1
|
Yang Y, Ivanov DG, Levin MD, Olenyuk B, Cordova-Robles O, Cederstrom B, Schnitzer JE, Kaltashov IA. Characterization of Large Immune Complexes with Size Exclusion Chromatography and Native Mass Spectrometry Supplemented with Gas Phase Ion Chemistry. Anal Chem 2024. [PMID: 38319243 DOI: 10.1021/acs.analchem.3c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Large immune complexes formed by the cross-linking of antibodies with polyvalent antigens play critical roles in modulating cell-mediated immunity. While both the size and the shape of immune complexes are important determinants in Fc receptor-mediated signaling responsible for phagocytosis, degranulation, and, in some instances, autoimmune pathologies, their characterization remains extremely challenging due to their large size and structural heterogeneity. We use native mass spectrometry (MS) supplemented with limited charge reduction in the gas phase to determine the stoichiometry of immune complexes formed by a bivalent (homodimeric) antigen, a 163 kDa aminopeptidase P2 (APP2), and a monoclonal antibody (mAb) to APP2. The observed (APP2·mAb)n complexes populate a wide range of stoichiometries (n = 1-4) with the largest detected species exceeding 1 MDa, although the gas-phase dissociation products are also evident in the mass spectra. While frequently considering a nuisance that complicates interpretation of native MS data, limited dissociation provides an additional dimension for characterization of the immune complex quaternary structure. APP2/mAb associations with identical composition but slightly different elution times in size exclusion chromatography exhibit notable differences in their spontaneous fragmentation profiles. The latter indicates the presence of both extended linear and cyclized (APP2·mAb)n configurations. The unique ability of MS to distinguish between such isomeric structures will be invaluable for a variety of applications where the biological effects of immune complexes are determined by their ability to assemble Fc receptor clusters of certain density on cell surfaces, such as platelet activation by clustering the low-affinity receptors FcγRIIa on their surface.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Oscar Cordova-Robles
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
2
|
Kaltashov IA, Ivanov DG, Yang Y. Mass spectrometry-based methods to characterize highly heterogeneous biopharmaceuticals, vaccines, and nonbiological complex drugs at the intact-mass level. MASS SPECTROMETRY REVIEWS 2024; 43:139-165. [PMID: 36582075 PMCID: PMC10307928 DOI: 10.1002/mas.21829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.
Collapse
Affiliation(s)
- Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | - Daniil G. Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | | |
Collapse
|
3
|
Grande AE, Li X, Miller LM, Zhang J, Draper BE, Herzog RW, Xiao W, Jarrold MF. Antibody Binding to Recombinant Adeno Associated Virus Monitored by Charge Detection Mass Spectrometry. Anal Chem 2023; 95:10864-10868. [PMID: 37436182 PMCID: PMC12048215 DOI: 10.1021/acs.analchem.3c02371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is a leading gene therapy vector. However, neutralizing antibodies reduce its efficacy. Traditional methods used to investigate antibody binding provide limited information. Here, charge detection mass spectrometry (CD-MS) was used to investigate the binding of monoclonal antibody ADK8 to AAV serotype 8 (AAV8). CD-MS provides a label-free approach to antibody binding. Individual binding events can be monitored as each event is indicated by a shift of the antibody-antigen complex to a higher mass. Unlike other methods, the CD-MS approach reveals the distribution of antibodies bound on capsids, allowing AAV8 subpopulations with different affinities to be identified. The charge state generated by the electrospray of large ions is normally correlated with the structure, and the charge is expected to increase when an antibody binds to the capsid exterior. Surprisingly, binding of the first ADK8 to AAV8 causes a substantial decrease in the charge, suggesting that the first antibody binding event causes a significant structural change. The charge increases for subsequent binding events. Finally, high ADK8 concentrations cause agglutination, where ADK8 links AAV capsids to form dimers and higher order multimers.
