1
|
Mao Q, Zhang J, Liu M. Conversion of CO 2 into cyclic carbonates using an ionic porous organic cage. Chem Commun (Camb) 2025. [PMID: 40405584 DOI: 10.1039/d5cc01691f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals offers a promising path for greenhouse gas utilization. Porous organic cages (POCs), an emerging subclass of porous materials, have shown great potential in catalysis, primarily as catalyst supports and stabilizers for metal nanoparticles (MNPs) to enhance their catalytic activity. Herein, we report the use of an ionic POC (OFT-RCC36+6Br-) as a metal-free catalyst for the cycloaddition of CO2 and epoxides, generating cyclic carbonates in high yields. This POC catalyst is highly efficient, achieving a maximum yield of up to 90% with a turnover number (TON) of 3000 without requiring reaction solvents. Moreover, with the synergistic effect of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), the catalytic performance can be further enhanced across a wide substrate range.
Collapse
Affiliation(s)
- Qianqian Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jinjin Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Hangzhou 311200, China.
| |
Collapse
|
2
|
Zhang Y, Zhou J, Luo K, Zhou W, Wang F, Li J, He Q. Ferritin-Inspired Encapsulation and Stabilization of Gold Nanoclusters for High-Performance Photothermal Conversion. Angew Chem Int Ed Engl 2025; 64:e202500058. [PMID: 40007416 DOI: 10.1002/anie.202500058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Gold nanoclusters (AuNCs) are highly promising for applications in photothermal conversion due to their exceptional surface area and optical properties. However, their high surface energy often leads to aggregation, compromising stability and performance. To address this, we developed a ferritin-inspired covalent organic cage with a near-enclosed cavity to physically stabilize AuNCs. This superphane cage coordinates with Au3⁺ ions, forming highly stable and uniform AuNCs upon reduction. The encapsulated AuNCs exhibit broad absorption (250-2500 nm) and achieve remarkable photothermal conversion efficiency of 92.8% under 808 nm laser irradiation. At low power densities (0.5 W/cm2), temperatures reach 150 °C, and under one-sun illumination (1 kW/m2), the solar-to-vapor generation efficiency reaches 95.1%, with a water evaporation rate of 2.35 kg m-2 h-1. Even after 20 seawater desalination cycles, the system maintains a stable evaporation rate of 2.24 kg m-2 h-1, demonstrating excellent salt tolerance and durability. This ferritin-inspired strategy offers a robust platform for enhancing the stability and performance of AuNCs, advancing sustainable energy and water purification technologies.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Juan Zhou
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Ke Luo
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Wei Zhou
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Fei Wang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Jialian Li
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Qing He
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
3
|
Li R, Zhang H, Hou Y, Gao L, Chu D, Zhang M. Metallacage-crosslinked free-standing supramolecular networks via photo-induced copolymerization for photocatalytic water decontamination. Nat Commun 2025; 16:2733. [PMID: 40108122 PMCID: PMC11923137 DOI: 10.1038/s41467-025-57822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
The development of polymer materials for water decontamination makes a significant contribution to environmental protection and public health. Herein, we report the preparation of metallacage-crosslinked free-standing supramolecular networks by photo-induced copolymerization of acrylate metallacages and butyl methacrylate for water decontamination. The integration of metallacages into polymer networks endows the networks good capability for generating singlet oxygen via photosensitization, making them serve as a type of decontamination materials that can effectively eliminate diverse organic pollutants and bacterial contaminants. This study not only provides a mild and effective strategy for the preparation of metallacage-cored supramolecular networks via photo-induced copolymerization but also explores their applications for photocatalytic dye degradation and bacterial killing, which will promote the future development of metallacage-based supramolecular materials for photocatalytic applications.
Collapse
Affiliation(s)
- Rongrong Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Haixin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Liu SH, Zhao K, Zhou JH, Dong K, Ai H, Liu P, Cui JW, Zhang YH, Puigmartí-Luis J, Sun JK. Cooperative Multiscale-Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single-Crystal Microtubes and Arrays. Angew Chem Int Ed Engl 2025; 64:e202421523. [PMID: 39688886 DOI: 10.1002/anie.202421523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation. Concurrently, at the mesoscopic level, convective flow in the double-solvent system directed the spatial distribution of nuclei species, followed by diffusion limited growth, leading to the directional formation of single-crystal microtubes. By precisely controlling the direction of convective flow, the nanocages were successfully organized into 2D and 3D single-crystal microtube arrays while maintaining oriented micropores. This hierarchical porous architecture enhanced mass transfer, as confirmed by adsorption measurements. Interestingly, such 3D hierarchical microtube arrays can be utilized to immobilize Pd clusters and enzymes (lipase or Glucose oxidase) within the micro- and macropores, respectively, showing a 3.8- to 4-fold enhancement in one-pot tandem reaction activity compared to physical mixtures of individual analogues.
Collapse
Affiliation(s)
- Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Ke Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Kang Dong
- Multi-Disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Ai
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pai Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jing-Wang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Hong Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
5
|
Andrews KG. Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages. Beilstein J Org Chem 2025; 21:421-443. [PMID: 40041197 PMCID: PMC11878132 DOI: 10.3762/bjoc.21.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
The bespoke environments in enzyme active sites can selectively accelerate chemical reactions by as much as 1019. Macromolecular and supramolecular chemists have been inspired to understand and mimic these accelerations and selectivities for applications in catalysis for sustainable synthesis. Over the past 60+ years, mimicry strategies have evolved with changing interests, understanding, and synthetic advances but, ubiquitously, research has focused on use of a molecular "cavity". The activities of different cavities vary with the subset of features available to a particular cavity type. Unsurprisingly, without synthetic access to mimics able to encompass more/all of the functional features of enzyme active sites, examples of cavity-catalyzed processes demonstrating enzyme-like rate accelerations remain rare. This perspective will briefly highlight some of the key advances in traditional cavity catalysis, by cavity type, in order to contextualize the recent development of robust organic cage catalysts, which can exploit stability, functionality, and reduced symmetry to enable promising catalytic modes.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, Durham University, Lower Mount Joy, South Rd, Durham, DH1 3LE, UK
| |
Collapse
|
6
|
Lee H, Dhamija A, Gunnam A, Hwang I, Kim K. Enhancing the Chemical Stability of P 12L 24 Cage: Transformation of the Chemically Labile Imine Cage into a Robust Carbamate Cage. Chemistry 2025; 31:e202403936. [PMID: 39530447 DOI: 10.1002/chem.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Herein, we report enhancement in chemical stability of the imine-based porphyrinic cage P12L24 by converting it into a robust carbamate porphyrinic cage, c-P12L24, through a two-step post-synthetic modification process. First, the imine bonds in P12L24 were reduced to form an amine-based cage, r-P12L24, followed by carbamation using N,N'-carbonyldiimidazole (CDI) to yield c-P12L24. The resulting carbamate cage exhibits high stability under acidic and basic conditions (pH 1-13) and in the presence of moisture. 1H NMR, DOSY NMR, and DFT calculations revealed that reducing the imine bonds to amine increases the framework's flexibility, causing partial structural collapse, whereas the carbamate formation restores structural rigidity. The insertion of a 4.0 nm molecular ruler into the cavity of zinc-metallated c-P12L24 via metal-ligand coordination further confirmed restoration of the cavity size and geometry of the original cage. This enhancement of chemical stability through carbamate formation can pave the way to a wide range of potential applications for the gigantic porphyrinic cage.
