1
|
Liu Y, Pu S, Sun C, Kai G, Yu Y, Li H. Transition-metal free chemoselective C-H hydroxylation of bisarylmethanes enabled by a phosphite as a sacrificial reductant. Org Biomol Chem 2025. [PMID: 40241641 DOI: 10.1039/d5ob00249d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A transition-metal free (hetero)benzylic C-H hydroxylation approach for the synthesis of di(hetero)arylmethanols has been developed. The reaction is promoted by a KOtBu/DMSO/P(OEt)3 system, with atmospheric air as the sole oxidant at room temperature. This methodology has been employed to synthesize useful active pharmaceutical ingredients (APIs), modafinil and adrafinil. By using DMSO-d6 as the deuterium reagent, the hydroxylation-deuteration of 3-benzylpyridines and diphenylmethanes proceeded well, with excellent deuterium ratios. Preliminary kinetic experiments and 1H NMR studies provided significant insight into the reaction mechanism.
Collapse
Affiliation(s)
- Yonghai Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Siqi Pu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chengtao Sun
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yang Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
3
|
Zhang J, Luo X, Zhang J, Li C. Total Synthesis of DMOA-Derived Meroterpenoids: Achieving Selectivity in the Synthesis of (+)-Berkeleyacetal D and (+)-Peniciacetal I. J Am Chem Soc 2025; 147:5933-5942. [PMID: 39903500 DOI: 10.1021/jacs.4c15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The synthesis of complex natural products requires efficient control over chemoselectivity, stereoselectivity, and regioselectivity. Berkeleyacetals, a subfamily of 3,5-dimethylorsellinic acid (DMOA)-derived meroterpenoids, pose substantial synthetic challenges due to their densely functionalized and highly oxidized architectures, which have constrained synthetic efforts. Here, we present the first total synthesis of this class of DMOA-derived meroterpenoids, specifically (+)-berkeleyacetal D and (+)-peniciacetal I. Our approach features a chemoselective deprotonation followed by an intramolecular single-electron transfer (SET) from an enolate to an alkyl bromide, enabling the construction of the 2,3-dihydrofuran ring in berkeleyacetal D. Additional selective transformations include an endo-selective intramolecular Diels-Alder reaction, chemoselective methylations and semihydrogenation of [3]dendralene, and a solvent-controlled diastereoselective epoxidation. Beyond providing a synthetic route to these densely congested natural products, our study offers mechanistic insights into achieving selectivity in the assembly of architecturally demanding molecules.
Collapse
Affiliation(s)
- Jianpeng Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaotong Luo
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Jingfu Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Deng Z, Huang C, Luo Y, He J, Li L, Pang X, Huang G, Phillips DL. Revealing the excited-state mechanisms of the polymorphs of a hot exciton material. Nat Commun 2025; 16:258. [PMID: 39747841 PMCID: PMC11696127 DOI: 10.1038/s41467-024-55569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy. As a result, an unambiguous signal of through space charge transfer (TSCT) was observed in the fs-TA spectra of the crystal with the π-π interaction between the fluorene and anthraquinone groups, whereas the other amorphous solids and crystal only show a conventional deactivation pathway of hRISC-TADF. In this study, we successfully realize the direct observation of the morphism-dependent TSCT in a crystal, which provides the observations in solid-state ultrafast excited-state dynamics and deepens the insight into the design of potential mechanochromic materials and thermochromic utilization of the polymorphism of organic luminescence molecules.
Collapse
Affiliation(s)
- Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Chao Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yunfeng Luo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jiaxing He
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Lan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Xinyu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanheng Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
| |
Collapse
|
5
|
Pal S, Guin AK, Khanra S, Paul ND. Zn(II)-Stabilized Azo-Anion Radical-Catalyzed Dehydrogenative Synthesis of Olefins. J Org Chem 2024. [PMID: 39680640 DOI: 10.1021/acs.joc.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Herein, we describe a Zn-catalyzed atom-economical, inexpensive, and sustainable method for preparing a broad spectrum of substituted olefins utilizing alcohols as the main precursor. Using a Zn(II) complex [ZnLCl2] (1) of the redox-noninnocent ligand 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L), various (E)-olefins were prepared in good yields by coupling alcohols with sulfones and aryl cyanides under an inert atmosphere. Under an aerial atmosphere, vinyl nitriles were isolated in up to 82% yield reacting alcohols with benzyl cyanides in the presence of 1. Control experiments and mechanistic investigation indicate the active involvement of the aryl-azo ligand as an electron and hydrogen reservoir, permitting 1 to perform as a promising catalyst.
Collapse
Affiliation(s)
- Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
6
|
Le HV, Nguyen VTB, Le HX, Nguyen TT, Nguyen KD, Ho PH, Nguyen TTH. Green Synthesis of Diphenyl-Substituted Alcohols Via Radical Coupling of Aromatic Alcohols Under Transition-Metal-Free Conditions. ChemistryOpen 2024; 13:e202400139. [PMID: 39171770 PMCID: PMC11625937 DOI: 10.1002/open.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Indexed: 08/23/2024] Open
Abstract
Alcohols are common alkylating agents and starting materials alternative to harmful alkyl halides. In this study, a simple, benign and efficient pathway was developed to synthesize 1,3-diphenylpropan-1-ols via the β-alkylation of 1-phenylethanol with benzyl alcohols. Unlike conventional borrowing hydrogen processes in which alcohols were activated by transition-metal catalyzed dehydrogenation, in this work, t-BuONa was suggested to be a dual-role reagent, namely, both base and radical initiator, for the radical coupling of aromatic alcohols. The cross-coupling reaction readily proceeded under transition metal-free conditions and an inert atmosphere, affording 1,3-diphenylpropan-1-ol with an excellent yield. A good functional group tolerance in benzyl alcohols was observed, leading to the production of various phenyl-substituted propan-1-ol derivatives in moderate-to-good yields. The mechanistic studies proposed that the reaction could involve the formation of reactive radical anions by base-mediated deprotonation and single electron transfer.
Collapse
Affiliation(s)
- Ha V. Le
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Vy T. B. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Huy X. Le
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Tung T. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Khoa D. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Phuoc H. Ho
- Chemical Engineering, Competence Centre for CatalysisChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Thuong T. H. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| |
Collapse
|
7
|
Semeniuchenko V, Sharif S, Rana N, Chandrasoma N, Braje WM, Baker RT, Manthorpe JM, Pietro WJ, Organ MG. Experimental Evidence for Zerovalent Pd(NHC) as a Competent Catalyst in C-N Cross-Coupling (NHC = DiMeIHept Cl). J Am Chem Soc 2024; 146:29224-29236. [PMID: 39388666 DOI: 10.1021/jacs.4c12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Use of the branched N-heterocyclic carbene (NHC) ligand 1,3-bis(2,6-bis(3-methyl-1-(2-methylpropyl)butyl)phenyl)-4,5-dichloro-1,3-dihydro-2H-imidazole-2-ylidene (DiMeIHeptCl) facilitated the stabilization of several relevant intermediates for Pd(NHC)-catalyzed C-N cross-coupling reactions. Complexes [Pd(DiMeIHeptCl)]2(μ-N2), [Pd(DiMeIHeptCl)]2(μ-η2-1,2-η2-4,5-C6H6), and Pd(DiMeIHeptCl)(pyridine), representing zerovalent Pd(NHC) bearing labile ligands, were isolated and structurally characterized, along with divalent PdCl(Ph)(DiMeIHeptCl) and PdCl(Ph)(DiMeIHeptCl)(n-propylamine). The former is a 14-electron Pd complex, which is stable under air and chromatography on silica gel or neutral alumina. One possible reason for this exceptional stability is the numerous dispersion interactions between the NHC alkyl chains and the Pd-Ph group. Detailed investigations of catalyst activation and oxidative addition confirmed that "Pd(NHC)" is formed from many known Pd(II)(NHC) precatalysts and provided activation rates for these different precatalysts.
