process. The fact that direct charge transfer exists at wet-processed organic/organic heterojunctions provides a physical foundation for the previously reported ground-state charge transfer phenomenon. Also, it creates new opportunities to better control charge transfer with preserved momentum and spins at organic material interfaces for spintronic applications.
Collapse
|
6
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Liu Y, Zheng Z, Coropceanu V, Brédas JL, Ginger DS. Lower limits for non-radiative recombination loss in organic donor/acceptor complexes. MATERIALS HORIZONS 2022; 9:325-333. [PMID: 34842253 DOI: 10.1039/d1mh00529d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the factors controlling radiative and non-radiative transition rates for charge transfer states in organic systems is important for applications ranging from organic photovoltaics (OPV) to lasers and LEDs. We explore the role of charge-transfer (CT) energetics, lifetimes, and photovoltaic properties in the limit of very slow non-radiative rates by using a model donor/acceptor system with photoluminescence dominated by thermally activated delayed fluorescence (TADF). This blend exhibits an extremely high photoluminescence quantum efficiency (PLQY = ∼22%) and comparatively long PL lifetime, while simultaneously yielding appreciable amounts of free charge generation (photocurrent external quantum efficiency EQE of 24%). In solar cells, this blend exhibits non-radiative voltage losses of only ∼0.1 V, among the lowest reported for an organic system. Notably, we find that the non-radiative decay rate, knr, is on the order of 105 s-1, approximately 4-5 orders of magnitude slower than typical OPV blends, thereby confirming that high radiative efficiency and low non-radiative voltage losses are achievable by reducing knr. Furthermore, despite the high radiative efficiency and already comparatively slow knr, we find that knr is nevertheless much faster than predicted by Marcus-Levich-Jortner two-state theory and we conclude that CT-local exciton (LE) hybridization is present. Our findings highlight that it is crucial to evaluate how radiative and non-radiative rates of the LE states individually influence the PLQY of charge-transfer states, rather than solely focusing on the PLQY of the LE. This conclusion will guide material selection in achieving low non-radiative voltage loss in organic solar cells and high luminescence efficiency in organic LEDs.
Collapse
Affiliation(s)
- Yun Liu
- Department of Chemistry, University of Washington, Seattle, WA, 98195-2120, USA.
| | - Zilong Zheng
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Veaceslav Coropceanu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Jean-Luc Brédas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, 98195-2120, USA.
| |
Collapse
|
8
|
Zuo L, Jo SB, Li Y, Meng Y, Stoddard RJ, Liu Y, Lin F, Shi X, Liu F, Hillhouse HW, Ginger DS, Chen H, Jen AKY. Dilution effect for highly efficient multiple-component organic solar cells. NATURE NANOTECHNOLOGY 2022; 17:53-60. [PMID: 34873302 DOI: 10.1038/s41565-021-01011-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Although the multiple-component (MC) blend strategy has been frequently used as a very effective way to improve the performance of organic solar cells (OSCs), there is a strong need to understand the fundamental working mechanism and material selection rule for achieving optimal MC-OSCs. Here we present the 'dilution effect' as the mechanism for MC-OSCs, where two highly miscible components are molecularly intermixed. Contrary to the aggregation-induced non-radiative decay, the dilution effect enables higher luminescence quantum efficiencies and open-circuit voltages (VOC) in MC-OSCs via suppressed electron-vibration coupling. The continuously broadened bandgap together with reduced electron-vibration coupling also explains the composition-dependent VOC in ternary blends well. Moreover, we show that electrons can transfer between different acceptors, depending on the energy offset between them, which contributes to the largely unperturbed charge transport and high fill factors in MC-OSCs. The discovery of the dilution effect enables the demonstration of a high power conversion efficiency of 18.31% in an MC-OSC.
Collapse
Affiliation(s)
- Lijian Zuo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Sae Byeok Jo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yuhuan Meng
- Department of Chemical Engineering, Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Ryan J Stoddard
- Department of Chemical Engineering, Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yun Liu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Francis Lin
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Xueliang Shi
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Feng Liu
- Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai, China
| | - Hugh W Hillhouse
- Department of Chemical Engineering, Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong.
- Hong Kong Institute for Clean Energy, Hong Kong, Hong Kong.
| |
Collapse
|
9
|
Romero DC, Calvo-Gredilla P, García-Calvo J, Diez-Varga A, Cuevas JV, Revilla-Cuesta A, Busto N, Abajo I, Aullón G, Torroba T. Self-Assembly Hydrosoluble Coronenes: A Rich Source of Supramolecular Turn-On Fluorogenic Sensing Materials in Aqueous Media. Org Lett 2021; 23:8727-8732. [PMID: 34751033 PMCID: PMC8609571 DOI: 10.1021/acs.orglett.1c03175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Water-soluble coronenes,
that form nanoparticles by self-association,
work as new fluorescent materials by complexation with cucurbit[7]uril,
as well as selective turn-on fluorogenic sensors for nitroaromatic
explosives with remarkable selectivity, by using only water as solvent.