Collapse
Affiliation(s)
- Hochan Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Anilkumar Gunnam
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ilha Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Center for Self-assembly and Complexity (CSC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
7
|
Zhang JZ, Zhang YB, Chai HL, Luo HL, Du CX, Huang RW, Zang SQ. Selectivity Modulation of Multistep Reduction Reactions by Gold Nanoclusters. Angew Chem Int Ed Engl 2025; 64:e202413418. [PMID: 39294887 DOI: 10.1002/anie.202413418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
The selective synthesis of valuable azo- and azoxyaromatic chemicals via transfer coupling of nitroaromatic compounds has been achieved by fine-tuning the catalyst structure. Here, a direct method to modulate nitrobenzene reduction and selectively alter the product from azobenzene to azoxybenzene by employing the size effect of Au is reported. Au nanoclusters (NCs) with smaller sizes embedded in ZIF-8 controllably converted nitrobenzene into azoxybenzene, while supported Au nanoparticles (NPs) selectively catalyzed nitrobenzene reduction to azobenzene. X-ray photoelectron spectroscopy (XPS) and Diffuse reflectance infrared Fourier transform spectroscopy on CO adsorption (CO-DRIFTS) of Au NC/ZIF-8 revealed a higher valence state and a lower electron density of Au than that of Au NP/ZIF-8, combined with the desorption of azoxybenzene from the Au NC and Au NP surface, suggesting that the Au NCs with lower electron density exhibit stronger adsorption. Density functional theory (DFT) calculations and charge density difference maps indicated that azoxybenzene bonded to Au NC/ZIF-8 with greater adsorption energy, resulting in more electron transfer between azoxybenzene and the generated Au sites, which inhibited further reduction of azoxybenzene and resulted in high azoxybenzene selectivity. The application of the size effect of Au particles to regulate nitrobenzene transfer coupling provided new insights into the structure-selectivity relationships.
Collapse
Affiliation(s)
- Jing-Zheng Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Bao Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui-Li Chai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui-Ling Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Xia Du
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Metz LL, Ham R, Bobylev EO, Brouwer KJH, van Blaaderen A, van de Poll RCJ, Drozhzhin VR, Hensen EJM, Reek JNH. M 12L 24 nanospheres as supramolecular templates for the controlled synthesis of Ir-nanoclusters and their use in the chemo-selective hydrogenation of nitro styrene. Chem Sci 2024; 15:20022-20029. [PMID: 39568919 PMCID: PMC11575609 DOI: 10.1039/d4sc06324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Controlled preparation of ultrafine metal nanoclusters (<2 nm) is challenging, yet important as the properties of these clusters are inherently linked to their size and local microenvironment. In the present work, we report the utilization of supramolecular pre-organization of organometallic complexes within well-defined M12L24 coordination spheres for the controlled synthesis of ultrafine Ir nanoclusters by reduction with molecular hydrogen. For this purpose, 24 sulfonate functionalized N-heterocyclic carbene (NHC) Ir complexes (Ir-s) were bound within a well-defined M12L24 nanosphere that is equipped with 24 guanidinium binding sites (G-sphere). Reduction of these pre-organized metal complexes by hydrogenation led to the templated formation of nanoclusters with a narrow size distribution (1.8 ± 0.4 nm in diameter). It was demonstrated through 1H-DOSY-NMR and HAADF-STEM-EDX experiments that the resulting nanoclusters reside within the nanospheres. The reduction of similar non-encapsulated metal complexes in the presence of nanosphere systems (Ir-s + M-sphere or Ir-p + G-sphere) resulted in larger particles with a broader size distribution (2.3 ± 2.1 nm and 6.6 ± 3.2 nm for Ir-s + M-sphere and Ir-p + G-sphere respectively). The encapsulated nanoclusters were used as a homogeneous catalyst in the selective hydrogenation of 4-nitrostyrene to 4-ethylnitrobenzene and display absolute selectivity, which is even maintained at full conversions, whereas the larger non-encapsulated clusters were less selective as these also showed reduction of the nitro functionality.
Collapse
Affiliation(s)
- Lotte L Metz
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Rens Ham
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Eduard O Bobylev
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Kelly J H Brouwer
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University Princetonplein 1 3584 CC Utrecht The Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University Princetonplein 1 3584 CC Utrecht The Netherlands
| | - Rim C J van de Poll
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Victor R Drozhzhin
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Emiel J M Hensen
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
9
|
Liu C, Wang Z, Wang H, Jiang J. Recent advances in porous organic cages for energy applications. Chem Sci 2024:d4sc05309e. [PMID: 39483250 PMCID: PMC11523839 DOI: 10.1039/d4sc05309e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
In recent years, the energy and environmental crises have attracted more and more attention. It is very important to develop new materials and technologies for energy storage and conversion. In particular, it is crucial to develop carriers that store energy or promote mass and electron transport. Emerging porous organic cages (POCs) are very suitable for this purpose because they have inherent advantages including structural designability, porosity, multifunction and post-synthetic modification. POC-based materials, such as pristine POCs, POC composites and POC derivatives also exhibit excellent energy-related properties. This latest perspective provides an overview of the progress of POC-based materials in energy storage and conversion applications, including photocatalysis, electrocatalysis (CO2RR, NO3RR, ORR, HER and OER), separation (gas separation and liquid separation), batteries (lithium-sulfur, lithium-ion and perovskite solar batteries) and proton conductivity, highlighting the unique advantages of POC-based materials in various forms. Finally, we summarize the current advances, challenges and further perspectives of POC-based materials in energy applications. This perspective will promote the design and synthesis of next-generation POC-based materials for energy applications.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Zhixuan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
10
|
Yang M, Su K, Yuan D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem Commun (Camb) 2024; 60:10476-10487. [PMID: 39225058 DOI: 10.1039/d4cc04150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Porous organic cages (POCs) are constructed from purely organic synthons by covalent linkages with intrinsic cavities and have shown potential applications in many areas. However, the majority of POC synthesis methods reported thus far have relied on dynamically reversible imine linkages, which can be metastable and unstable under humid or harsh chemical conditions. This instability significantly hampers their research prospects and practical applications. Consequently, strategies to enhance the chemical stability of POCs by modifying imine bonds and developing robust covalent linkages are imperative for realizing the full potential of these materials. In this review, we aim to highlight recent advancements in synthesizing chemical-stable POCs through these approaches and their associated applications. Additionally, we propose further strategies for creating stable POCs and discuss future opportunities for practical applications.