Collapse
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- NMR Core Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Sepideh Sharif
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Neha Rana
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Nalin Chandrasoma
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wilfried M Braje
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Research, Knollstrasse, Ludwigshafen 67061, Germany
| | - R Tom Baker
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - William J Pietro
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
8
|
Borah B, Chowhan LR. Photoredox-Catalyzed Cross-Coupling of In Situ Generated Quinoxalinones with Indoles for the Synthesis of Tertiary Alcohols. J Org Chem 2024; 89:14740-14754. [PMID: 39374938 DOI: 10.1021/acs.joc.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A visible light-driven photoredox-catalyzed direct C(sp2)-H functionalization of N-H free indoles with quinoxalinones generated in situ from 2,2-dihydroxy-1H-indene-1,3(2H)-dione and phenylene-1,2-diamines has been reported with the aid of Na2-Eosin Y as the photocatalyst and the Hünig base as the sacrificial electron and proton donor. The reaction provides easy access to a variety of quaternary-centered C-3 selective indole-substituted tertiary alcohols in good yields. Mechanistic studies demonstrated the realization of photoredox-catalyzed in situ quinoxalinone formation and their proton-coupled single electron reduction to the corresponding ketyl radicals followed by cross-coupling with indoles. The potential applications of the synthesized tertiary alcohols in photoacid-catalyzed carbon-carbon and carbon-sulfur bond-forming reactions feature the key findings of the present work.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- Department of Chemistry, Royal School of Applied & Pure Sciences, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| |
Collapse
|
9
|
Roy M, Mishra B, Maji S, Sinha A, Dutta S, Mondal S, Banerjee A, Pachfule P, Adhikari D. Covalent Organic Framework Catalyzed Amide Synthesis Directly from Alcohol Under Red Light Excitation. Angew Chem Int Ed Engl 2024; 63:e202410300. [PMID: 38953116 DOI: 10.1002/anie.202410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/03/2024]
Abstract
The dehydrogenative coupling of alcohols and amines to form amide bonds is typically catalysed by homogeneous transition metal catalysts at high temperatures ranging from 130-140 °C. In our pursuit of an efficient and recyclable photocatalyst capable of conducting this transformation at room temperature, we report herein a COF-mediated dehydrogenative synthesis. The TTT-DHTD COF was strategically designed to incorporate a high density of functional units, specifically dithiophenedione, to trap photogenerated electrons and effectively facilitate hydrogen atom abstraction reactions. The photoactive TTT-DHTD COF, synthesized using solvothermal methods showed high crystallinity and moderate surface area, providing an ideal platform for heterogeneous amide synthesis. Light absorption by the COF across the entire visible range, narrow band gap, and valence band position make it well-suited for the efficient generation of excitons necessary for targeted dehydrogenation. Utilizing red light irradiation and employing extremely low loading of the COF, we have successfully prepared a wide range of amides, including challenging secondary amides, in good to excellent yields. The substrates' functional group tolerance, very mild reaction conditions, and the catalyst's significant recyclability represent substantial advancements over prior methodologies.
Collapse
Affiliation(s)
- Monojit Roy
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| | - Bikash Mishra
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Shyamali Maji
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| | - Archisman Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Supriti Dutta
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Sukanta Mondal
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology Sector V, Salt Lake, Kolkata, 700091, India
| | - Abhik Banerjee
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology Sector V, Salt Lake, Kolkata, 700091, India
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Debashis Adhikari
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| |
Collapse
|
10
|
Liu Q, Ren Y, Zhang B, Tang W, Wang Z, He L, Chen X. Photoinduced Single Electron Reduction of the 4-O-5 Linkage in Lignin Models for C-P Coupling Catalyzed by Bifunctional N-Heterocyclic Carbenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406095. [PMID: 39099408 PMCID: PMC11481192 DOI: 10.1002/advs.202406095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Catalytic activation of Caryl-O bonds is considered as a powerful strategy for the production of aromatics from lignin. However, due to the high reduction potentials of diaryl ether 4-O-5 linkage models, their single electron reduction remains a daunting challenge. This study presents the blue light-induced bifunctional N-heterocyclic carbene (NHC)-catalyzed one-electron reduction of diaryl ether 4-O-5 linkage models for the synthesis of trivalent phosphines. The H-bond between the newly devised bifunctional NHC and diaryl ethers is responsible for the success of the single electron transfer. Furthermore, this approach demonstrates selective one-electron reduction of unsymmetric diaryl ethers, oligomeric phenylene oxide, and lignin model.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Ying‐Zheng Ren
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringSchool of Chemistry and Chemical EngineeringShihezi UniversityXinjiang832000China
| | - Bei‐Bei Zhang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Wen‐Xin Tang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Zhi‐Xiang Wang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- Binzhou Institute of TechnologyWeiqiao‐UCAS Science and Technology ParkBinzhouShandong256606China
| | - Lin He
- State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringSchool of Chemistry and Chemical EngineeringShihezi UniversityXinjiang832000China
| | - Xiang‐Yu Chen
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- Binzhou Institute of TechnologyWeiqiao‐UCAS Science and Technology ParkBinzhouShandong256606China
| |
Collapse
|
11
|
Babaguchi K, Bedi D, Chacon-Teran MA, Findlater M. α-Diimine-mediated C-H functionalization of arenes for aryl-aryl cross-coupling reactions. Org Biomol Chem 2024; 22:2389-2394. [PMID: 38329231 DOI: 10.1039/d3ob01992f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Easily accessible methods for direct C-H arylation of arenes have been explored in the presence of transition metal catalysts to facilitate C-C bond formation; however, the absence of transition-metal impurities is a significant concern in the preparation of active pharmaceutical ingredients (APIs). Herein, we examine the use of bis(imino)acenaphthene (BIAN) as a potential single-electron transfer initiator in transition metal-free C-C bond-forming reactions. Using this approach, arenes are coupled to several aryl and heteroaryl halides. Based upon preliminary mechanistic evidence and crystallographic probation of an active initiator species, we tentatively propose a potassium-stabilized 'metal-free' radical pathway is in operation.