Collapse
Affiliation(s)
- Daisy C Romero
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Patricia Calvo-Gredilla
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - José García-Calvo
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alberto Diez-Varga
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Vicente Cuevas
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Andrea Revilla-Cuesta
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Natalia Busto
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Irene Abajo
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gabriel Aullón
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Tomás Torroba
- Department of Chemistry, Faculty of Science, University of Burgos, 09001 Burgos, Spain.,Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Dela Peña TA, Khan JI, Chaturvedi N, Ma R, Xing Z, Gorenflot J, Sharma A, Ng FL, Baran D, Yan H, Laquai F, Wong KS. Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells. ACS ENERGY LETTERS 2021; 6:3408-3416. [DOI: 10.1021/acsenergylett.1c01574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Top Archie Dela Peña
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Jafar I. Khan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Neha Chaturvedi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Zengshan Xing
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Julien Gorenflot
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Fai Lun Ng
- Department of Electrical and Electronic Engineering, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Kam Sing Wong
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| |
Collapse
|
11
|
Wang J, Ma L, Lee YW, Yao H, Xu Y, Zhang S, Woo HY, Hou J. Design of ultra-high luminescent polymers for organic photovoltaic cells with low energy loss. Chem Commun (Camb) 2021; 57:9132-9135. [PMID: 34498626 DOI: 10.1039/d1cc02706a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, new polymers named PBTT-Cn (n = 3, 4, or 5) have been designed based on carboxylate-functionalized thieno[3,2-b]thiophene units. The electroluminescence external quantum efficiencies (EQEEL) of pristine PBTT-C4 and C5 films are over 1 × 10-2, which are among the highest results for OPV materials. Through combination with BTP-eC9, the PBTT-C4-based film showed a high EQEEL of 6 × 10-4 and the Vnon-radloss is 0.19 eV. As a result, a high open-circuit voltage of 0.89 V and a satisfactory PCE of 15% were recorded in the PBTT-C4-based OPV cells.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Young Woong Lee
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea.
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 136-713, Republic of Korea.
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Zhang M, Zhu L, Hao T, Zhou G, Qiu C, Zhao Z, Hartmann N, Xiao B, Zou Y, Feng W, Zhu H, Zhang M, Zhang Y, Li Y, Russell TP, Liu F. High-Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007177. [PMID: 33742493 DOI: 10.1002/adma.202007177] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The intrinsic electronic properties of donor (D) and acceptor (A) materials in coupling with morphological features dictate the output in organic solar cells (OSCs). New physical properties of intimate eutectic mixing are used in nonfullerene-acceptor-based D-A1 -A2 ternary blends to fine-tune the bulk heterojunction thin film morphology as well as their electronic properties. With enhanced thin film crystallinity and improved carrier transport, a significant JSC amplification is achieved due to the formation of eutectic fibrillar lamellae and reduced defects state density. Material wise, aligned cascading energy levels with much larger driving force, and suppressed recombination channels confirm efficient charge transfer and transport, enabling an improved power conversion efficiency (PCE) of 17.84%. These results reveal the importance of utilizing specific material interactions to control the crystalline habit in blended films to form a well-suited morphology in guiding superior performances, which is of high demand in the next episode of OSC fabrication toward 20% PCE.
Collapse
Affiliation(s)
- Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianyu Hao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaoqun Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhe Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | | | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Hubei, 430056, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Zhejiang, 310027, P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, P. R. China
| |
Collapse
|
13
|
Zhan J, Wang L, Zhang M, Zhu L, Hao T, Zhou G, Zhou Z, Chen J, Zhong W, Qiu C, Leng S, Zou Y, Shi Z, Zhu H, Feng W, Zhang M, Li Y, Zhang Y, Liu F. Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends toward Refined Morphologies and Higher Performances. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Junzhe Zhan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianyu Hao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zichun Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiajun Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenkai Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chaoqun Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shifeng Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Zhiwen Shi
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
14
|
Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nat Commun 2021; 12:1772. [PMID: 33741966 PMCID: PMC7979693 DOI: 10.1038/s41467-021-22032-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
A critical bottleneck for improving the performance of organic solar cells (OSC) is minimising non-radiative losses in the interfacial charge-transfer (CT) state via the formation of hybrid energetic states. This requires small energetic offsets often detrimental for high external quantum efficiency (EQE). Here, we obtain OSC with both non-radiative voltage losses (0.24 V) and photocurrent losses (EQE > 80%) simultaneously minimised. The interfacial CT states separate into free carriers with ≈40-ps time constant. We combine device and spectroscopic data to model the thermodynamics of charge separation and extraction, revealing that the relatively high performance of the devices arises from an optimal adjustment of the CT state energy, which determines how the available overall driving force is efficiently used to maximize both exciton splitting and charge separation. The model proposed is universal for donor:acceptor (D:A) with low driving forces and predicts which D:A will benefit from a morphology optimization for highly efficient OSC.