Collapse
Affiliation(s)
- Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Adamowicz W, Yaemsunthorn K, Kobielusz M, Macyk W. Photocatalytic Transformation of Organics to Valuable Chemicals - Quo Vadis? Chempluschem 2024; 89:e202400171. [PMID: 38679579 DOI: 10.1002/cplu.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent development in photocatalysis is increasingly focused on transforming organic compounds toward producing fine chemicals. Simple, non-selective oxidation reactions (degradation of pollutants) and very demanding solar-to-chemical energy conversion processes (production of solar fuels) face severe economic limitations influenced by still low efficiency and insufficient stability of the systems. Synthesis of fine chemicals, including reductive and oxidative selective transformations, as well as C-C and C-N coupling reactions, can utilise the power of photocatalysis. Herein, we present the recent progress in photocatalytic systems designed to synthesise fine chemicals. In particular, we discuss the factors influencing the efficiency and selectivity of the organic transformations, dividing them into intrinsic (related to individual properties of photocatalysts) and extrinsic (originating from the reaction environment). A rational design of the photocatalytic systems, based on a deep understanding of these factors, opens new perspectives for applied photocatalysis.
Collapse
Affiliation(s)
- Wiktoria Adamowicz
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, ul. Łojasiewicza 11, 30-348, Kraków, Poland
| | - Kasidid Yaemsunthorn
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387, Kraków, Poland
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | - Marcin Kobielusz
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387, Kraków, Poland
| | - Wojciech Macyk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
12
|
Singh S, Mukherjee TK. Photosensitizer-free singlet oxygen generation via a charge transfer transition involving molecular O 2 toward highly efficient oxidative coupling of arylamines to azoaromatics. Chem Sci 2024:d4sc04115a. [PMID: 39144455 PMCID: PMC11320377 DOI: 10.1039/d4sc04115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Photosensitizer (PS)-mediated generation of singlet oxygen, O2 (a1Δg) is a well-explored phenomenon in chemistry and biology. However, the requirement of appropriate PSs with optimum excited state properties is a prerequisite for this approach which limits its widespread application. Herein, we report the generation of O2 (a1Δg) via direct charge-transfer (CT) excitation of the solvent-O2 (X3Σg -) collision complex without any PS and utilize it for the catalyst-free oxidative coupling of arylamines to azoaromatics under ambient conditions in aqueous medium. Electron paramagnetic resonance (EPR) spectroscopy revealed the formation of O2 (a1Δg) upon direct excitation with 370 nm light. The present approach shows broad substrate scope, remarkably fast reaction kinetics (90 and 40 min under an open and O2 atm, respectively), high selectivity (100%), and excellent yields (up to 100%), and works well for both homo- and hetero-coupling of arylamines. The oxidative coupling of arylamines was found to proceed through the generation of amine radicals via electron transfer (ET) from amines to O2 (a1Δg). Notably, electron-rich amines show higher yields of azo products compared to electron-deficient amines. Detailed mechanistic investigations using various spectroscopic tools revealed the formation of hydrazobenzene as an intermediate along with superoxide radicals which subsequently transform to hydrogen peroxide. The present study is unique in the way that molecular O2 simultaneously acts as a light-absorbing chromophore (solvent-O2 complex) as well as an efficient oxidant (O2 (a1Δg)) in the same reaction. This is the first report on the efficient, selective, and sustainable synthesis of azo compounds in aqueous medium under an ambient atmosphere without any PCs/PSs and paves the way for further in-depth understanding of the chemical reactivity of O2 (a1Δg) generated directly via CT excitation of the solvent-O2 complex toward various photochemical and photobiological transformations.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 Madhya Pradesh India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 Madhya Pradesh India
| |
Collapse
|
13
|
Buravets V, Gorin O, Burtsev V, Zabelina A, Zabelin D, Kosina J, Maixner J, Svorcik V, Kolganov AA, Pidko EA, Lyutakov O. Plasmon-Mediated Organic Photoelectrochemistry Applied to Amination Reactions. Chempluschem 2024; 89:e202400020. [PMID: 38747893 DOI: 10.1002/cplu.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Indexed: 08/15/2024]
Abstract
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime. The advantages of the proposed route is demonstrated in the model amination reaction with formation of C-N bond between pyrazole and substituted benzene derivatives. Amination was performed in photo-electrochemical mode on the surface of plasmon active Au@Pt electrode with attention focused on the impact of plasmon triggering on the reaction efficiency and regio-selectivity. The ability to enhance the reaction rate significantly and to tune products regio-selectivity is demonstrated. We also performed density functional theory calculations to inquire about the reaction mechanism and potentially explain the plasmon contribution to electrochemical reaction rate and regioselectivity.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Oleg Gorin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Denis Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jiri Kosina
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jaroslav Maixner
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Alexander A Kolganov
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
14
|
Ling QH, Lou ZC, Zhang L, Jin T, Dou WT, Yang HB, Xu L. Supramolecular cage-mediated cargo transport. Chem Soc Rev 2024; 53:6042-6067. [PMID: 38770558 DOI: 10.1039/d3cs01081c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A steady stream of material transport based on carriers and channels in living systems plays an extremely important role in normal life activities. Inspired by nature, researchers have extensively applied supramolecular cages in cargo transport because of their unique three-dimensional structures and excellent physicochemical properties. In this review, we will focus on the development of supramolecular cages as carriers and channels for cargo transport in abiotic and biological systems over the past fifteen years. In addition, we will discuss future challenges and potential applications of supramolecular cages in substance transport.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Zhen-Chen Lou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Tongxia Jin
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| |
Collapse
|
15
|
Lai YL, Xie M, Zhou XC, Wang XZ, Zhu XW, Luo D, Zhou XP, Li D. Precise Post-Synthetic Modification of Heterometal-Organic Capsules for Selectively Encapsulating Tetrahedral Anions. Angew Chem Int Ed Engl 2024; 63:e202402829. [PMID: 38380830 DOI: 10.1002/anie.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Post-synthetic modification plays a crucial role in precisely adjusting the structure and functions of advanced materials. Herein, we report the self-assembly of a tubular heterometallic Pd3Cu6L16 capsule that incorporates Pd(II) and CuL1 metalloligands. This capsule undergoes further modification with two tridentate anionic ligands (L2) to afford a bicapped Pd3Cu6L16L22 capsule with an Edshammer polyhedral structure. By employing transition metal ions, acid, and oxidation agents, the bicapped capsule can be converted into an uncapped one. This uncapped form can then revert back to the bicapped structure on the addition of Br- ions and a base. Interestingly, introducing Ag+ ions leads to the removal of one L2 ligand from the bicapped capsule, yielding a mono-capped Pd3Cu6L16L2 structure. Furthermore, the size of the anions critically influences the precise control over the post-synthetic modifications of the capsules. It was demonstrated that these capsules selectively encapsulate tetrahedral anions, offering a novel approach for the design of intelligent molecular delivery systems.