Collapse
Affiliation(s)
- Ashley E Grande
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Xin Li
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana 46202, United States
| | - Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Junping Zhang
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana 46202, United States
| | - Benjamin E Draper
- Megadalton Solutions Inc., 3750 E Bluebird Ln, Bloomington, Indiana 47401, United States
| | - Roland W Herzog
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana 46202, United States
| | - Weidong Xiao
- Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana 46202, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Harper CC, Miller ZM, McPartlan MS, Jordan JS, Pedder RE, Williams ER. Accurate Sizing of Nanoparticles Using a High-Throughput Charge Detection Mass Spectrometer without Energy Selection. ACS NANO 2023; 17:7765-7774. [PMID: 37027782 PMCID: PMC10389270 DOI: 10.1021/acsnano.3c00539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The sizes and shapes of nanoparticles play a critical role in their chemical and material properties. Common sizing methods based on light scattering or mobility lack individual particle specificity, and microscopy-based methods often require cumbersome sample preparation and image analysis. A promising alternative method for the rapid and accurate characterization of nanoparticle size is charge detection mass spectrometry (CDMS), an emerging technique that measures the masses of individual ions. A recently constructed CDMS instrument designed specifically for high acquisition speed, efficiency, and accuracy is described. This instrument does not rely on an ion energy filter or estimates of ion energy that have been previously required for mass determination, but instead uses direct, in situ measurements. A standardized sample of ∼100 nm diameter polystyrene nanoparticles and ∼50 nm polystyrene nanoparticles with amine-functionalized surfaces are characterized using CDMS and transmission electron microscopy (TEM). Individual nanoparticle masses measured by CDMS are transformed to diameters, and these size distributions are in close agreement with distributions measured by TEM. CDMS analysis also reveals dimerization of ∼100 nm nanoparticles in solution that cannot be determined by TEM due to the tendency of nanoparticles to agglomerate when dried onto a surface. Comparing the acquisition and analysis times of CDMS and TEM shows particle sizing rates up to ∼80× faster are possible using CDMS, even when samples ∼50× more dilute were used. The combination of both high-accuracy individual nanoparticle measurements and fast acquisition rates by CDMS represents an important advance in nanoparticle analysis capabilities.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zachary M Miller
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew S McPartlan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Randall E Pedder
- Ardara Technologies LP, Ardara, Pennsylvania 15615, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
5
|
Miller LM, Jarrold MF. Charge detection mass spectrometry for the analysis of viruses and virus-like particles. Essays Biochem 2023; 67:315-323. [PMID: 36062529 PMCID: PMC10842916 DOI: 10.1042/ebc20220101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Heterogeneity usually restricts conventional mass spectrometry to molecular weights less than around a megadalton. As a single-particle technique, charge detection mass spectrometry (CDMS) overcomes this limitation. In CDMS, the mass-to-charge (m/z) ratio and charge are measured simultaneously for individual ions, giving a direct mass measurement for each ion. Recent applications include the analysis of viruses, virus-like particles, vaccines, heavily glycosylated proteins, and gene therapy vectors.
Collapse
Affiliation(s)
- Lohra M Miller
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington 47401, Indiana
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington 47401, Indiana
| |
Collapse
|
6
|
Abstract
Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Dalton T Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Abstract
Charge detection mass spectrometry (CDMS) is a single-particle technique where the masses of individual ions are determined from simultaneous measurement of their mass-to-charge ratio (m/z) and charge. Masses are determined for thousands of individual ions, and then the results are binned to give a mass spectrum. Using this approach, accurate mass distributions can be measured for heterogeneous and high-molecular-weight samples that are usually not amenable to analysis by conventional mass spectrometry. Recent applications include heavily glycosylated proteins, protein complexes, protein aggregates such as amyloid fibers, infectious viruses, gene therapies, vaccines, and vesicles such as exosomes.
Collapse
Affiliation(s)
- Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47404, United States
| |
Collapse
|
8
|
Frequency chasing of individual megadalton ions in an Orbitrap analyser improves precision of analysis in single-molecule mass spectrometry. Nat Chem 2022; 14:515-522. [PMID: 35273389 PMCID: PMC9068510 DOI: 10.1038/s41557-022-00897-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
To enhance the performance of charge-detection mass spectrometry, we investigated the behaviour of macromolecular single ions on their paths towards and within the Orbitrap analyser. Ions with a mass beyond one megadalton reach a plateau of stability and can be successfully trapped for seconds, travelling a path length of multiple kilometres, thereby enabling precise mass analysis with an effective resolution of greater than 100,000 at a mass-to-charge ratio of 35,000. Through monitoring the frequency of individual ions, we show that these high-mass ions, rather than being lost from the trap, can gradually lose residual solvent molecules and, in rare cases, a single elementary charge. We also demonstrate that the frequency drift of single ions due to desolvation and charge stripping can be corrected, which improves the effective ion sampling 23-fold and gives a twofold improvement in mass precision and resolution. ![]()
The mass precision and resolution in charge-detection mass spectrometry can be improved by correcting frequency drifts of single ions. Now, chasing these individual ions for seconds in an Orbitrap mass spectrometer has revealed the exceptional stability of ultra-high-mass ions, culminating in an effective resolution of greater than 100,000 at m/z = 35,000.