Collapse
Affiliation(s)
- Kotono Babaguchi
- Department of Chemistry & Biochemistry, University of California Merced, Merced, CA 95343, USA.
| | - Deepika Bedi
- Department of Chemistry & Biochemistry, Amity University Punjab, Mohali, Panjab 140306, India
| | - Miguel A Chacon-Teran
- Department of Chemistry & Biochemistry, University of California Merced, Merced, CA 95343, USA.
| | - Michael Findlater
- Department of Chemistry & Biochemistry, University of California Merced, Merced, CA 95343, USA.
| |
Collapse
|
12
|
Abdellaoui M, Oppel K, Vianna A, Soleilhavoup M, Yan X, Melaimi M, Bertrand G. 1 H-1,2,3-Triazol-5-ylidenes as Catalytic Organic Single-Electron Reductants. J Am Chem Soc 2024; 146:2933-2938. [PMID: 38253007 DOI: 10.1021/jacs.3c14360] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Most of the known single-electron reductants are either metal based reagents, used in a stoichiometric amount, or a combination of an organic species and a photocatalyst. Here we report that 1H-1,2,3-triazol-5-ylidenes act not only as stoichiometric one-electron donors but also as catalytic organic reducing agents, without the need of a photocatalyst. As a proof of concept, we studied the reduction of quinones, which are well-known electron conveyors that are involved in various biological and industrial processes. This work also provides experimental evidence for the formation of a bis(triazolium)carbonate adduct, which acts as the resting state of the catalytic cycle and as the carbene reservoir.
Collapse
Affiliation(s)
- Mehdi Abdellaoui
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Kai Oppel
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Adam Vianna
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Michele Soleilhavoup
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing,100872, China
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
13
|
Žurauskas J, Boháčová S, Wu S, Butera V, Schmid S, Domański M, Slanina T, Barham JP. Electron-Poor Acridones and Acridiniums as Super Photooxidants in Molecular Photoelectrochemistry by Unusual Mechanisms. Angew Chem Int Ed Engl 2023; 62:e202307550. [PMID: 37584300 DOI: 10.1002/anie.202307550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Electron-deficient acridones and in situ generated acridinium salts are reported as potent, closed-shell photooxidants that undergo surprising mechanisms. When bridging acyclic triarylamine catalysts with a carbonyl group (acridones), this completely diverts their behavior away from open-shell, radical cationic, 'beyond diffusion' photocatalysis to closed-shell, neutral, diffusion-controlled photocatalysis. Brønsted acid activation of acridones dramatically increases excited state oxidation power (by +0.8 V). Upon reduction of protonated acridones, they transform to electron-deficient acridinium salts as even more potent photooxidants (*E1/2 =+2.56-3.05 V vs SCE). These oxidize even electron-deficient arenes where conventional acridinium salt photooxidants have thusfar been limited to electron-rich arenes. Surprisingly, upon photoexcitation these electron-deficient acridinium salts appear to undergo two electron reductive quenching to form acridinide anions, spectroscopically-detected as their protonated forms. This new behaviour is partly enabled by a catalyst preassembly with the arene, and contrasts to conventional SET reductive quenching of acridinium salts. Critically, this study illustrates how redox active chromophoric molecules initially considered photocatalysts can transform during the reaction to catalytically active species with completely different redox and spectroscopic properties.
Collapse
Affiliation(s)
- Jonas Žurauskas
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Shangze Wu
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Valeria Butera
- Central European Institute of Technology, CEITEC, 61200 Brno (Czech Republic), Department of Science and Biological Chemical and Pharmaceutical Technologies, University of Palermo, 90128, Palermo, Italy
| | - Simon Schmid
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Michał Domański
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Joshua P Barham
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
14
|
Ma L, Feng W, Zhao S, Wang C, Xi Y, Lin X. On the mechanism of acceptorless dehydrogenation of N-heterocycles catalyzed by tBuOK: a computational study. RSC Adv 2023; 13:20748-20755. [PMID: 37441048 PMCID: PMC10334261 DOI: 10.1039/d3ra04305c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The catalytic acceptorless dehydrogenation (ADH) of saturated N-heterocycles has recently gained considerable attention as a promising strategy for hydrogen release from liquid organic hydrogen carriers (LOHCs). Recently, a simple tBuOK base-promoted ADH of N-heterocycles was developed by Yu et al. (Adv. Synth. Catal. 2019, 361, 3958). However, it is still open as to how the tBuOK plays a catalytic role in the ADH process. Herein, our density functional study reveals that the tBuOK catalyzes the ADH of 1,2,3,4-tetrahydroquinoline (THQ) through a quasi-metal-ligand bifunctional catalytic channel or a base-catalyzed pathway with close energy barriers. The hydride transfer in the first dehydrogenation process is determined to be the rate determining step, and the second dehydrogenation can proceed directly from 34DHQ regulated by the tBuOK. In addition, the computational results show that the cooperation of a suitable alkali metal ion with the tBuO- group is so critical that the tBuOLi and the isolated tBuO- are both inferior to tBuOK as a dehydrogenation catalyst.
Collapse
Affiliation(s)
- Lishuang Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenxu Feng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Shidong Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Chuangye Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Yanyan Xi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Xufeng Lin
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
15
|
Zhou J, Zhao Z, Jiang B, Yamamoto K, Sumii Y, Shibata N. Synthesis of triarylmethanes by silyl radical-mediated cross-coupling of aryl fluorides and arylmethanes. Chem Sci 2023; 14:4248-4256. [PMID: 37123196 PMCID: PMC10132141 DOI: 10.1039/d3sc00154g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Although the cross-couplings of aryl halides with diarylmethanes are mostly achieved by transition-metal catalysis, aryl fluorides are rarely used as coupling partners owing to the high inertness of C-F bonds. Herein, we describe the efficient silylboronate-mediated cross-coupling reaction of aryl fluorides with arylalkanes under transition-metal-free, room-temperature conditions. The combination of silylboronate and KO t Bu is critical for driving a radical process via the cleavage of C-F and C-H bonds in two appropriate coupling precursors, resulting in a cross-coupling product. This practical cross-coupling protocol is applicable to a wide variety of aryl fluorides with a C(sp2)-F bond. This method can be extended to other coupling partners with a C(sp3)-H bond, including diarylmethanes, diarylethanes, and monoarylalkanes. Many di- and triarylalkanes with tertiary or quaternary carbon centers can be obtained easily in moderate to high yields. We believe that the developed silylboronate-mediated cross-coupling method is a valuable contribution to C-F and C-H activation chemistry.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Bingyao Jiang
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
16
|
Zhou J, Zhao Z, Shibata N. Transition-metal-free silylboronate-mediated cross-couplings of organic fluorides with amines. Nat Commun 2023; 14:1847. [PMID: 37012229 PMCID: PMC10070422 DOI: 10.1038/s41467-023-37466-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
C-N bond cross-couplings are fundamental in the field of organic chemistry. Herein, silylboronate-mediated selective defluorinative cross-coupling of organic fluorides with secondary amines via a transition-metal-free strategy is disclosed. The cooperation of silylboronate and potassium tert-butoxide enables the room-temperature cross-coupling of C-F and N-H bonds, effectively avoiding the high barriers associated with thermally induced SN2 or SN1 amination. The significant advantage of this transformation is the selective activation of the C-F bond of the organic fluoride by silylboronate without affecting potentially cleavable C-O, C-Cl, heteroaryl C-H, or C-N bonds and CF3 groups. Tertiary amines with aromatic, heteroaromatic, and/or aliphatic groups were efficiently synthesized in a single step using electronically and sterically varying organic fluorides and N-alkylanilines or secondary amines. The protocol is extended to the late-stage syntheses of drug candidates, including their deuterium-labeled analogs.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
17
|
Sheng H, Liu Q, Zhang BB, Wang ZX, Chen XY. Visible-Light-Induced N-Heterocyclic Carbene-Catalyzed Single Electron Reduction of Mono-Fluoroarenes. Angew Chem Int Ed Engl 2023; 62:e202218468. [PMID: 36633173 DOI: 10.1002/anie.202218468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.