Collapse
Affiliation(s)
- Ya-Liang Lai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong 514015, PR China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
16
|
Singh R, Yadav RK, Satyanath, Singh S, Shahin R, Umar A, Ibrahim AA, Singh O, Gupta NK, Singh C, Baeg JO, Baskoutas S. Nature-inspired polymer photocatalysts for green NADH regeneration and nitroarene transformation. CHEMOSPHERE 2024; 353:141491. [PMID: 38395365 DOI: 10.1016/j.chemosphere.2024.141491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Photocatalysis has emerged as a promising approach for generating solar chemical and organic transformations under the solar light spectrum, employing polymer photocatalysts. In this study, our aim is to achieve the regeneration of NADH and fixation of nitroarene compounds, which hold significant importance in various fields such as pharmaceuticals, biology, and chemistry. The development of an in-situ nature-inspired artificial photosynthetic pathway represents a challenging task, as it involves harnessing solar energy for efficient solar chemical production and organic transformation. In this work, we have successfully synthesized a novel artificial photosynthetic polymer, named TFc photocatalyst, through the Friedel-Crafts alkylation reaction between triptycene (T) and a ferrocene motif (Fc). The TFC photocatalyst is a promising material with excellent optical properties, an appropriate band gap, and the ability to facilitate the regeneration of NADH and the fixation of nitroarene compounds through photocatalysis. These characteristics are necessary for several applications, including organic synthesis and environmental remediation. Our research provides a significant step forward in establishing a reliable pathway for the regeneration and fixation of solar chemicals and organic compounds under the solar light spectrum.
Collapse
Affiliation(s)
- Ranjeet Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India.
| | - Satyanath
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rehana Shahin
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Omvir Singh
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Navneet K Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Chandani Singh
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jin OoK Baeg
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | | |
Collapse
|
17
|
Qiu X, Seibert J, Fuhr O, Biedermann F, Bräse S. Reversing the stereoselectivity of intramolecular [2+2] photocycloaddition utilizing cucurbit[8]uril as a molecular flask. Chem Commun (Camb) 2024; 60:3267-3270. [PMID: 38465702 DOI: 10.1039/d3cc05783f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Macrocyclic hosts, such as cucurbit[8]uril (CB8), can significantly influence the outcomes of chemical reactions involving encapsulated reactive guests. In this study, we demonstrate that CB8 completely reverses the stereoselectivity of intramolecular [2+2] photo-cycloaddition reactions. Notably, it was also found that CB8 can trigger the unreactive diene to be reactive.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Jasmin Seibert
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Zhang M, He Z, Wang L, Zhang X, Li G. Isomorphous Substitution of Organic Cage Crystal by Pd Nanoclusters for Selective Hydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308400. [PMID: 37948438 DOI: 10.1002/smll.202308400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Indexed: 11/12/2023]
Abstract
For supporting active metal, the cavity confinement and mass transfer facilitation lie not in one sack, a trade-off between high activity and good stability of the catalyst is present. Porous organic cages (POCs) are expected to break the trade-off when metal particles are properly loaded. Herein, three organic cages (CC3, RCC3, and FT-RCC3) are employed to support Pd nanoclusters for catalytic hydrogenation. Subnanometer Pd clusters locate differently in different cage frameworks by using the same reverse double-solvents approach. Compared with those encapsulated in the intrinsic cavity of RCC3 and anchored on the outer surface of CC3, the Pd nanoclusters orderly assembled in FT-RCC3 crystal via isomorphous substitution exhibit superior activity, high selectivity, and good stability for semi-hydrogenation of phenylacetylene. Isomorphous substitution of FT-RCC3 crystal by Pd nanoclusters is originated from high crystallization capacity of FT-RCC3 and specific interaction of each Pd nanocluster with four cage windows. Both confinement function and H2 accumulation capacity of FT-RCC3 are fully utilized to support active Pd nanoclusters for efficient selective hydrogenation. The present results provide a new perspective to the heterogeneous catalysis field in terms of crystalizing metal nanoclusters in POC framework and outside the cage for making the best use of both parts.
Collapse
Affiliation(s)
- Minghui Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zexing He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
19
|
Yuan Z, Huang L, Liu Y, Sun Y, Wang G, Li X, Lercher JA, Zhang Z. Synergy of Oxygen Vacancies and Base Sites for Transfer Hydrogenation of Nitroarenes on Ceria Nanorods. Angew Chem Int Ed Engl 2024; 63:e202317339. [PMID: 38085966 DOI: 10.1002/anie.202317339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 01/18/2024]
Abstract
CeO2 nanorod based catalysts for the base-free synthesis of azoxy-aromatics via transfer hydrogenation of nitroarenes with ethanol as hydrogen donor have been synthesized and investigated. The oxygen vacancies (Ov ) and base sites are critical for their excellent catalytic properties. The Ov , i.e., undercoordinated Ce cations, serve as the sites to activate ethanol and nitroarenes by lowering the energy barrier to transfer hydrogen from α-Csp3 -H in ethanol to the nitro group coupling it to the redox reactions between Ce3+ and Ce4+ . At the same time, the base sites catalyze the condensation step to selectively produce azoxy-aromatics. The catalytic route opens a much improved way to use non-noble metal oxides without additives for the selective functional group reduction and coupling reactions.