Collapse
|
9
|
Xiong C, Liu H, Li Y, Meng L, Wang J, Nie Z. High Speed Mass Measurement of a Single Metal-Organic Framework Nanocrystal in a Paul Trap. Anal Chem 2022; 94:2686-2692. [PMID: 35112854 DOI: 10.1021/acs.analchem.1c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass spectrometry (MS) has emerged as an excellent tool for the characterization of metal-organic frameworks (MOFs) based on the characteristic metal ions and organic ligands. Mass measurement of intact MOF nanocrystals, however, remains a challenge for MS technology. Here, we reported the development of a probe particles based charge detection-quadrupole ion trap mass spectrometry (probe CD-QIT MS) method, where charge detection and mass measurement of a single MOF nanocrystal were achieved under the assistance of probe particles of micrometer size. As a validation of the method, the masses of a series of polystyrene (PS) size standards from 493 nm to 1.6 μm were measured with 3 μm PS particles as probes, and the measured masses were found to match well with their certified masses. Then, charge detections and mass analysis of single ZIF-8 and GOx@ZIF-8 with a size around 600 nm were achieved successfully. The method presented here demonstrates simplicity, high speed, and accuracy. Notably, it allows quantitative measurement of the amount of immobilized GOx enzyme by using the mass difference between ZIF-8 and GOx@ZIF-8. In addition, based on the determined mass, the size analysis of these MOF particles with irregular shape was carried out and demonstrated to be complementary to transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Barnes LF, Draper BE, Jarrold MF. Analysis of Recombinant Adenovirus Vectors by Ion Trap Charge Detection Mass Spectrometry: Accurate Molecular Weight Measurements beyond 150 MDa. Anal Chem 2022; 94:1543-1551. [PMID: 35023731 DOI: 10.1021/acs.analchem.1c02439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenovirus is one of the largest nonenveloped, double-stranded DNA viruses. It is widely used as a gene therapy vector and has recently received a lot of attention as a novel vaccine platform for SARS-CoV-2. Human adenovirus 5 (HAdV5) contains over 2500 protein molecules and has a 36 kbp genome. Adenovirus is well beyond the range of conventional mass spectrometry, and it was unclear how well such a large complex could be desolvated. Here, we report molecular weight (MW) distributions measured for HAdV5 and for 11 recombinant AdV vectors with genomes of varying lengths. The MW distributions were recorded using ion trap charge detection mass spectrometry (CDMS), a single-particle technique where m/z and charge are measured for individual ions. The results show that ions as large as 150 MDa can be effectively desolvated and accurate MW distributions obtained. The MW distribution for HAdV5 contains a narrow peak at 156.1 MDa, assigned to the infectious virus. A smaller peak at 129.6 MDa is attributed to incomplete particles that have not packaged a genome. The ions in the 129.6 MDa peak have a much lower average charge than those in the peak at 156.1 MDa. This is attributed to the empty particles missing some or all of the fibers that decorate the surface of the virion. The MW measured for the mature virus (156.1 MDa) is much larger than that predicted from sequence masses and copy numbers of the constituents (142.5 MDa). Measurements performed for recombinant AdV as a function of genome length show that for every 1 MDa increase in the genome MW, the MW of the mature virus increases by around 2.3 MDa. The additional 1.3 MDa is attributed to core proteins that are copackaged with the DNA. This observation suggests that the discrepancy between the measured and expected MWs for mature HAdV5 is due to an underestimate in the copy numbers of the core proteins.