Collapse
Affiliation(s)
- He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
18
|
Rezazadeh S, Martin MI, Kim RS, Yap GPA, Rosenthal J, Watson DA. Photoredox-Nickel Dual-Catalyzed C-Alkylation of Secondary Nitroalkanes: Access to Sterically Hindered α-Tertiary Amines. J Am Chem Soc 2023; 145:4707-4715. [PMID: 36795911 PMCID: PMC9992296 DOI: 10.1021/jacs.2c13174] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The preparation of tertiary nitroalkanes via the nickel-catalyzed alkylation of secondary nitroalkanes using aliphatic iodides is reported. Previously, catalytic access to this important class of nitroalkanes via alkylation has not been possible due to the inability of catalysts to overcome the steric demands of the products. However, we have now found that the use of a nickel catalyst in combination with a photoredox catalyst and light leads to much more active alkylation catalysts. These can now access tertiary nitroalkanes. The conditions are scalable as well as air and moisture tolerant. Importantly, reduction of the tertiary nitroalkane products allows rapid access to α-tertiary amines.
Collapse
Affiliation(s)
- Sina Rezazadeh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Raphael S Kim
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Kundu S, Roy L, Maji MS. Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Org Lett 2022; 24:9001-9006. [PMID: 36469513 DOI: 10.1021/acs.orglett.2c03600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benzoperylenocarbazole (BPC), a unique carbazole-based organophotocatalyst, is reported herein as a potent organo-photoreductant. Lower excited state oxidation potential (-2.0 V vs SCE) and reasonable excited state lifetime (4.61 ns) render BPC an effective photosensitizer. Under irradiation of blue light employing low catalyst loading (0.5 mol %), a plethora of vicinal diols and diamines were synthesized in excellent yields through reductive coupling of carbonyls and imines, respectively. Insight about the electronic structure of BPC was obtained by DFT calculations.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
20
|
Nie C, Lin X, Zhao G, Wu K. Low‐Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations. Angew Chem Int Ed Engl 2022; 61:e202213065. [DOI: 10.1002/anie.202213065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chengming Nie
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
21
|
Eckhardt P, Elliot Q, Alabugin IV, Opatz T. Two Paths to Oxidative C-H Amination Under Basic Conditions: A Theoretical Case Study Reveals Hidden Opportunities Provided by Electron Upconversion. Chemistry 2022; 28:e202201637. [PMID: 35880945 PMCID: PMC9804812 DOI: 10.1002/chem.202201637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Traditionally, cross-dehydrogenative coupling (CDC) leads to C-N bond formation under basic and oxidative conditions and is proposed to proceed via a two-electron bond formation mediated by carbenium ions. However, the formation of such high-energy intermediates is only possible in the presence of strong oxidants, which may lead to undesired side reactions and poor functional group tolerance. In this work we explore if oxidation under basic conditions allows the formation of three-electron bonds (resulting in "upconverted" highly-reducing radical-anions). The benefit of this "upconversion" process is in the ability to use milder oxidants (e. g., O2 ) and to avoid high-energy intermediates. Comparison of the two- and three-electron pathways using quantum mechanical calculations reveals that not only does the absence of a strong oxidant shut down two-electron pathways in favor of a three-electron path but, paradoxically, weaker oxidants react faster with the upconverted reductants by avoiding the inverted Marcus region for electron transfer.
Collapse
Affiliation(s)
- Paul Eckhardt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Quintin Elliot
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida 32306USA
| | - Igor V. Alabugin
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida 32306USA
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
22
|
Raut RK, Waghamare AB, Patel N, Majumdar M. Role of N, N′‐diboryl‐4, 4′‐bipyridinylidene in the Transition metal‐free Borylation of Aryl Halides and Direct C‐H arylation of Unactivated Benzene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ravindra K. Raut
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | | | - Niranjan Patel
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | - Moumita Majumdar
- Indian Institute of Science Education and Research, Pune Chemistry Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
23
|
Zhou J, Jiang B, Zhao Z, Shibata N. Etherification of Fluoroarenes with Alkoxyboronic Acid Pinacol Esters via C-F Bond Cleavage. Org Lett 2022; 24:5084-5089. [PMID: 35797451 DOI: 10.1021/acs.orglett.2c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potassium-base-mediated defluoroetherification of aryl and heteroaryl fluorides with alkoxyboronic acid pinacol esters under transition-metal-free conditions is reported. This protocol efficiently and safely provides a wide variety of aryl ethers in high yields without using metal catalysts, specific ligands, and harsh conditions to selectively forge Csp2-O bonds via the Csp2-F cleavage. This method can be applied to the late-stage etherification of structurally complex Csp2-fluorides and bioactive alcohols, such as β-estradiol, calciferol, and tocopherol.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Bingyao Jiang
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
24
|
Zhang Y, Yuan J, Huang G, Yu H, Liu J, Chen J, Meng S, Zhong JJ, Dang L, Yu GA, Che CM. Direct visible-light-induced synthesis of P-stereogenic phosphine oxides under air conditions. Chem Sci 2022; 13:6519-6524. [PMID: 35756532 PMCID: PMC9172294 DOI: 10.1039/d2sc00036a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, visible-light-induced transformations have been regarded as being among the most environmentally benign and powerful strategies for constructing complex molecules and diverse synthetic building blocks in organic synthesis. However, the development of efficient photochemical processes for assembling enantiomerically pure molecules remains a significant challenge. Herein, we describe a simple and efficient visible-light-induced C-P bond forming reaction for the synthesis of P-chiral heteroaryl phosphine oxides in moderate to high yields with excellent ee values (97-99% ee). Even in the absence of transition metal or photoredox catalysts, a variety of P-chiral heteroaryl phosphine oxides, including chiral diphosphine oxide 41, have been directly obtained under air conditions. Density functional theory (DFT) calculations have shown that the reaction involves intersystem crossing and single electron transfer to give a diradical intermediate under visible light irradiation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jia Yuan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Hong Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jinpeng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Sixuan Meng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Guang-Ao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| |
Collapse
|
25
|
Szych LS, Pilopp Y, Bresien J, Villinger A, Rabeah J, Schulz A. Ein persistentes phosphanyl‐substituiertes Thioketylradikalanion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lilian Sophie Szych
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Yannic Pilopp
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Jonas Bresien
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Alexander Villinger
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| | - Axel Schulz
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| |
Collapse
|
26
|
Schulz A, Szych LS, Pilopp Y, Bresien J, Villinger A, Rabeah J. A Persistent Phosphanyl-Substituted Thioketyl Radical Anion. Angew Chem Int Ed Engl 2021; 61:e202114792. [PMID: 34843637 PMCID: PMC9303638 DOI: 10.1002/anie.202114792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/05/2022]
Abstract
Alkali metal salts, M+[Ter(iPr)P−C(=S)−P(iPr)2S].− (M=Na, K; 2_M; Ter=2,6‐bis‐(2,4,6‐trimethylphenyl)phenyl) containing a room‐temperature‐stable thioketyl radical anion were obtained by reduction of the thioketone precursor, Ter(iPr)P−C(=S)−P(iPr)2S (1), with alkali metals (Na, K). Single‐crystal X‐ray studies as well as EPR spectroscopy revealed the unequivocal existence of a thioketyl radical anion in the solid state and in solution, respectively. The computed Mulliken spin density within 2_M is mainly located at the sulfur (49 %) and the carbonyl carbon (33 %) atoms. Upon adding [2.2.2]‐cryptand to the radical species 2_K to minimize the interionic interaction, an activation reaction was observed, yielding a potassium salt with a phosphanyl thioether based anion, [K(crypt)]+[Ter(iPr)P−C(−S‐iPr)−P(iPr)2S]− (3) as the product of an intermolecular shift of an iPr group from a second anion. The products were fully characterized and application of the radical anion as a reducing agent was demonstrated.