Collapse
Affiliation(s)
- Ziliang Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Science, South-Central Minzu University, 430081, Wuhan, P. R. China
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering &, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, 430081, Wuhan, P. R. China
| | - Liang Huang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering &, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, 430081, Wuhan, P. R. China
| | - Yuanshuai Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, (P. R. China)
| | - Yong Sun
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, College of Energy, Xiamen University, 361102, Xiamen, P. R. China
| | - Guanghui Wang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering &, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, 430081, Wuhan, P. R. China
| | - Xun Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Science, South-Central Minzu University, 430081, Wuhan, P. R. China
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, 85747, Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 99352, Richland, WA, USA
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Science, South-Central Minzu University, 430081, Wuhan, P. R. China
| |
Collapse
|
20
|
Zhang H, Shimoyama Y, Nakajima Y. Ester hydrogenolysis via β-C-O bond cleavage catalysed by a phenanthroline-based PNNP-cobalt(I) complex. Chem Commun (Camb) 2024; 60:823-826. [PMID: 38116606 DOI: 10.1039/d3cc05354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A Co(I) catalyst bearing a phenanthroline-based PNNP ligand (2,9-bis((diphenylphosphanyl)methyl)-1,10-phenanthroline) exhibits long-range metal ligand cooperation behavior using a ligand backbone as a hydrogen reservoir and catalyses hydrogenolysis of benzyl benzoate derivatives via β-C-O cleavage with atmospheric pressure H2.
Collapse
Affiliation(s)
- Heng Zhang
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yoshihiro Shimoyama
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
21
|
Yang Z, Nandi R, Orieshyna A, Gershoni-Poranne R, Zhang S, Amdursky N. Light-Triggered Enhancement of Fluorescence Efficiency in Organic Cages. J Phys Chem Lett 2024; 15:136-141. [PMID: 38147826 DOI: 10.1021/acs.jpclett.3c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The fluorescence efficiency of excited molecules can be enhanced by many external factors. Here, we showcase a surprising phenomenon whereby light is used as a gating source to increase the fluorescence efficiency of organic cages composed of biphenyl subunits. We show that the enhancement of fluorescence is not due to structural changes or ground-state events. Cryo-fluorescence measurements and kinetic studies suggest a restriction of the phenyl-based structures in the excited state, leading to increased fluorescence, which is also supported by time-resolved measurements. Through computational calculations, we propose that the planarization of the biphenyl units within the cages contributes to emission enhancement. This phenomenon offers insights into the design of optoelectronic structures with improved fluorescence properties.
Collapse
Affiliation(s)
- Zhenyu Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200400, China
| | - Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Orieshyna
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Renana Gershoni-Poranne
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200400, China
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
22
|
Song H, Guo Y, Zhang G, Shi L. Tailored Water-Soluble Covalent Organic Cages for Encapsulation of Pyrene and Information Encryption. Int J Mol Sci 2023; 24:17541. [PMID: 38139371 PMCID: PMC10743434 DOI: 10.3390/ijms242417541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Forming pyridine salts to construct covalent organic cages is an effective strategy for constructing covalent cage compounds. Covalent organic cages based on pyridine salt structures are prone to form water-soluble supramolecular compounds. Herein, we designed and synthesized a triangular prism-shaped hexagonal cage with a larger cavity and relatively flexible conformation. The supramolecular cage structure was also applied to the encapsulation of pyrene and information encryption.
Collapse
Affiliation(s)
| | | | - Guorui Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (H.S.); (Y.G.)
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; (H.S.); (Y.G.)
| |
Collapse
|
23
|
Wang H, Wang Y, Xu W, Zhang H, Lv J, Wang X, Zheng Z, Zhao Y, Yu L, Yuan Q, Yu L, Zheng B, Gao L. Host-Guest-Interaction Enhanced Nitric Oxide Photo-Generation within a Pillar[5]arene Cavity for Antibacterial Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54266-54279. [PMID: 37969079 DOI: 10.1021/acsami.3c10862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Supramolecular macrocycles with intrinsic cavities have been widely explored as containers to fabricate versatile functional materials via specific host-guest recognitions. However, relatively few studies have focused on the modulation of guest reactivity within a macrocyclic cavity. Here, we demonstrate the confinement effect of pillar[5]arene with an electron-rich and precise cavity that can dramatically enhance guest photoactivity and nitric oxide (NO) generation upon visible light irradiation. Mechanism studies reveal that it is achieved through increasing the ground state nitro-aromatic torsion angle, suppressing the intersystem crossing relaxation path of the S1 state, and accelerating the isomerization reaction path of guest molecules. This NO-generating system displays broad-spectrum antibacterial, biofilm inhibition, and dispersal activities. Moreover, it can accelerate the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in vivo.
Collapse
Affiliation(s)
- Haojie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Haixin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jinmeng Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Xue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zhi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
24
|
Peng Y, Su Z, Jin M, Zhu L, Guan ZJ, Fang Y. Recent advances in porous molecular cages for photocatalytic organic conversions. Dalton Trans 2023; 52:15216-15232. [PMID: 37492891 DOI: 10.1039/d3dt01679j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Photocatalytic organic conversion is considered an efficient, environmentally friendly, and energy-saving strategy for organic synthesis. In recent decades, the molecular cage has emerged as a creative functional material with broad applications in host-guest recognition, drug delivery, catalysis, intelligent materials and other fields. Based on the unique properties of porous molecular cage materials, they provide an ideal platform for leveraging pre-structuring in catalytic reactions and show great potential in various photocatalytic organic reactions. As a result, they have emerged as promising alternatives to conventional molecules or inorganic photocatalysts in redox processes. In this Review, the synthesis strategies based on coordination cages and organic cages, as well as their recent progress in photocatalytic organic conversion, are comprehensively summarized. Finally, we deliver the persistent challenges associated with porous molecular cage compounds that need to be overcome for further development in this field.
Collapse
Affiliation(s)
- Yaoyao Peng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhifang Su
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Meng Jin
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lei Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
25
|
Mihara N, Machida A, Takeda Y, Shiga T, Ishii A, Nihei M. Formation and Growth of Atomic Scale Seeds of Au Nanoparticle in the Nanospace of an Organic Cage Molecule. Chemistry 2023:e202302604. [PMID: 37743250 DOI: 10.1002/chem.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Seed-mediated growth has been widely used to synthesize noble metal nanoparticles with controlled size and shape. Although it is becoming possible to directly observe the nucleation process of metal atoms at the single atom level by using transmission electron microscopy (TEM), it is challenging to control the formation and growth of seeds with only a few metal atoms in homogeneous solution systems. This work reports site-selective formation and growth of atomic scale seeds of the Au nanoparticle in a nanospace of an organic cage molecule. We synthesized a cage molecule with amines and phenols, which were found to both capture and reduce Au(III) ions to spontaneously form the atomic scale seeds containing Au(0) in the nanospace. The growth reaction of the atomic scale seeds afforded Au nanoparticles with an average diameter of 2.0±0.2 nm, which is in good agreement with the inner diameter of the cage molecule.