Collapse
Affiliation(s)
- Lauren F Barnes
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions, Inc., 3750 E Bluebird Lane, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Goetschius DJ, Hartmann SR, Organtini LJ, Callaway H, Huang K, Bator CM, Ashley RE, Makhov AM, Conway JF, Parrish CR, Hafenstein SL. High-resolution asymmetric structure of a Fab-virus complex reveals overlap with the receptor binding site. Proc Natl Acad Sci U S A 2021; 118:e2025452118. [PMID: 34074770 PMCID: PMC8201801 DOI: 10.1073/pnas.2025452118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Samantha R Hartmann
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lindsey J Organtini
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Heather Callaway
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Kai Huang
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Carol M Bator
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Robert E Ashley
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| |
Collapse
|
12
|
Gustafson EL, Murray HV, Caldwell T, Austin DE. Accurately Mapping Image Charge and Calibrating Ion Velocity in Charge Detection Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2161-2170. [PMID: 32856905 DOI: 10.1021/jasms.0c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Image charge detection is the foundation of charge detection mass spectrometry (CDMS). The mass-to-charge ratio, m/z, of a highly charged ion or particle is determined by measuring the particle's charge and velocity. Charge is typically determined from a calibrated image charge signal, and the particle velocity is calculated using the peaks from the shaped signal as they relate to the particle position and time-of-flight through a detector of known length. Although much has been done to improve the charge accuracy in CDMS, little has been done to address the inconsistencies in the particle velocity measurements and the interpretation of peak position and effective electrode length. In this work, we combine SIMION ion trajectory software and the Shockley-Ramo theorem to accurately determine the effective electrode length, peak position, and shape of the signal peaks. Six model charge detector geometries were examined with this method and evaluated in laboratory experiments. Experimental results in all cases agreed with the simulations. Using a charge detector with multiple, 12.7 mm-long cylindrical electrodes, experimental velocities across and between electrodes agreed within 0.25% relative standard deviation (RSD) when this method was used to correct for effective electrode lengths, corresponding to an uncertainty in the effective electrode length of only 40 μm. For a detector with multiple electrodes and varied electrode spacing, experiments showed that the peak amplitude and shape vary with the geometry and with the particle path through the detector, whereas all peak areas agreed to within 2.3% RSD. For a charge detector made of two printed circuit boards, the velocities agreed within 0.44% RSD using the calculated effective electrode length.
Collapse
Affiliation(s)
- Elaura L Gustafson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Halle V Murray
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tabitha Caldwell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Daniel E Austin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
13
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
14
|
Todd AR, Barnes LF, Young K, Zlotnick A, Jarrold MF. Higher Resolution Charge Detection Mass Spectrometry. Anal Chem 2020; 92:11357-11364. [PMID: 32806905 PMCID: PMC8587657 DOI: 10.1021/acs.analchem.0c02133] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Charge detection mass spectrometry is a single particle technique where the masses of individual ions are determined from simultaneous measurements of each ion's m/z ratio and charge. The ions pass through a conducting cylinder, and the charge induced on the cylinder is detected. The cylinder is usually placed inside an electrostatic linear ion trap so that the ions oscillate back and forth through the cylinder. The resulting time domain signal is analyzed by fast Fourier transformation; the oscillation frequency yields the m/z, and the charge is determined from the magnitudes. The mass resolving power depends on the uncertainties in both quantities. In previous work, the mass resolving power was modest, around 30-40. In this work we report around an order of magnitude improvement. The improvement was achieved by coupling high-accuracy charge measurements (obtained with dynamic calibration) with higher resolution m/z measurements. The performance was benchmarked by monitoring the assembly of the hepatitis B virus (HBV) capsid. The HBV capsid assembly reaction can result in a heterogeneous mixture of intermediates extending from the capsid protein dimer to the icosahedral T = 4 capsid with 120 dimers. Intermediates of all possible sizes were resolved, as well as some overgrown species. Despite the improved mass resolving power, the measured peak widths are still dominated by instrumental resolution. Heterogeneity makes only a small contribution. Resonances were observed in some of the m/z spectra. They result from ions with different masses and charges having similar m/z values. Analogous resonances are expected whenever the sample is a heterogeneous mixture assembled from a common building block.