Collapse
Affiliation(s)
- Axel Schulz
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059, Rostock, GERMANY
| | - Lilian Sophie Szych
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Yannic Pilopp
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Jonas Bresien
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Alexander Villinger
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Jabor Rabeah
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV, Chemie, GERMANY
| |
Collapse
|
27
|
Yu D, To WP, Liu Y, Wu LL, You T, Ling J, Che CM. Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chem Sci 2021; 12:14050-14058. [PMID: 34760188 PMCID: PMC8565399 DOI: 10.1039/d1sc04258k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The photo-induced cleavage of C(sp2)-Cl bonds is an appealing synthetic tool in organic synthesis, but usually requires the use of high UV light, photocatalysts and/or photosensitizers. Herein is described a direct photo-induced chloroarene activation with UVA/blue LEDs that can be used in the reductive Heck cyclization of indoles and without the use of a photocatalyst or photosensitizer. The indole compounds examined display room-temperature phosphorescence. The photochemical reaction tolerates a panel of functional groups including esters, alcohols, amides, cyano and alkenes (27 examples, 50-88% yields), and can be used to prepare polycyclic compounds and perform the functionalization of natural product analogues in moderate to good yields. Mechanistic experiments, including time-resolved absorption spectroscopy, are supportive of photo-induced electron transfer between the indole substrate and DIPEA, with the formation of radical intermediates in the photo-induced dearomatization reaction.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tingjie You
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jesse Ling
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| |
Collapse
|
28
|
Zhao B, Hammond GB, Xu B. Aromatic Ketone-Catalyzed Photochemical Synthesis of Imidazo-isoquinolinone Derivatives. J Org Chem 2021; 86:12851-12861. [PMID: 34436893 DOI: 10.1021/acs.joc.1c01486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed an efficient photocatalytic decarboxylative radical addition/cyclization strategy to synthesize imidazo-isoquinolinone derivatives using inexpensive aromatic ketone photocatalysts. This method not only tolerates a wide range of functional groups but also works well for both alkyl and aryl radicals.
Collapse
Affiliation(s)
- Bin Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
Cebi E, Klett J. Endohedral Mixed Aggregates: Sodium Alkoxide Cages with Organic or Inorganic Central Anions and Variable Hull. Chemistry 2021; 27:12693-12701. [PMID: 33938049 PMCID: PMC8453731 DOI: 10.1002/chem.202100912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 11/30/2022]
Abstract
Alkali metal alkoxides are widely used in chemistry due to their Brønsted basic and nucleophilic properties. Potassium alkoxides assist alkyllithium in the metalation of hydrocarbons in Lochmann‐Schlosser‐bases. Both compounds form mixed aggregates, which enhance the thermal stability, solubility, and the basic reactivity of these mixtures. A very unusual spherical mixed alkoxy aggregate was discovered by Grützmacher et al., where a central dihydrogen phosphide anion is surrounded by a highly dynamic shell of thirteen sodium atoms and a hull of twelve tert‐butoxide groups. This structural motif can be reproduced by a reaction of trimethylsilyl compounds of methane, halogens, or pseudo‐halogens with excess sodium tert‐butoxide. A nucleophilic substitution releases the corresponding anion, which is then encapsulated by the sodium alkoxide units. The compounds are soluble in hydrocarbon solvents, enabling studies of solutions by high‐resolution NMR spectroscopy and IR/Raman studies of the crystalline materials.
Collapse
Affiliation(s)
- Erkam Cebi
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Jan Klett
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
30
|
Zhao Y, Zhu H, Sung S, Wink DJ, Zadrozny JM, Driver TG. Counterion Control of
t
‐BuO‐Mediated Single Electron Transfer to Nitrostilbenes to Construct
N
‐Hydroxyindoles or Oxindoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingwei Zhao
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
- College of Chemical Engineering Huaqiao University, Xiamen 668 Jimei Boulevard Xiamen Fujian 361021 P. R. China
| | - Haoran Zhu
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Siyoung Sung
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Donald J. Wink
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Joseph M. Zadrozny
- Department of Chemistry Colorado State University Fort Collins CO 80523 USA
| | - Tom G. Driver
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| |
Collapse
|
31
|
Zhao Y, Zhu H, Sung S, Wink DJ, Zadrozny JM, Driver TG. Counterion Control of t-BuO-Mediated Single Electron Transfer to Nitrostilbenes to Construct N-Hydroxyindoles or Oxindoles. Angew Chem Int Ed Engl 2021; 60:19207-19213. [PMID: 34129257 PMCID: PMC8380450 DOI: 10.1002/anie.202104319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 12/15/2022]
Abstract
tert-Butoxide unlocks new reactivity patterns embedded in nitroarenes. Exposure of nitrostilbenes to sodium tert-butoxide was found to produce N-hydroxyindoles at room temperature without an additive. Changing the counterion to potassium changed the reaction outcome to yield solely oxindoles through an unprecedented dioxygen-transfer reaction followed by a 1,2-phenyl migration. Mechanistic experiments established that these reactions proceed via radical intermediates and suggest that counterion coordination controls whether an oxindole or N-hydroxyindole product is formed.
Collapse
Affiliation(s)
- Yingwei Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
- College of Chemical Engineering, Huaqiao University, Xiamen, 668 Jimei Boulevard, Xiamen, Fujian, 361021, P. R. China
| | - Haoran Zhu
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Siyoung Sung
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| |
Collapse
|
32
|
Semeniuchenko V, Sharif S, Day J, Chandrasoma N, Pietro WJ, Manthorpe J, Braje WM, Organ MG. (DiMeIHept Cl)Pd: A Low-Load Catalyst for Solvent-Free (Melt) Amination. J Org Chem 2021; 86:10343-10359. [PMID: 34254799 DOI: 10.1021/acs.joc.1c01057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(DiMeIHeptCl)Pd, a hyper-branched N-aryl Pd NHC catalyst, has been shown to be efficient at performing amine arylation reactions in solvent-free ("melt") conditions. The highly lipophilic environment of the alkyl chains flanking the Pd center serves as lubricant to allow the complex to navigate through the paste-like environment of these mixtures. The protocol can be used on a multi-gram scale to make a variety of aniline derivatives, including substrates containing alcohol moieties.