Collapse
Affiliation(s)
- Nozomi Mihara
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ayaka Machida
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuko Takeda
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takuya Shiga
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ayumi Ishii
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku, Tokyo, 169-8555, Japan
| | - Masayuki Nihei
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
26
|
Zhao MY, Tang YF, Han GZ. Recent Advances in the Synthesis of Aromatic Azo Compounds. Molecules 2023; 28:6741. [PMID: 37764517 PMCID: PMC10538219 DOI: 10.3390/molecules28186741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aromatic azo compounds have -N=N- double bonds as well as a larger π electron conjugation system, which endows aromatic azo compounds with wide applications in the fields of functional materials. The properties of aromatic azo compounds are closely related to the substituents on their aromatic rings. However, traditional synthesis methods, such as the coupling of diazo salts, have a significant limitation with respect to the structural design of aromatic azo compounds. Therefore, many scientists have devoted their efforts to developing new synthetic methods. Moreover, recent advances in the synthesis of aromatic azo compounds have led to improvements in the design and preparation of light-response materials at the molecular level. This review summarizes the important synthetic progress of aromatic azo compounds in recent years, with an emphasis on the pioneering contribution of functional nanomaterials to the field.
Collapse
Affiliation(s)
| | | | - Guo-Zhi Han
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (M.-Y.Z.); (Y.-F.T.)
| |
Collapse
|
27
|
Luján AP, Bhat MF, Tsaturyan S, van Merkerk R, Fu H, Poelarends GJ. Tailored photoenzymatic systems for selective reduction of aliphatic and aromatic nitro compounds fueled by light. Nat Commun 2023; 14:5442. [PMID: 37673927 PMCID: PMC10482925 DOI: 10.1038/s41467-023-41194-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The selective enzymatic reduction of nitroaliphatic and nitroaromatic compounds to aliphatic amines and amino-, azoxy- and azo-aromatics, respectively, remains a persisting challenge for biocatalysis. Here we demonstrate the light-powered, selective photoenzymatic synthesis of aliphatic amines and amino-, azoxy- and azo-aromatics from the corresponding nitro compounds. The nitroreductase from Bacillus amyloliquefaciens, in synergy with a photocatalytic system based on chlorophyll, promotes selective conversions of electronically-diverse nitroarenes into a series of aromatic amino, azoxy and azo products with excellent yield (up to 97%). The exploitation of an alternative nitroreductase from Enterobacter cloacae enables the tailoring of a photoenzymatic system for the challenging synthesis of aliphatic amines from nitroalkenes and nitroalkanes (up to 90% yield). This photoenzymatic reduction overcomes the competing bio-Nef reaction, typically hindering the complete enzymatic reduction of nitroaliphatics. The results highlight the usefulness of nitroreductases to create selective photoenzymatic systems for the synthesis of precious chemicals, and the effectiveness of chlorophyll as an innocuous photocatalyst, enabling the use of sunlight to drive the photobiocatalytic reactions.
Collapse
Affiliation(s)
- Alejandro Prats Luján
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sona Tsaturyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Haigen Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
28
|
Sarkar A, Mistry S, Bhattacharya S, Natarajan S. Multistep Cascade Catalytic Reactions Employing Bifunctional Framework Compounds. Inorg Chem 2023. [PMID: 37393542 DOI: 10.1021/acs.inorgchem.3c01243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multistep cascade reactions are important to achieve atom as well as step economy over conventional synthesis. This approach, however, is limited due to the incompatibility of the available reactive centers in a catalyst. In the present study, new MOF compounds, [Zn2(SDBA)(3-ATZ)2]·solvent, I and II, with tetrahedral Zn centers as good Lewis acidic sites and the free amino group of the 3-amino triazole ligand as a strong Lewis base center were shown to perform 4-step cascade/tandem reaction in a facile manner. Effective conversion of benzaldehyde dimethyl acetal in the presence of excess nitromethane at 100 °C in water to 1-(1,3-dinitropropan-2-yl) benzene was achieved in 10 h with yields of ∼95% (I) and ∼94% (II). This 4-step cascade reaction proceeds via deacetalization (Lewis acid), Henry (Lewis base), and Michael (Lewis base) reactions. The present work highlights the importance of spatially separated functional groups in multistep tandem catalysis─the examples of which are not common.
Collapse
Affiliation(s)
- Anupam Sarkar
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| | - Subhradeep Mistry
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University, SRT Campus, New Tehri 249199, Uttarakhand, India
| | - Saurav Bhattacharya
- Department of Chemistry, BITS Pilani K. K. Birla Goa Campus, Goa 403726, India
| | - Srinivasan Natarajan
- Solid State and Structural Chemistry Unit, Framework Solids Laboratory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
29
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
30
|
Lu S, Morrow DJ, Li Z, Guo C, Yu X, Wang H, Schultz JD, O'Connor JP, Jin N, Fang F, Wang W, Cui R, Chen O, Su C, Wasielewski MR, Ma X, Li X. Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest-Host Electron and Vibrational Energy Transfer. J Am Chem Soc 2023; 145:5191-5202. [PMID: 36745391 DOI: 10.1021/jacs.2c11981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the field of supramolecular chemistry, host-guest systems have been extensively explored to encapsulate a wide range of substrates, owing to emerging functionalities in nanoconfined space that cannot be achieved in dilute solutions. However, host-guest chemistry is still limited to encapsulation of small guests. Herein, we construct a water-soluble metallo-supramolecular hexagonal prism with a large hydrophobic cavity by anchoring multiple polyethylene glycol chains onto the building blocks. Then, assembled prisms are able to encapsulate quantum dots (QDs) with diameters of less than 5.0 nm. Furthermore, we find that the supramolecular cage around each QD strongly modifies the photophysics of the QD by universally increasing the rates of QD relaxation processes via ultrafast electron and vibrational energy transfer. Taken together, these efforts expand the scope of substrates in host-guest systems and provide a new approach to tune the optical properties of QDs.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, Illinois 60208, United States.,Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
31
|
Afzalinia A, Mirzaee M, Amani MA. Design of an S-scheme photo-catalyst utilizing a Cu-doped perovskite and MOF-5 for simultaneous degradation of organic pollutants under LED light irradiation: Application of EXRSM method for spectra separation and BBD-RSM modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122116. [PMID: 36403539 DOI: 10.1016/j.saa.2022.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Heterojunction photo-catalysts have attracted significant attention in solar energy conversion due to their ability to reduce suppressing electron-hole pairs and improve catalytic capability. Herein, we designed an S-scheme photo-catalyst by encapsulating a Cu-doped perovskite inside the pores of MOF-5 for the first time, exhibiting excellent efficiency in a pollutant degradation process. The pristine MOF cannot act in the visible light region because of its wide bandgap. However, the encapsulation modified its bandgap and but also increased its photo-catalytic activity. Simultaneous photo-degradation of two organic contaminants, methylene blue (MB) and paracetamol (PA), was investigated to evaluate the catalytic activity of this composite. As a challenge, the UV-vis spectra of PA strongly overlapped with MB in a binary mixture preventing direct measurement of its concentration without previous separation via conventional methodologies. Hence, we used a simple and fast technique called the extended ratio subtraction method (EXRSM) to separate their absorption spectra. The statistical investigations established that it could resolve the issue of signal overlapping. Also, a statistical approach, Box-Behnken (BBD-RSM), was used to model and optimize the degradation process providing a better way to explain the effect and interactions of main parameters on degradation efficiency. Now, an empirical model for each pollutant can make a relationship between them. The photo-degradation yield was obtained at 67.12% and 87.96% for PA and MB, respectively, under optimum conditions. Furthermore, the kinetics and mechanism of reaction were investigated, and the results revealed that it follows a pseudo-first-order model for each pollutant.