Collapse
|
15
|
Zhang M, Zhu L, Zhou G, Hao T, Qiu C, Zhao Z, Hu Q, Larson BW, Zhu H, Ma Z, Tang Z, Feng W, Zhang Y, Russell TP, Liu F. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun 2021; 12:309. [PMID: 33436638 PMCID: PMC7803987 DOI: 10.1038/s41467-020-20580-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/02/2020] [Indexed: 11/27/2022] Open
Abstract
The chemical structure of donors and acceptors limit the power conversion efficiencies achievable with active layers of binary donor-acceptor mixtures. Here, using quaternary blends, double cascading energy level alignment in bulk heterojunction organic photovoltaic active layers are realized, enabling efficient carrier splitting and transport. Numerous avenues to optimize light absorption, carrier transport, and charge-transfer state energy levels are opened by the chemical constitution of the components. Record-breaking PCEs of 18.07% are achieved where, by electronic structure and morphology optimization, simultaneous improvements of the open-circuit voltage, short-circuit current and fill factor occur. The donor and acceptor chemical structures afford control over electronic structure and charge-transfer state energy levels, enabling manipulation of hole-transfer rates, carrier transport, and non-radiative recombination losses.
Collapse
Affiliation(s)
- Ming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lei Zhu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guanqing Zhou
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tianyu Hao
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chaoqun Qiu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhe Zhao
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qin Hu
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Bryon W Larson
- Chemistry & Nanoscience Department, National Renewable Energy Laboratory, Golden, Colorado, 80401, USA
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, 256401, Shandong Province, People's Republic of China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, 256401, Shandong Province, People's Republic of China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, 256401, Shandong Province, People's Republic of China.
| |
Collapse
|
16
|
Zarrabi N, Sandberg OJ, Zeiske S, Li W, Riley DB, Meredith P, Armin A. Charge-generating mid-gap trap states define the thermodynamic limit of organic photovoltaic devices. Nat Commun 2020; 11:5567. [PMID: 33149193 PMCID: PMC7642445 DOI: 10.1038/s41467-020-19434-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Detailed balance is a cornerstone of our understanding of artificial light-harvesting systems. For next generation organic solar cells, this involves intermolecular charge-transfer (CT) states whose energies set the maximum open circuit voltage VOC. We have directly observed sub-gap states significantly lower in energy than the CT states in the external quantum efficiency spectra of a significant number of organic semiconductor blends. Taking these states into account and using the principle of reciprocity between emission and absorption results in non-physical radiative limits for the VOC. We propose and provide compelling evidence for these states being non-equilibrium mid-gap traps which contribute to photocurrent by a non-linear process of optical release, upconverting them to the CT state. This motivates the implementation of a two-diode model which is often used in emissive inorganic semiconductors. The model accurately describes the dark current, VOC and the long-debated ideality factor in organic solar cells. Additionally, the charge-generating mid-gap traps have important consequences for our current understanding of both solar cells and photodiodes - in the latter case defining a detectivity limit several orders of magnitude lower than previously thought.
Collapse
Affiliation(s)
- Nasim Zarrabi
- Sustainable Advanced Materials Programme (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Oskar J Sandberg
- Sustainable Advanced Materials Programme (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom.
| | - Stefan Zeiske
- Sustainable Advanced Materials Programme (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Wei Li
- Sustainable Advanced Materials Programme (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Drew B Riley
- Sustainable Advanced Materials Programme (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Paul Meredith
- Sustainable Advanced Materials Programme (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - Ardalan Armin
- Sustainable Advanced Materials Programme (Sêr SAM), Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom.