Collapse
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Sepideh Sharif
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Jonathan Day
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Nalin Chandrasoma
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - William J Pietro
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jeffrey Manthorpe
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Wilfried M Braje
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
33
|
Dub PA, Tkachenko NV. Mechanism of Potassium tert-Butoxide-Catalyzed Ketones Hydrogenation in the Solution Phase. J Phys Chem A 2021; 125:5726-5737. [PMID: 34184903 DOI: 10.1021/acs.jpca.1c02516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of ketones homogeneous hydrogenation with t-BuOK in tert-butanol is currently portrayed as the one proceeding via a six-membered [2 + 2 + 2] cyclic transition state involving the H2 molecule, the base, and a ketone. However, the concerted nature of the reaction is inconsistent with a number of experimental observations. Here we reanalyze available experimental data and revise the mechanism of this paradigmatic reaction based on the static and dynamic density functional theory (DFT) calculations in solution phase. In contrast to the gas-phase profile where the overall reaction occurs in two elementary steps, there are three consecutive steps in solution: cleavage of the H-H bond in basic tert-butanol to afford potassium hydride, addition of potassium hydride across the C═O bond of a ketone through the rate-determining transition state, and rapid product formation through K/H exchange. Potassium hydride is therefore an important intermediate of the catalytic process. The free energy profile for the prophetic ester homogeneous hydrogenation with t-BuOK in tert-butanol is also computed herein. The reaction seems to be kinetically possible, but slightly harsher conditions need to be applied, consistent with rate-determining nature of the potassium hydride addition.
Collapse
Affiliation(s)
- Pavel A Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikolay V Tkachenko
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
34
|
Zhou J, Jiang B, Fujihira Y, Zhao Z, Imai T, Shibata N. Catalyst-free carbosilylation of alkenes using silyl boronates and organic fluorides via selective C-F bond activation. Nat Commun 2021; 12:3749. [PMID: 34145264 PMCID: PMC8213744 DOI: 10.1038/s41467-021-24031-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
A regioselective carbosilylation of alkenes has emerged as a powerful strategy to access molecules with functionalized silylated alkanes, by incorporating silyl and carbon groups across an alkene double bond. However, to the best of our knowledge, organic fluorides have never been used in this protocol. Here we disclose the catalyst-free carbosilylation of alkenes using silyl boronates and organic fluorides mediated by tBuOK. The main feature of this transformation is the selective activation of the C-F bond of an organic fluoride by the silyl boronate without undergoing potential side-reactions involving C-O, C-Cl, heteroaryl-CH, and even CF3 groups. Various silylated alkanes with tertiary or quaternary carbon centers that have aromatic, hetero-aromatic, and/or aliphatic groups at the β-position are synthesized in a single step from substituted or non-substituted aryl alkenes. An intramolecular variant of this carbosilylation is also achieved via the reaction of a fluoroarene with a ω-alkenyl side chain and a silyl boronate.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Bingyao Jiang
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Yamato Fujihira
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Takanori Imai
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan.
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan.
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
35
|
Huang G, Li J, Deng Z, Li J, Sun S, Xu L, Dang L, Li MD. Room-Temperature Stable Noncovalent Charge-Transfer Dianion Biradical to Produce Singlet Oxygen by Visible or Near-Infrared Light Photoexcitation. J Phys Chem Lett 2021; 12:4306-4312. [PMID: 33913708 DOI: 10.1021/acs.jpclett.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noncovalent interaction between small molecules can generate a charge-transfer (CT) state, achieving the effect of a conjugated large molecule as well as a transition-metal complex. Herein, we demonstrate a room-temperature stable dianion biradical conveniently produced by noncovalent intermolecular CT interaction between anthraquinone (AQ) and potassium tert-butoxide (KOtBu). Essentially, CT from KOtBu to AQ boosts absorption bands from the UV to visible and near-infrared (NIR) range, enabling AQ-KOtBu to have new absorption bands around 400, 550, and 900 nm. The absorption bands of AQ-KOtBu are dramatically enhanced after blue-to-green or NIR light excitation. Interestingly, both ground state AQ-KOtBu (C(1)) and photoexcited AQ-KOtBu (C(2)) are quenched by oxygen to produce singlet oxygen. Furthermore, C(1) can be photoactivated by purged nitrogen in solution, and C(2) can be regenerated after the photoexcitation and purged nitrogen in solution, which may serve as a photosensitizer under visible and NIR light excitation.
Collapse
Affiliation(s)
- Guanheng Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Jiayu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Ziqi Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Jinghong Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Shanshan Sun
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Liang Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Providence, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
36
|
|
37
|
Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Recent advances in the chemistry of ketyl radicals. Chem Soc Rev 2021; 50:5349-5365. [PMID: 33972956 PMCID: PMC8111543 DOI: 10.1039/d0cs00358a] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketyl radicals are valuable reactive intermediates for synthesis and are used extensively to construct complex, functionalized products from carbonyl substrates. Single electron transfer (SET) reduction of the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O bond of aldehydes and ketones is the classical approach for the formation of ketyl radicals and metal reductants are the archetypal reagents employed. The past decade has, however, witnessed significant advances in the generation and harnessing of ketyl radicals. This tutorial review highlights recent, exciting developments in the chemistry of ketyl radicals by comparing the varied contemporary – for example, using photoredox catalysts – and more classical approaches for the generation and use of ketyl radicals. The review will focus on different strategies for ketyl radical generation, their creative use in new synthetic protocols, strategies for the control of enantioselectivity, and detailed mechanisms where appropriate. Ketyl radicals are valuable reactive intermediates for synthesis. This review highlights exciting recent developments in the chemistry of ketyl radicals by comparing contemporary and more classical approaches for their generation and use.![]()
Collapse
Affiliation(s)
- Áron Péter
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | |
Collapse
|
38
|
Bains AK, Ankit Y, Adhikari D. Pyrenedione-Catalyzed α-Olefination of Nitriles under Visible-Light Photoredox Conditions. Org Lett 2021; 23:2019-2023. [PMID: 33688742 DOI: 10.1021/acs.orglett.1c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we report a combination of pyrenedione (PD) and KOtBu to achieve facile alcohol dehydrogenation under visible-light excitation, where aerobic oxygen is utilized as the terminal oxidant. The resulting carbonyl compound can be easily converted to vinyl nitriles in a single-pot reaction, at 60 °C in 6-8 h. This environmentally benign, organocatalytic approach has distinct advantages over transition-metal-catalyzed α-olefination of nitriles, which often operate at a significantly higher temperature for an extended reaction time.