Collapse
Affiliation(s)
- Ahmad Afzalinia
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Chemistry, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Mahdi Mirzaee
- Faculty of Chemistry, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Mohammad Ali Amani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Wang YS, Li H, Bai S, Wang YY, Han YF. N-Heterocyclic carbene-stabilized platinum nanoparticles within a porphyrinic nanocage for selective photooxidation. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
33
|
Kohei M, Takizawa N, Tsutsumi R, Xu W, Kumagai N. Azo-tagged C4N4 fluorophores: unusual overcrowded structures and their application to fluorescent imaging. Org Biomol Chem 2023; 21:2889-2893. [PMID: 36744956 DOI: 10.1039/d3ob00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The C4N4 fluorophore is an intense fluorescence emitter featuring a 2,5-diaminopyrimidine core comprising four carbon and four nitrogen atoms. A series of C4N4 derivatives was photochemically dimerized at the 5-amino group, furnishing overcrowded ortho-tetraaryl-substituted diaryl azo compounds with a characteristic skewed structure revealed by X-ray crystallography. The photoquenched azo-C4N4s are useful for fluorescently visualizing cells under hypoxic conditions.
Collapse
Affiliation(s)
- Miki Kohei
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Naoki Takizawa
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ryosuke Tsutsumi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Wei Xu
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Naoya Kumagai
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan. .,Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
34
|
Cibotaru S, Nicolescu A, Marin L. Dynamic PEGylated phenothiazine imines; synthesis, photophysical behavior and reversible luminescence switching in response to external stimuli. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Sun YL, Wang Z, Ma H, Zhang QP, Yang BB, Meng X, Zhang Y, Zhang C. Chiral emissive porous organic cages. Chem Commun (Camb) 2023; 59:302-305. [PMID: 36507910 DOI: 10.1039/d2cc05283k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A pair of chiral, emissive and porous tubular multi-functional organic molecular cages were synthesized easily by imine chemistry of 4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)-tetrabenzaldehyde (ETTBA) with (R,R)- or (S,S)-diaminocyclohexane (CHDA). It was found that the chirality of CHDA was transferred and amplified to tetraphenylethylene (TPE) in the process of formation of cages, which further endowed the cages with circularly polarized luminescence (CPL) characteristics. As a result of the synergy of the chirality and porous structure in the solid state, both cages exhibited a good chiral adsorption enantioselectivity to a series of aromatic racemates.
Collapse
Affiliation(s)
- Yu-Ling Sun
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Technology Institute, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Yaohua Zhang
- Technology R&D Center, Hubei Tobacco (Group) Co., Ltd, Wuhan, 430070, China.
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
36
|
Efficient Synthesis of a 2-Decyl-tetradecyl Substituted 7-Bromophenothiazine-3-carbaldehyde Building Block for Functional Dyes. ORGANICS 2022. [DOI: 10.3390/org3040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
(1) Polyfunctional molecules are versatile building blocks for efficient syntheses of novel phenothiazine-based materials with promising electronic properties. A prerequisite is a facile, high yielding access to these building blocks that bear solubilizing moieties and functional groups for orthogonal transformation. (2) Here, an efficient, improved two-step protocol for accessing a solubilizing 2-decyl-tetradecyl functionalized phenothiazine, i.e., an N-alkylated 7-bromophenothiazine-3-carbaldehyde, by Vilsmeier–Haack formylation and NBS (N-bromo succinimide) bromination is reported. (3) The sequence proceeds with higher yields and in shorter reaction times than the standard access employing bromination with elementary bromine. In addition, the work-up procedure essentially uses absorptive filtration on a plug of silica with the eluent.
Collapse
|
37
|
Lee J, An S, Jang M, Jung HM, Lee S. Recyclable and dual active catalyst of copper nanocluster-bound graphitic carbon nitride for the photo-induced synthesis of arylsulfones. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Noble Metal Nanoparticles Meet Molecular Cages: A tale of Integration and Synergy. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Shi H, Luo S, Ma H, Yu W, Wei X. Tuning the Properties of Metal‐Organic Cages through Platinum Nanoparticle Encapsulation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hua‐Tian Shi
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Shi‐Ting Luo
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Hui‐Rong Ma
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Xianwen Wei
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| |
Collapse
|
40
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
41
|
Zhao J, Wang J, Brock AJ, Zhu H. Plasmonic heterogeneous catalysis for organic transformations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
43
|
Bhandari P, Mukherjee PS. Post‐Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry 2022; 28:e202201901. [DOI: 10.1002/chem.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
44
|
Damiano C, Cavalleri M, Panza N, Gallo E. Cobalt Porphyrin‐Catalysed Synthesis of Azobenzenes by Dehydrogenative Coupling of Anilines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caterina Damiano
- University of Milan: Universita degli Studi di Milano Department of Chemistry ITALY
| | - Matteo Cavalleri
- University of Milan: Universita degli Studi di Milano Department of Chemistry ITALY
| | - Nicola Panza
- University of Milan: Universita degli Studi di Milano Department of Chemistry ITALY
| | - Emma Gallo
- Universita degli Studi di Milano Department of Chemistry Via Golgi 19 20133 Milano ITALY
| |
Collapse
|
45
|
Tao R, Zhao X, Zhao T, Zhao M, Li R, Yang T, Tang L, Jin Y, Zhang W, Qiu L. Cage-Confinement Induced Emission Enhancement. J Phys Chem Lett 2022; 13:6604-6611. [PMID: 35833794 DOI: 10.1021/acs.jpclett.2c01651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a proof-of-concept study, Imi-cage and Phos-cage organic molecular cages (OMCs) containing the triphenylphosphine (TPP) moiety, a nonclassic AIE luminogen (AIEgen), have been designed to demonstrate the cage-confinement induced emission enhancement (CCIEE). Thanks to the confinement effect of OMCs, the rigid Imi-cage exhibits much higher photoluminescence (PL) quantum yield (ΦPL) than the open-shell Semicage and small molecule TPP in both solution and amorphous solid states. The emission of Phos-cage could be further enhanced in crystalline solid state with a remarkably high ΦPL of 97.6% (vs 3.47% of crystalline TPP) benefiting from AIE enabled by the highly ordered molecular packing. The novel strategy of CCIEE via confining an AIEgen into an OMC to achieve a significant emission enhancement will shed light on the development of solid-state highly fluorescent materials. The fluorescent nature of Imi-cage was further exploited for the ultrahighly sensitive detection of the explosive picric acid.