| |
Collapse
|
17
|
Yang J, Li QS, Li ZS. End-capped group manipulation of indacenodithienothiophene-based non-fullerene small molecule acceptors for efficient organic solar cells. NANOSCALE 2020; 12:17795-17804. [PMID: 32820757 DOI: 10.1039/d0nr04867d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the key component of organic solar cells (OSCs), the acceptor plays key roles in determining the power conversion efficiency (PCE). Based on the famous non-fullerene acceptor ITIC, a series of acceptors (A1-A5) were designed by introducing fused-ring units (phenanthrene, pyrene, benzopyrazine, dibenzo[a,c]phenazine, and phenanthro[4,5-abc]phenazine) as the end groups. Theoretical calculations showed that A1-A5 display improved solubility and redshifted absorption spectra compared with ITIC. More importantly, the newly designed acceptors exhibit much higher electron mobility, where the electron mobility of A5_h (similar to A5 but with the same hexyl side chain as ITIC) is about four orders of magnitude larger than that of ITIC. The computed binding energies of the donor PBDB-TF with the acceptor ITIC and A5_h are -2.52 eV and -3.75 eV, indicating much stronger interface interactions in PBDB-TF/A5_h. In terms of charge-transfer (CT) mechanism, we found that both PBDB-TF/ITIC and PBDB-TF/A5_h can generate CT states through direct excitation and hot excitons, meanwhile there exist more opportunities of producing CT states via the intermolecular electric field (IEF) mechanism in PBDB-TF/A5_h. Our results not only offer a set of promising ITIC-based acceptors, but also provide new insights into the donor/acceptor interface properties, which are closely related to the PCE of OSCs.
Collapse
Affiliation(s)
- Jie Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China.
| | | | | |
Collapse
|
18
|
Wadsworth A, Hamid Z, Kosco J, Gasparini N, McCulloch I. The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001763. [PMID: 32754970 DOI: 10.1002/adma.202001763] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors require an energetic offset in order to photogenerate free charge carriers efficiently, owing to their inability to effectively screen charges. This is vitally important in order to achieve high power conversion efficiencies in organic solar cells. Early heterojunction-based solar cells were limited to relatively modest efficiencies (<4%) owing to limitations such as poor exciton dissociation, limited photon harvesting, and high recombination losses. The development of the bulk heterojunction (BHJ) has significantly overcome these issues, resulting in dramatic improvements in organic photovoltaic performance, now exceeding 18% power conversion efficiencies. Here, the design and engineering strategies used to develop the optimal bulk heterojunction for solar-cell, photodetector, and photocatalytic applications are discussed. Additionally, the thermodynamic driving forces in the creation and stability of the bulk heterojunction are presented, along with underlying photophysics in these blends. Finally, new opportunities to apply the knowledge accrued from BHJ solar cells to generate free charges for use in promising new applications are discussed.
Collapse
Affiliation(s)
- Andrew Wadsworth
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Zeinab Hamid
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Jan Kosco
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Nicola Gasparini
- Department of Chemistry and Centre for Plastic Electronics, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London, W12 0BZ, UK
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
19
|
He K, Li X, Liu H, Zhang Z, Kumar P, Ngai JHL, Wang J, Li Y. D‐A Polymer with a Donor Backbone ‐ Acceptor‐side‐chain Structure for Organic Solar Cells. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Keqiang He
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN)University of Waterloo 200 University Ave West Waterloo N2L 3G1 Canada
| | - Xu Li
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN)University of Waterloo 200 University Ave West Waterloo N2L 3G1 Canada
- Institute of ChemistryHenan Academy of Sciences 56 Hongzhuan Road, Jinshui District Zhengzhou Henan 450002 China
| | - Haitao Liu
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN)University of Waterloo 200 University Ave West Waterloo N2L 3G1 Canada
- Institute of ChemistryHenan Academy of Sciences 56 Hongzhuan Road, Jinshui District Zhengzhou Henan 450002 China
| | - Zhifang Zhang
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN)University of Waterloo 200 University Ave West Waterloo N2L 3G1 Canada
| | - Pankaj Kumar
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN)University of Waterloo 200 University Ave West Waterloo N2L 3G1 Canada
| | - Jenner H. L. Ngai
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN)University of Waterloo 200 University Ave West Waterloo N2L 3G1 Canada