Collapse
|
39
|
Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. J Org Chem 2021; 86:2556-2569. [PMID: 33492136 DOI: 10.1021/acs.joc.0c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Desulfonylation reactions of α-sulfonylketones promoted by photoinduced electron transfer with 2-hydroxyarylbenzimidazolines (BIH-ArOH) were investigated. Under aerobic conditions, photoexcited 2-hydroxynaphthylbenzimidazoline (BIH-NapOH) promotes competitive reduction (forming alkylketones) and oxidation (producing α-hydroxyketones) of sulfonylketones through pathways involving the intermediacy of α-ketoalkyl radicals. The results of an examination of the effects of solvents, radical trapping reagents, substituents of sulfonylketones, and a variety of hydroxyaryl- and aryl-benzimidazolines (BIH-ArOH and BIH-Ar) suggest that the oxidation products are produced by dissociation of α-ketoalkyl radicals from the initially formed solvent-caged radical ion pairs followed by reaction with molecular oxygen. In addition, the observations indicate that the reduction products are generated by proton or hydrogen atom transfer in solvent-caged radical ion pairs derived from benzimidazolines and sulfonylketones. The results also suggest that arylsulfinate anions arising by carbon-sulfur bond cleavage of sulfonylketone radical anions act as reductants in the oxidation pathway to convert initially formed α-hydroperoxyketones to α-hydroxyketones. Finally, density functional theory calculations were performed to explore the structures and properties of radical ions of sulfonylketones as well as BIH-NapOH.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shyota Nakamura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
40
|
K Bains A, Ankit Y, Adhikari D. Bioinspired Radical-Mediated Transition-Metal-Free Synthesis of N-Heterocycles under Visible Light. CHEMSUSCHEM 2021; 14:324-329. [PMID: 33210460 DOI: 10.1002/cssc.202002161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/16/2020] [Indexed: 06/11/2023]
Abstract
A redox-active iminoquinone motif connected with π-delocalized pyrene core has been reported that can perform efficient two-electron oxidation of a class of substrates. The design of the molecule was inspired by the organic redox cofactor topaquinone (TPQ), which executes amine oxidation in the enzyme, copper amine oxidase. Easy oxidation of both primary and secondary alcohols happened in the presence of catalytic KOtBu, which could reduce the ligand backbone to its iminosemiquinonate form under photoinduced conditions. Moreover, this easy oxidation of alcohols under aerobic condition could be elegantly extended to multi-component, one-pot coupling for the synthesis of quinoline and pyrimidine. This organocatalytic approach is very mild (70 °C, 8 h) compared to a multitude of transition-metal catalysts that have been used to prepare these heterocycles. A detailed mechanistic study proves the intermediacy of the iminosemiquinonate-type radical and a critical hydrogen atom transfer step to be involved in the dehydrogenation reaction.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| | - Yadav Ankit
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| |
Collapse
|
41
|
Bains AK, Singh V, Adhikari D. Homogeneous Nickel-Catalyzed Sustainable Synthesis of Quinoline and Quinoxaline under Aerobic Conditions. J Org Chem 2020; 85:14971-14979. [PMID: 33174416 DOI: 10.1021/acs.joc.0c01819] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dehydrogenative coupling-based reactions have emerged as an efficient route toward the synthesis of a plethora of heterocyclic rings. Herein, we report an efficacious, nickel-catalyzed synthesis of two important heterocycles such as quinoline and quinoxaline. The catalyst is molecularly defined, is phosphine-free, and can operate at a mild reaction temperature of 80 °C. Both the heterocycles can be easily assembled via double dehydrogenative coupling, starting from 2-aminobenzyl alcohol/1-phenylethanol and diamine/diol, respectively, in a shorter span of reaction time. This environmentally benign synthetic protocol employing an inexpensive catalyst can rival many other transition-metal systems that have been developed for the fabrication of two putative heterocycles. Mechanistically, the dehydrogenation of secondary alcohol follows clean pseudo-first-order kinetics and exhibits a sizable kinetic isotope effect. Intriguingly, this catalyst provides an example of storing the trapped hydrogen in the ligand backbone, avoiding metal-hydride formation. Easy regeneration of the oxidized form of the catalyst under aerobic/O2 oxidation makes this protocol eco-friendly and easy to handle.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| | - Vikramjeet Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| |
Collapse
|
42
|
Korth HG. Comment on "Persistent Room-Temperature Radicals from Anionic Naphthalimides: Spin Pairing and Supramolecular Chemistry" and on "Persistent Radical Pairs between N-Substituted Naphthalimide and Carbanion Exhibit pKa-Dependent UV/Vis Absorption". Chemistry 2020; 26:12747-12750. [PMID: 32935360 DOI: 10.1002/chem.202003437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/28/2020] [Indexed: 12/24/2022]
Abstract
EPR spectroscopic evidence for intramolecular electron transfer in anionic N-substituted naphthalimides to yield persistent diradical anions and intermolecular electron transfer from a variety of carbanions to 6-bromo-N-phenyl-naphthalimide to yield persistent radical-radical anion pairs was recently claimed in two papers by Zhang et al. In this comment, it is shown that the EPR spectra published in both papers do not agree with the proposed triplet-state species. Rather, the spectra are due to various doublet-state radicals, deriving from minor side reactions. The misinterpretations invalidate the general conclusions of the papers.
Collapse
Affiliation(s)
- Hans-Gert Korth
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| |
Collapse
|
43
|
Frühwirt P, Knoechl A, Pillinger M, Müller SM, Wasdin PT, Fischer RC, Radebner J, Torvisco A, Moszner N, Kelterer AM, Griesser T, Gescheidt G, Haas M. The Chemistry of Acylgermanes: Triacylgermenolates Represent Valuable Building Blocks for the Synthesis of a Variety of Germanium-Based Photoinitiators. Inorg Chem 2020; 59:15204-15217. [PMID: 32993291 PMCID: PMC7581296 DOI: 10.1021/acs.inorgchem.0c02181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The formation of
a stable triacylgermenolate 2 as
a decisive intermediate was achieved by using three pathways. The
first two methods involve the reaction of KOtBu or
alternatively potassium with tetraacylgermane 1 yielding 2 via one electron transfer. The mechanism involves the formation
of radical anions (shown by EPR). This reaction is highly efficient
and selective. The third method is a classical salt metathesis reaction
toward 2 in nearly quantitative yield. The formation
of 2 was confirmed by NMR spectroscopy, UV–vis
measurements, and X-ray crystallography. Germenolate 2 serves as a starting point for a wide variety of organo-germanium
compounds. We demonstrate the potential of this intermediate by introducing
new types of Ge-based photoinitiators 4b–4f. The UV–vis absorption spectra of 4b–4f show considerably increased band intensities
due to the presence of eight or more chromophores. Moreover, compounds 4d–4f show absorption tailing up to 525
nm. The performance of these photoinitiators is demonstrated by spectroscopy
(time-resolved EPR, laser flash photolysis (LFP), photobleaching (UV–vis))
and photopolymerization experiments (photo-DSC measurements). Triacylgermenolate 2 was
obtained by using
KOtBu or alternatively potassium. The mechanism involves
the formation of radical anions (shown by EPR). The one-pot synthetic
protocol produces 2 in >95% yield, as confirmed by
NMR
spectroscopy and X-ray crystallography. Germenolate 2 serves as a starting point for a wide variety of organo-germanium
compounds. This was demonstrated by introducing new types of Ge-based
photoinitiators 4b−4f. Their performance
was analyzed by sophisticated spectroscopic methods and photopolymerization
experiments.