Collapse
Affiliation(s)
- Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xin Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tianshu Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Miaomiao Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Ruiyang Li
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tianfu Yang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Lizhi Tang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
46
|
Chen C, Yan X, Wu Y, Liu S, Zhang X, Sun X, Zhu Q, Wu H, Han B. Boosting the Productivity of Electrochemical CO 2 Reduction to Multi-Carbon Products by Enhancing CO 2 Diffusion through a Porous Organic Cage. Angew Chem Int Ed Engl 2022; 61:e202202607. [PMID: 35302287 DOI: 10.1002/anie.202202607] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 02/02/2023]
Abstract
Electroreduction of CO2 into valuable fuels and feedstocks offers a promising way for CO2 utilization. However, the commercialization is limited by the low productivity. Here, we report a strategy to enhance the productivity of CO2 electroreduction by improving diffusion of CO2 to the surface of catalysts using porous organic cages (POCs) as an additive. It was noted that the Faradaic efficiency (FE) of C2+ products could reach 76.1 % with a current density of 1.7 A cm-2 when Cu-nanorod(nr)/CC3 (one of the POCs) was used, which were much higher than that using Cu-nr. Detailed studies demonstrated that the hydrophobic pores of CC3 can adsorb a large amount of CO2 for the reaction, and the diffusion of CO2 in the CC3 to the nanocatalyst surface is easier than that in the liquid electrolyte. Thus, more CO2 molecules make contact with the nanocatalysts in the presence of CC3, enhancing CO2 reduction and inhibiting generation of H2 .
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, 515063, China
| | - Xiudong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, Beijing, 101400, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
47
|
Liu T, Bai S, Zhang L, Hahn FE, Han YF. N-heterocyclic carbene-stabilized metal nanoparticles within porous organic cages for catalytic application. Natl Sci Rev 2022; 9:nwac067. [PMID: 35673537 PMCID: PMC9166563 DOI: 10.1093/nsr/nwac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Tuning the surface-embellishing ligands of metal nanoparticles (NPs) is a powerful strategy to modulate their morphology and surface electronic and functional features, impacting their catalytic activity and selectivity. In this work, we report the design and synthesis of a polytriazolium organic cage PIC-T, capable of stabilizing PdNPs within its discrete cavity. The obtained material (denoted Pd@PCC-T) is highly durable and monodispersed with narrow particle-size distribution of 2.06 ± 0.02 nm, exhibiting excellent catalytic performance and recyclability in the Sonogashira coupling and tandem reaction to synthesize benzofuran derivatives. Further investigation indicates that the modulation of N-heterocyclic carbene sites embedded in the organic cage has an impact on NPs' catalytic efficiency, thus providing a novel methodology to design superior NP catalysts.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Le Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - F Ekkehardt Hahn
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
- Institut für Anorganicshe und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| |
Collapse
|
48
|
Ubasart E, Mustieles Marin I, Asensio JM, Mencia G, López-Vinasco ÁM, García-Simón C, Del Rosal I, Poteau R, Chaudret B, Ribas X. Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters. NANOSCALE HORIZONS 2022; 7:607-615. [PMID: 35389405 DOI: 10.1039/d1nh00677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The synthesis of metallic nanoparticles (MNP) with high surface area and controlled shape is of paramount importance to increase their catalytic performance. The detailed growing process of NP is mostly unknown and understanding the specific steps would pave the way for a rational synthesis of the desired MNP. Here we take advantage of the stabilization properties exerted by the tetragonal prismatic supramolecular nanocapsule 8·(BArF)8 to develop a synthetic methodology for sub-nanometric RuNP (0.6-0.7 nm). The catalytic properties of these sub-nanometric nanoparticles were tested on the hydrogenation of styrene, obtaining excellent selectivity for the hydrogenation of the alkene moiety. In addition, the encapsulation of [Ru5] clusters inside the nanocapsule is strikingly observed in most of the experimental conditions, as ascertained by HR-MS. Moreover, a thorough DFT study enlightens the nature of the [Ru5] clusters as tb-Ru5H2(η6-PhH)2(η6-pyz)3 (2) trapped by two arene moieties of the clip, or as tb-Ru5H2(η1-pyz)6(η6-pyz)3 (3) trapped between the two Zn-porphyrin units of the nanocapsule. Both options fulfill the Wade-Mingos counting rules, i.e. 72 CVEs for the closotb. The trapped [Ru5] metallic clusters are proposed to be the first-grown seeds of subsequent formation of the subnanometric RuNP. Moreover, the double role of the nanocapsule in stabilising ∼0.7 nm NPs and also in hosting ultra-small Ru clusters, is unprecedented and may pave the way towards the synthesis of ultra-small metallic clusters for catalytic purposes.
Collapse
Affiliation(s)
- Ernest Ubasart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| | - Irene Mustieles Marin
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Juan Manuel Asensio
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Ángela M López-Vinasco
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| | - Iker Del Rosal
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Romuald Poteau
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets (LPCNO), INSA-CNRS, Université de Toulouse, 135 Ave. de Rangueil, 31077 Toulouse, France
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
49
|
Zhang F, Ma J, Tan Y, Yu G, Qin H, Zheng L, Liu H, Li R. Construction of Porphyrin Porous Organic Cage as a Support for Single Cobalt Atoms for Photocatalytic Oxidation in Visible Light. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Feng Zhang
- College of Material Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Hunan, Changsha 410082, China
| | - Jun Ma
- College of Material Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Hunan, Changsha 410082, China
| | - Ya Tan
- College of Material Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Hunan, Changsha 410082, China
| | - Gang Yu
- College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082, China
| | - Hongxin Qin
- College of Material Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Hunan, Changsha 410082, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongbo Liu
- College of Material Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Hunan, Changsha 410082, China
| | - Run Li
- College of Material Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Hunan, Changsha 410082, China
| |
Collapse
|
50
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|