| | - Jinliang Wang
- Institute of ChemistryHenan Academy of Sciences 56 Hongzhuan Road, Jinshui District Zhengzhou Henan 450002 China
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN)University of Waterloo 200 University Ave West Waterloo N2L 3G1 Canada
| |
Collapse
|
20
|
Zhang X, Elmali A, Duan R, Liu Q, Ji W, Zhao J, Li C, Karatay A. Charge separation, recombination and intersystem crossing of directly connected perylenemonoimide-carbazole electron donor/acceptor dyads. Phys Chem Chem Phys 2020; 22:6376-6390. [PMID: 32141446 DOI: 10.1039/c9cp06914c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Perylenemonoimide (PMI)-carbazole (Cz) compact electron donor/acceptor dyads were prepared to study the relationship between the mutual orientation of the electron donor/acceptor in the dyads and the spin-orbit charge transfer intersystem crossing (SOCT-ISC) efficiency. The PMI and the Cz units are connected via either a C-C or C-N bond, or with an intervening phenyl moiety. The photophysical properties of the dyads were studied with steady state and time-resolved optical spectroscopies. The fluorescence of the PMI unit in the dyads was generally quenched, due to photo-induced electron transfer, especially in polar solvents (the fluorescence has a biexponential decay in acetonitrile, τF = 1.4 ns/population ratio: 98.9%, and 9.6 ns/population ratio: 1.1%). The triplet state (lifetime τT = 14.7 μs) formation of the dyads is dependent on the solvent polarity, which is characteristic for SOCT-ISC. Femtosecond transient absorption spectra show that the charge separation takes 0.28 ps and the charge recombination takes 1.21 ns. Reversible photo-reduction of the PMI-Cz dyads and generation of the near IR-absorbing (centered at 604 nm and 774 nm) PMI radical anion (PMI-˙) were observed in the presence of a sacrificial electron donor (triethylamine). These results are useful for study of the fundamental photochemistry of compact electron donor/acceptor dyads and for design of new heavy atom-free triplet photosensitizers.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Keivanidis PE, Itskos G, Kan Z, Aluicio-Sarduy E, Goudarzi H, Kamm V, Laquai F, Zhang W, Brabec C, Floudas G, McCulloch I. Afterglow Effects as a Tool to Screen Emissive Nongeminate Charge Recombination Processes in Organic Photovoltaic Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2695-2707. [PMID: 31854965 DOI: 10.1021/acsami.9b16036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Disentangling temporally overlapping charge carrier recombination events in organic bulk heterojunctions by optical spectroscopy is challenging. Here, a new methodology for employing delayed luminescence spectroscopy is presented. The proposed method is capable of distinguishing between recombination of spatially separated charge carriers and trap-assisted charge recombination simply by monitoring the delayed luminescence (afterglow) of bulk heterojunctions with a quasi time-integrated detection scheme. Applied on the model composite of the donor poly(6,12-dihydro-6,6,12,12-tetraoctyl-indeno[1,2-b]fluorene-alt-benzothiadiazole) (PIF8BT) polymer and the acceptor ethyl-propyl perylene diimide (PDI) derivative, that is, PIF8BT:PDI, the luminescence of charge-transfer (CT) states created by nongeminate charge recombination on the ns to μs timescale is observed. Fluence-dependent, quasi time-integrated detection of the CT luminescence monitors exclusively emissive charge recombination events, while rejecting the contribution of other early-time emissive processes. Trap-assisted and bimolecular charge recombination channels are identified based on their distinct dependence on fluence. The importance of the two recombination channels is correlated with the layer's order and electrical properties of the corresponding devices. Four different microstructures of the PIF8BT:PDI composite obtained by thermal annealing are investigated. Thermal annealing of PIF8BT:PDI shrinks the PDI domains in parallel with the growth of the PIF8BT domains in the blend. Common to all states studied, the delayed CT luminescence signal is dominated by trap-assisted recombination. Yet, the minor fraction of fully separated charge recombination in the overall CT emission increases as the difference in the size of the donor and acceptor domains in the PIF8BT:PDI blend becomes larger. Electric field-induced quenching measurements on complete PIF8BT:PDI devices confirm quantitatively the dominance of emissive trap-limited charge recombination and demonstrates that only 40% of the PIF8BT/PDI CT luminescence comes from the recombination of fully-separated charges, taking place within 200 ns after photoexcitation. The method is applicable to other nonfullerene acceptor blends beyond the system discussed here, if their CT state luminescence can be monitored.