Collapse
|
15
|
Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: What can we learn from charge detection mass spectrometry? RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8539. [PMID: 31353622 DOI: 10.1002/rcm.8539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Advances in soft ionization techniques for mass spectrometry (MS) of polymeric materials make it possible to determine the masses of intact molecular ions exceeding megadaltons. Interfacing MS with separation and fragmentation methods has additionally led to impressive advances in the ability to structurally characterize polymers. Even if the gap to the megadalton range has been bridged by MS for polymers standards, the MS-based analysis for more complex polymeric materials is still challenging. Charge detection mass spectrometry (CDMS) is a single-molecule method where the mass and the charge of each ion are directly determined from individual measurements. The entire molecular mass distribution of a polymer sample can be thus accurately measured. Described in this perspective paper is how molecular weight distribution as well as charge distribution can provide new insights into the structural and compositional studies of synthetic polymers and polymeric nanomaterials in the megadalton to gigadalton range of molecular weight. The recent multidimensional CDMS studies involving couplings with separation and dissociation techniques will be presented. And, finally, an outlook for the future avenues of the CDMS technique in the field of synthetic polymers of ultra-high molar mass and polymeric nanomaterials will be provided.
Collapse
Affiliation(s)
- Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, F-69622, Lyon, France
| |
Collapse
|
16
|
Zhang Y, Tang Y, Tan C, Xu W. Toward Nanopore Electrospray Mass Spectrometry: Nanopore Effects in the Analysis of Bacteria. ACS CENTRAL SCIENCE 2020; 6:1001-1008. [PMID: 32607447 PMCID: PMC7318062 DOI: 10.1021/acscentsci.0c00622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 05/13/2023]
Abstract
The shape and structure analyses capability of nanopore is powerful and complementary to mass spectrometry analysis. It is extremely attractive but challenging to integrate these two techniques. The feasibility of combining nanopore electrospray with mass spectrometry was explored in this study. A nanopore effect was observed during the nano-electrospray of single bacterium, through which the shape and dimension of a single bacterium could be obtained. Molecular information on these bacteria was then acquired by analyzing these bacteria deposited on the counter electrode through laser spray ionization mass spectrometry experiments. Proof-of-concept experiments were carried out for four types of bacteria. Results show that the combination of nanopore results with mass spectrum data could effectively improve the identification accuracy of these bacteria from 72.5% to 100%. Although initial experiments were demonstrated in this work, results showed that it is feasible and promising to integrate nanopore technology with mass spectrometry for large biomolecule studies in the near future.
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- . Web: http://www.escience.cn/people/weixu
| |
Collapse
|
17
|
Todd AR, Jarrold MF. Dynamic Calibration Enables High-Accuracy Charge Measurements on Individual Ions for Charge Detection Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1241-1248. [PMID: 32353231 DOI: 10.1021/jasms.0c00081] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Charge detection mass spectrometry (CDMS) depends on the measurement of the charge induced on a cylinder by individual ions by means of a charge-sensitive amplifier. For high-accuracy charge measurements, the detection cylinder is embedded in an electrostatic linear ion trap (ELIT), and the ions oscillate back and forth through the cylinder so that multiple measurements are made. To assign the charge state with a low error rate, the charge of each ion must be determined with an uncertainty (root-mean-square deviation) of around 0.2 elementary charges. We show here that high-accuracy charge measurements can be achieved for large ions by dynamic calibration of the charge measurement using an internal standard. The internal standard is generated by irradiating the detection cylinder, by means of a small antenna, with a radiofrequency signal. Using this approach, we have obtained a relative charge uncertainty of around 5 × 10-4, allowing charge-state resolution to be achieved for single ions with up to 500 charges. In another application of this approach, the detection cylinder is irradiated with a signal that counteracts the transients generated when the potentials on the ELIT end-caps are switched to trapping mode. Using this approach, the dead time after switching (during which the signal cannot be analyzed) has been reduced by more than an order of magnitude. With charge-state resolution for ions with up to 500 charges, we were able to calibrate the charges precisely. The results show that the response of the charge-sensitive amplifier with dynamic calibration is linear to within a small fraction of an elementary charge.