Collapse
Affiliation(s)
| | | | | | - Stefanie M Müller
- Institute of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Gloeckelstrasse 2, A-8700 Leoben, Austria
| | | | | | | | | | - Norbert Moszner
- Ivoclar Vivadent AG, Bendererstraße 2, FL-9494 Schaan, Liechtenstein
| | | | - Thomas Griesser
- Institute of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Gloeckelstrasse 2, A-8700 Leoben, Austria
| | | | | |
Collapse
|
44
|
Lichtenberg C. Main-Group Metal Complexes in Selective Bond Formations Through Radical Pathways. Chemistry 2020; 26:9674-9687. [PMID: 32048770 PMCID: PMC7496981 DOI: 10.1002/chem.202000194] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Recent years have witnessed remarkable advances in radical reactions involving main-group metal complexes. This includes the isolation and detailed characterization of main-group metal radical compounds, but also the generation of highly reactive persistent or transient radical species. A rich arsenal of methods has been established that allows control over and exploitation of their unusual reactivity patterns. Thus, main-group metal compounds have entered the field of selective bond formations in controlled radical reactions. Transformations that used to be the domain of late transition-metal compounds have been realized, and unusual selectivities, high activities, as well as remarkable functional-group tolerances have been reported. Recent findings demonstrate the potential of main-group metal compounds to become standard tools of synthetic chemistry, catalysis, and materials science, when operating through radical pathways.
Collapse
Affiliation(s)
- Crispin Lichtenberg
- Institute of Inorganic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
45
|
Azizi K, Madsen R. Radical condensation between benzylic alcohols and acetamides to form 3-arylpropanamides. Chem Sci 2020; 11:7800-7806. [PMID: 34123070 PMCID: PMC8163310 DOI: 10.1039/d0sc02948c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A new radical condensation reaction is developed where benzylic alcohols and acetamides are coupled to generate 3-arylpropanamides with water as the only byproduct. The transformation is performed with potassium tert-butoxide as the only additive and gives rise to a variety of 3-arylpropanamides in good yields. The mechanism has been investigated experimentally with labelled substrates, trapping experiments and spectroscopic measurements. The findings indicate a radical pathway where potassium tert-butoxide is believed to serve a dual role as both base and radical initiator. The radical anion of the benzylic alcohol is proposed as the key intermediate, which undergoes coupling with the enolate of the amide to form the new C–C bond. Subsequent elimination to the corresponding cinnamamide and olefin reduction then affords the 3-arylpropanamides. Benzylic alcohols and acetamides are coupled into 3-arylpropanamides by a new radical condensation through the radical anion of the alcohol.![]()
Collapse
Affiliation(s)
- Kobra Azizi
- Department of Chemistry, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
46
|
Hayashi H, Wang B, Wu X, Teo SJ, Kaga A, Watanabe K, Takita R, Yeow EKL, Chiba S. Biaryl Cross‐Coupling Enabled by Photo‐Induced Electron Transfer. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hirohito Hayashi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Bin Wang
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Xiangyang Wu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Shi Jie Teo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Atsushi Kaga
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Kohei Watanabe
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Edwin K. L. Yeow
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
47
|
Lin Q, Zhang S, Li B. KO t-Bu-promoted selective ring-opening N-alkylation of 2-oxazolines to access 2-aminoethyl acetates and N-substituted thiazolidinones. Beilstein J Org Chem 2020; 16:492-501. [PMID: 32273909 PMCID: PMC7113552 DOI: 10.3762/bjoc.16.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 01/29/2023] Open
Abstract
An efficient and simple KOt-Bu-promoted selective ring-opening N-alkylation of 2-methyl-2-oxazoline or 2-(methylthio)-4,5-dihydrothiazole with benzyl halides under basic conditions is described for the first time. The method provides a convenient and practical pathway for the synthesis of versatile 2-aminoethyl acetates and N-substituted thiazolidinones with good functional group tolerance and selectivity. KOt-Bu not only plays an important role to promote this ring-opening N-alkylation, but also acts as an oxygen donor.
Collapse
Affiliation(s)
- Qiao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China
| | - Shiling Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China
| |
Collapse
|
48
|
Constantin T, Zanini M, Regni A, Sheikh NS, Juliá F, Leonori D. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 2020; 367:1021-1026. [DOI: 10.1126/science.aba2419] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Organic halides are important building blocks in synthesis, but their use in (photo)redox chemistry is limited by their low reduction potentials. Halogen-atom transfer remains the most reliable approach to exploit these substrates in radical processes despite its requirement for hazardous reagents and initiators such as tributyltin hydride. In this study, we demonstrate that α-aminoalkyl radicals, easily accessible from simple amines, promote the homolytic activation of carbon-halogen bonds with a reactivity profile mirroring that of classical tin radicals. This strategy conveniently engages alkyl and aryl halides in a wide range of redox transformations to construct sp3-sp3, sp3-sp2, and sp2-sp2 carbon-carbon bonds under mild conditions with high chemoselectivity.
Collapse
Affiliation(s)
| | - Margherita Zanini
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Alessio Regni
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Nadeem S. Sheikh
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
49
|
Li HF, Cao W, Ma X, Xie X, Xia Y, Ouyang Z. Visible-Light-Driven [2 + 2] Photocycloadditions between Benzophenone and C═C Bonds in Unsaturated Lipids. J Am Chem Soc 2020; 142:3499-3505. [PMID: 31994883 DOI: 10.1021/jacs.9b12120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The [2 + 2] photocycloaddition of alkenes and carbonyls is of fundamental interest and practical importance, as this process is extensively involved in oxetane-ring constructions. Although individual carbonyl group or alkene moiety has been utilized as photoactive species for oxetane formations upon ultraviolet photoexcitation, direct excitation of the entire noncovalent complex involving alkene and carbonyl substrates to achieve [2 + 2] photocycloadditions is rarely addressed. Herein, complexes with noncovalent interactions between benzophenone and C═C bonds in unsaturated lipids have been successfully characterized, and for the first time a [2 + 2] cycloaddition leading to the formation of oxetanes has been identified under visible-light irradiation. The mechanism of this reaction is distinctly different from the well-studied Paternò-Büchi reaction. The entire complexes characterized as dimeric proton-bonded alkene and carbonyl substrates can be excited under visible light, leading to electron transfer from the alkene moiety in fatty acyls to the carbonyl group within the complex. These results provide new insight into utilizing noncovalent complexes for the synthesis of oxetanes in which the excitation wavelength becomes independent of each individual substrate.
Collapse
Affiliation(s)
- Hai-Fang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiaobo Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
50
|
Dub PA, Batrice RJ, Gordon JC, Scott BL, Minko Y, Schmidt JG, Williams RF. Engineering Catalysts for Selective Ester Hydrogenation. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rami J. Batrice
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John C. Gordon
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L. Scott
- Materials and Physics Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yury Minko
- Biochemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jurgen G. Schmidt
- Biochemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Robert F. Williams
- Biochemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|