Collapse
Affiliation(s)
- Panagiotis E Keivanidis
- Device Technology and Chemical Physics Lab, Department of Mechanical Engineering and Materials Science and Engineering , Cyprus University of Technology , Limassol 3041 , Cyprus
- Centre for Nano Science and Technology @PoliMi , Fondazione Istituto Italiano di Tecnologia , Via Pascoli 70/3 , Milano 20133 , Italy
| | - Grigorios Itskos
- Department of Physics, Experimental Condensed Matter Physics Laboratory , University of Cyprus , Nicosia 1678 , Cyprus
| | - Zhipeng Kan
- Centre for Nano Science and Technology @PoliMi , Fondazione Istituto Italiano di Tecnologia , Via Pascoli 70/3 , Milano 20133 , Italy
| | - Eduardo Aluicio-Sarduy
- Centre for Nano Science and Technology @PoliMi , Fondazione Istituto Italiano di Tecnologia , Via Pascoli 70/3 , Milano 20133 , Italy
| | - Hossein Goudarzi
- Centre for Nano Science and Technology @PoliMi , Fondazione Istituto Italiano di Tecnologia , Via Pascoli 70/3 , Milano 20133 , Italy
| | - Valentin Kamm
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz D-55128 , Germany
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Weimin Zhang
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| | - Christoph Brabec
- Institute of Materials for Electronics and Energy Technology (I-MEET) , Friedrich-Alexander-University Erlangen-Nuremberg , Martensstraße 7 , Erlangen 91058 , Germany
- Bavarian Center for Applied Energy Research (ZAE Bayern) , Haberstrasse 2a , Erlangen 91058 , Germany
| | - George Floudas
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz D-55128 , Germany
- Department of Physics , University of Ioannina , Ioannina 451 10 , Greece
| | - Iain McCulloch
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
- Department of Chemistry and Centre for Plastic Electronics , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
22
|
Recent advances in molecular design of functional conjugated polymers for high-performance polymer solar cells. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101175] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Naqvi S, Kumar M, Kumar R. Facile Synthesis and Evaluation of Electron Transport and Photophysical Properties of Photoluminescent PDI Derivatives. ACS OMEGA 2019; 4:19735-19745. [PMID: 31788605 PMCID: PMC6881832 DOI: 10.1021/acsomega.9b02514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Perylenediimides (PDIs) have emerged as potential materials for optoelectronic applications. In the current work, four PDI derivatives, substituted at imide nitrogen with 2,6-diisopropyl phenyl, 2-nitrophenyl, diphenylmethylene, and pentafluorophenyl groups, have been synthesized from perylene 3,4,9,10-tetracarboxylic dianhydride using a facile imidization synthesis process. PDI derivatives have been spectroscopically characterized for their structure and optical properties. Temperature-variable absorption and emission spectroscopy study confirmed the H-aggregation property. H-aggregation along with strong emission suggests the slipped π-π stacking of PDI molecules. Electrochemical analysis was performed for their redox behavior and calculation of lowest unoccupied molecular orbital and highest occupied molecular orbital energy levels. Scanning electron microscopy showed the formation of ordered structures. The PDI derivatives showed excellent electron conductivity without doping and 5-10× higher electron mobility than that of state-of-the-art fullerene acceptor phenyl-C61-butyric acid methyl ester (PC61BM). Finally, the charge generation and charge transfer phenomenon was studied by transient absorption spectroscopy (TAS). TAS showed ultrafast charge transfer from the poly(3-hexyl)thiophene (P3HT) donor polymer to PDI and formation of long-lived charge-separated states similar to fullerene derivative PC61BM/P3HT blends. Such PDI derivatives with excellent solubility and photophysical and electronic properties are potential n-type materials to be used in organic electronic devices.
Collapse
Affiliation(s)
- Samya Naqvi
- Advanced
Materials and Devices Metrology Division, Photovoltaic Metrology
Group and Advanced Materials and Devices Metrology Division, Photonics Materials
Metrology Group, CSIR-National Physical
Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Mahesh Kumar
- Advanced
Materials and Devices Metrology Division, Photovoltaic Metrology
Group and Advanced Materials and Devices Metrology Division, Photonics Materials
Metrology Group, CSIR-National Physical
Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Rachana Kumar
- Advanced
Materials and Devices Metrology Division, Photovoltaic Metrology
Group and Advanced Materials and Devices Metrology Division, Photonics Materials
Metrology Group, CSIR-National Physical
Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
24
|
Liu T, Foo Y, Zapien JA, Li M, Tsang SW. A generalized Stark effect electromodulation model for extracting excitonic properties in organic semiconductors. Nat Commun 2019; 10:5089. [PMID: 31704917 PMCID: PMC6841700 DOI: 10.1038/s41467-019-13081-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
Electromodulation (EM) spectroscopy, a powerful technique to monitor the changes in polarizability p and dipole moment u of materials upon photo-excitation, can bring direct insight into the excitonic properties of materials. However, extracting Δp and Δu from the electromodulation spectrum relies on fitting with optical absorption of the materials where optical effect in different device geometries might introduce large variation in the extracted values. Here, we demonstrate a systematic electromodulation study with various fitting approaches in both commonly adopted reflection and transmission device architectures. Strikingly, we have found that the previously ascribed continuum state threshold from the deviation between the measured and fitting results is questionable. Such deviation is found to be caused by the overlooked optical interference and electrorefraction effect. A generalized electromodulation model is proposed to incorporate the two effects, and the extracted Δp and Δu have excellent consistency in both reflection and transmission modes in all organic film thicknesses. The development of a generalized electromodulation (EM) spectroscopy model that accurately extracts material parameters for organic electronics remains a challenge. Here, the authors report an EM model that enhances parameter extraction accuracy by accounting for optical interference effects.