Collapse
Affiliation(s)
- Aaron R Todd
- Chemistry Department, Indiana University, Bloomington, Indiana 47405 United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, Bloomington, Indiana 47405 United States
| |
Collapse
|
18
|
Emmanuel SN, Mietzsch M, Tseng YS, Smith JK, Agbandje-McKenna M. Parvovirus Capsid-Antibody Complex Structures Reveal Conservation of Antigenic Epitopes Across the Family. Viral Immunol 2020; 34:3-17. [PMID: 32315582 DOI: 10.1089/vim.2020.0022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parvoviruses are small nonenveloped single stranded DNA viruses that constitute members that range from apathogenic to pathogenic in humans and animals. The infection with a parvovirus results in the generation of antibodies against the viral capsid by the host immune system to eliminate the virus and to prevent re-infection. For members currently either being developed as delivery vectors for gene therapy applications or as oncolytic biologics for tumor therapy, efforts are aimed at combating the detrimental effects of pre-existing or post-treatment antibodies that can eliminate therapeutic benefits. Therefore, understanding antigenic epitopes of parvoviruses can provide crucial information for the development of vaccination applications and engineering novel capsids able to escape antibody recognition. This review aims to capture the information for the binding regions of ∼30 capsid-antibody complex structures of different parvovirus capsids determined to date by cryo-electron microscopy and three-dimensional image reconstruction. The comparison of all complex structures revealed the conservation of antigenic regions among parvoviruses from different genera despite low sequence identity and indicates that the available data can be used across the family for vaccine development and capsid engineering.
Collapse
Affiliation(s)
- Shanan N Emmanuel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yu Shan Tseng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James Kennon Smith
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Bond KM, Lyktey NA, Tsvetkova IB, Dragnea B, Jarrold MF. Disassembly Intermediates of the Brome Mosaic Virus Identified by Charge Detection Mass Spectrometry. J Phys Chem B 2020; 124:2124-2131. [PMID: 32141748 DOI: 10.1021/acs.jpcb.0c00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Capsid disassembly and genome release are critical steps in the lifecycle of a virus. However, their mechanisms are poorly understood, both in vivo and in vitro. Here, we have identified two in vitro disassembly pathways of the brome mosaic virus (BMV) by charge detection mass spectrometry and transmission electron microscopy. When subjected to a pH jump to a basic environment at low ionic strength, protein-RNA interactions are disrupted. Under these conditions, BMV appears to disassemble mainly through a global cleavage event into two main fragments: a near complete capsid that has released the RNA and the released RNA complexed to a small number of the capsid proteins. Upon slow buffer exchange to remove divalent cations at neutral pH, capsid protein interactions are disrupted. The BMV virions swell but there is no measurable loss of the RNA. Some of the virions break into small fragments, leading to an increase in the abundance of species with masses less than 1 MDa. The peak attributed to the BMV virion shifts to a higher mass with time. The mass increase is attributed to additional capsid proteins associating with the disrupted capsid protein-RNA complex, where the RNA is presumably partially exposed. It is likely that this pathway is more closely related to how the capsid disassembles in vivo, as it offers the advantage of protecting the RNA with the capsid protein until translation begins.
Collapse
Affiliation(s)
- Kevin M Bond
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicholas A Lyktey
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Irina B Tsvetkova
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bogdan Dragnea
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Todd AR, Alexander AW, Jarrold MF. Implementation of a Charge-Sensitive Amplifier without a Feedback Resistor for Charge Detection Mass Spectrometry Reduces Noise and Enables Detection of Individual Ions Carrying a Single Charge. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:146-154. [PMID: 32881508 DOI: 10.1021/jasms.9b00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Charge detection mass spectrometry (CDMS) depends on the measurement of the charge induced on a cylinder by individual ions by means of a charge-sensitive amplifier. Electrical noise limits the accuracy of the charge measurement and the smallest charge that can be detected. Thermal noise in the feedback resistor is a major source of electrical noise. We describe the implementation of a charge-sensitive amplifier without a feedback resistor. The design has significantly reduced 1/f noise facilitating the detection of high m/z ions and substantially reducing the measurement time required to achieve almost perfect charge accuracy. With the new design we have been able to detect individual ions carrying a single charge. This is an important milestone in the development of CDMS.
Collapse
Affiliation(s)
- Aaron R Todd
- Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew W Alexander
- Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|