Collapse
Affiliation(s)
- Taili Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China.,City University of Hong Kong Shenzhen Research Institute, 8 Yuexing No.1 Ave, Nanshan District, Shenzhen, Guangdong, P. R. China
| | - Yishu Foo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Menglin Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China.,City University of Hong Kong Shenzhen Research Institute, 8 Yuexing No.1 Ave, Nanshan District, Shenzhen, Guangdong, P. R. China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P. R. China. .,City University of Hong Kong Shenzhen Research Institute, 8 Yuexing No.1 Ave, Nanshan District, Shenzhen, Guangdong, P. R. China.
| |
Collapse
|
25
|
Han G, Yi Y. Local Excitation/Charge-Transfer Hybridization Simultaneously Promotes Charge Generation and Reduces Nonradiative Voltage Loss in Nonfullerene Organic Solar Cells. J Phys Chem Lett 2019; 10:2911-2918. [PMID: 31088080 DOI: 10.1021/acs.jpclett.9b00928] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High power conversion efficiencies in state-of-the-art nonfullerene organic solar cells (NF OSCs) call for elucidation of the underlying working mechanisms of both high photocurrent densities and low nonradiative voltage losses under small energy offsets. Here, to address this fundamental issue, we have assessed the nature of interfacial charge-transfer (CT) states in a representative small-molecule NF OSC (DRTB-T:IT-4F) by time-dependent density functional theory calculations. The calculated results point to the fact that the CT states can borrow considerable oscillator strengths from the energy-close local excitation (LE) states or be fully hybridized with these LE states by molecular aggregation at the donor-acceptor interfaces. The LE/CT hybridization can promote charge generation by direct population of thermalized CT or LE/CT states under illumination. At the same time, the increased oscillator strengths of the lowest CT state will improve the luminescence quantum efficiencies and thus reduce nonradiative voltage losses. Our work suggests that it is crucial to tune the LE/CT hybridization by optimization of the donor and acceptor molecular and interfacial structures to further improve the NF OSC performance.
Collapse
Affiliation(s)
- Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy Sciences , Beijing 100049 , China
| |
Collapse
|
26
|
Han G, Yi Y. Origin of Photocurrent and Voltage Losses in Organic Solar Cells. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guangchao Han
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy Sciences Beijing 100049 China
| |
Collapse
|
27
|
|
28
|
Eisner FD, Azzouzi M, Fei Z, Hou X, Anthopoulos TD, Dennis TJS, Heeney M, Nelson J. Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. J Am Chem Soc 2019; 141:6362-6374. [DOI: 10.1021/jacs.9b01465] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Flurin D. Eisner
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| | - Mohammed Azzouzi
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| | - Zhuping Fei
- Department of Chemistry and the Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P.R. China
| | - Xueyan Hou
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K
| | - Thomas D. Anthopoulos
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Division of Physical Sciences and Engineering Thuwal 23955-6900, Saudi Arabia
| | - T. John S. Dennis
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, U.K
| | - Martin Heeney
- Department of Chemistry and the Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| | - Jenny Nelson
- Department of Physics and The Centre for Plastic Electronics Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
29
|
N'Konou K, Chalh M, Lucas B, Vedraine S, Torchio P. Improving the performance of inverted organic solar cells by embedding silica‐coated silver nanoparticles deposited by electron‐beam evaporation. POLYM INT 2019. [DOI: 10.1002/pi.5789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kekeli N'Konou
- Aix‐Marseille UniversityIM2NP, CNRS, Domaine Universitaire de Saint‐Jérôme Marseille Cedex France
| | | | | | | | - Philippe Torchio
- Aix‐Marseille UniversityIM2NP, CNRS, Domaine Universitaire de Saint‐Jérôme Marseille Cedex France
| |
Collapse
|
30
|
Gao K, Jo SB, Shi X, Nian L, Zhang M, Kan Y, Lin F, Kan B, Xu B, Rong Q, Shui L, Liu F, Peng X, Zhou G, Cao Y, Jen AKY. Over 12% Efficiency Nonfullerene All-Small-Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807842. [PMID: 30730067 DOI: 10.1002/adma.201807842] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
In this paper, two near-infrared absorbing molecules are successfully incorporated into nonfullerene-based small-molecule organic solar cells (NFSM-OSCs) to achieve a very high power conversion efficiency (PCE) of 12.08%. This is achieved by tuning the sequentially evolved crystalline morphology through combined solvent additive and solvent vapor annealing, which mainly work on ZnP-TBO and 6TIC, respectively. It not only helps improve the crystallinity of the ZnP-TBO and 6TIC blend, but also forms multilength scale morphology to enhance charge mobility and charge extraction. Moreover, it simultaneously reduces the nongeminate recombination by effective charge delocalization. The resultant device performance shows remarkably enhanced fill factor and Jsc . These result in a very respectable PCE, which is the highest among all NFSM-OSCs and all small-molecule binary solar cells reported so far.
Collapse
Affiliation(s)
- Ke Gao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Sae Byeok Jo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Xueliang Shi
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Li Nian
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ming Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Kan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Francis Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Bin Kan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Bo Xu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Qikun Rong
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Feng Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
31
|
Patel J, Sharma A, Chauhan M, Aatif M, Vashistha N, Kumar M, Tripathi B, Chand S, Tiwari JP, Pandey MK. Understanding charge carrier dynamics in a P3HT:FLR blend. Phys Chem Chem Phys 2019; 21:2771-2782. [PMID: 30667010 DOI: 10.1039/c8cp05518a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In organic semiconductors, optical absorption is pivotal for the performance of optoelectronic devices. The absorption by the semiconductors generates excitons which dissociate into free charge carriers, resulting in energy conversion. Although high performance has been achieved in non-fullerene organic solar cells, their charge generation behavior is far from being well understood. Keeping this in view, we have employed optical spectroscopic tools to study the charge generation mechanism in FLR (1,6,7,10-tetramethylfluoranthene) as a non-fullerene electron acceptor blended with P3HT (poly(3-hexylthiophene)) as an electron donor in five different solvents. Through steady state UV-visible and photoluminescence spectroscopy, we provide a basic understanding of charge transport by enlightening the influence of solvents on the aggregation behavior and exciton bandwidth. Furthermore, for the first time, by employing ultrafast vis-NIR transient absorption spectroscopy, we address the ultrafast charge generation and charge separation mechanism with systematic variation in solvent polarity by incorporating the time evolution of the transient species under various pump-probe wavelengths in the range of 450 nm to 1600 nm. For the different excitation wavelengths, the lifetime kinetics have been depicted by their multiexponential fits. The results show a fast decay term at a lifetime of a few picoseconds (ps) (∼1 to 5 ps) and a slow decay term at a lifetime of ∼500 ps. The charge generation in the P3HT:FLR blend proceeds on a ps time scale, which implies good intermixing of the components. It is clearly established that the non-halogenated solvents influence this aggregation behavior and higher conjugation lengths with higher photoluminescence quenching contribute to the higher charge generation. The enhanced polaron population in P3HT with the addition of FLR illustrates the importance of this acceptor material in the blend because a good solvent-material combination is essential to enhance the charge generation. As such, this comprehensive study explicitly shows the role of FLR as an emerging efficient non-fullerene acceptor for further improving the performance of devices.
Collapse
Affiliation(s)
- Jessica Patel
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Aldrich TJ, Matta M, Zhu W, Swick SM, Stern CL, Schatz GC, Facchetti A, Melkonyan FS, Marks TJ. Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. J Am Chem Soc 2019; 141:3274-3287. [DOI: 10.1021/jacs.8b13653] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | | | | | - Antonio Facchetti
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | | | | |
Collapse
|
33
|
Chen XK, Coropceanu V, Brédas JL. Assessing the nature of the charge-transfer electronic states in organic solar cells. Nat Commun 2018; 9:5295. [PMID: 30546009 PMCID: PMC6294259 DOI: 10.1038/s41467-018-07707-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Abstract
The charge-transfer electronic states appearing at the donor-acceptor interfaces in organic solar cells mediate exciton dissociation, charge generation, and charge recombination. To date, the characterization of their nature has been carried out on the basis of models that only involve the charge-transfer state and the ground state. Here, we demonstrate that it is essential to go beyond such a two-state model and to consider explicitly as well the electronic and vibrational couplings with the local absorbing state on the donor and/or acceptor. We have thus developed a three-state vibronic model that allows us: to provide a reliable description of the optical absorption features related to the charge-transfer states; to underline the erroneous interpretations stemming from the application of the semi-classical two-state model; and to rationalize how the hybridization between the local-excitation state and charge-transfer state can lead to lower non-radiative voltage losses and higher power conversion efficiencies. Previous descriptions of the charge-transfer absorptions in organic solar cells only involve the charge transfer state and the ground state. Here Chen et al. underline that a third state, i.e., the local absorbing state on the donor and/or acceptor, needs to be considered.
Collapse
Affiliation(s)
- Xian-Kai Chen
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA
| | - Veaceslav Coropceanu
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| | - Jean-Luc Brédas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| |
Collapse
|