1
|
Rossi D, Wu Y, Wu G, Bilby D, Getsoian AB, Kempema NJ, Chen Z. In Operando and Ex Situ Investigation of the Formation and Aging Processes of SEI/CEI C-H Chemistry in Liquid Electrolyte Lithium-Ion Batteries. J Phys Chem Lett 2025; 16:2759-2763. [PMID: 40052875 DOI: 10.1021/acs.jpclett.5c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Liquid electrolyte lithium-ion batteries (LIBs) are the fundamental electrochemical technology powering modern electric vehicles. The performance of LIBs is closely related to the quality of the anode solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) layers. For the first time, sum frequency generation (SFG) vibrational spectroscopy was successfully used to study the formation and surface changes of the CEI layer in operando at the solid/liquid interface during the initial formation cycle using a commercially relevant electrode (i.e., NCM622 chemistry and noncontrived geometry). In operando experiments showed the CEI layer formed when the voltage reached 3.23 V and stabilized after 2 h at 3.55 V in the first cycle. Ex situ SFG experiments demonstrated that methylene (CH2) and methyl (CH3) groups detected in the CEI and SEI layers after one cycle became less ordered after 10 and 50 cycles.
Collapse
Affiliation(s)
- Daniel Rossi
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Guangyao Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - David Bilby
- Research & Advanced Engineering, Ford Motor Company, 2101 Village Rd, Dearborn, Michigan 48124, United States
| | - Andrew Bean Getsoian
- Research & Advanced Engineering, Ford Motor Company, 2101 Village Rd, Dearborn, Michigan 48124, United States
| | - Nathan J Kempema
- Research & Advanced Engineering, Ford Motor Company, 2101 Village Rd, Dearborn, Michigan 48124, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Ge A, Nagai R, Nemoto K, Li B, Kannari K, Inoue KI, Ye S. Unraveling the solvent stability on the cathode surface of Li-O 2 batteries by using in situ vibrational spectroscopies. Faraday Discuss 2024; 248:119-133. [PMID: 37842815 DOI: 10.1039/d3fd00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In aprotic lithium-oxygen (Li-O2) batteries, solvent properties are crucial in the charge/discharge processes. Therefore, a thorough understanding of the solvent stability at the cathode surface during the oxygen reduction/evolution reactions (ORR/OER) is essential for the rational design of high-performance electrolytes. In this study, the stability of typical solvents, a series of glyme solvents with different chain lengths, has been investigated during the ORR/OER by in situ vibrational spectroscopy measurements of sum frequency generation (SFG) spectroscopy and infrared reflection absorption spectroscopy (IRRAS). The structural evolution and decomposition mechanism of the solvents during ORR/OER have been discussed based on the observations. Our results demonstrate that superoxide (O2-) generated during the ORR plays a critical role in the stability of the solvents.
Collapse
Affiliation(s)
- Aimin Ge
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, P. R. China
| | - Ryuuta Nagai
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Kota Nemoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Bingbing Li
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Koki Kannari
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
4
|
Xu Y, Ma YB, Gu F, Yang SS, Tian CS. Structure evolution at the gate-tunable suspended graphene-water interface. Nature 2023; 621:506-510. [PMID: 37648858 DOI: 10.1038/s41586-023-06374-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/27/2023] [Indexed: 09/01/2023]
Abstract
Graphitic electrode is commonly used in electrochemical reactions owing to its excellent in-plane conductivity, structural robustness and cost efficiency1,2. It serves as prime electrocatalyst support as well as a layered intercalation matrix2,3, with wide applications in energy conversion and storage1,4. Being the two-dimensional building block of graphite, graphene shares similar chemical properties with graphite1,2, and its unique physical and chemical properties offer more varieties and tunability for developing state-of-the-art graphitic devices5-7. Hence it serves as an ideal platform to investigate the microscopic structure and reaction kinetics at the graphitic-electrode interfaces. Unfortunately, graphene is susceptible to various extrinsic factors, such as substrate effect8-10, causing much confusion and controversy7,8,10,11. Hereby we have obtained centimetre-sized substrate-free monolayer graphene suspended on aqueous electrolyte surface with gate tunability. Using sum-frequency spectroscopy, here we show the structural evolution versus the gate voltage at the graphene-water interface. The hydrogen-bond network of water in the Stern layer is barely changed within the water-electrolysis window but undergoes notable change when switching on the electrochemical reactions. The dangling O-H bond protruding at the graphene-water interface disappears at the onset of the hydrogen evolution reaction, signifying a marked structural change on the topmost layer owing to excess intermediate species next to the electrode. The large-size suspended pristine graphene offers a new platform to unravel the microscopic processes at the graphitic-electrode interfaces.
Collapse
Affiliation(s)
- Ying Xu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - You-Bo Ma
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - Feng Gu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - Shan-Shan Yang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - Chuan-Shan Tian
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Liu H, Shen Z, Pan ZZ, Yu W, Nishihara H. Cathode Chemistries of Lithium-Oxygen Batteries in Nanoconfined Space. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40397-40408. [PMID: 37590155 DOI: 10.1021/acsami.3c05944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In lithium-oxygen batteries, although the porous carbon cathodes are widely utilized to tailor the properties of discharged Li2O2, the impact of nanopore size on the Li2O2 formation and decomposition reactions remain incompletely understood. Here, we provide the straightforward elucidation on the effect of pore size in a range of 25-200 nm, using a highly ordered porous cathode matrix based on the carbon-coated anodic aluminum oxide membrane formed on an Al substrate (C/AAO_Al). When the nanopore size is 25 nm, film-like Li2O2 with a thickness of 2-5 nm is formed, possibly via a surface-driven mechanism. When the nanochannel becomes larger, the Li2O2 film thickness saturates at ca. 10 nm, along with crystalline Li2O2 particles possibly formed by a solution-mediated mechanism.
Collapse
Affiliation(s)
- Hongyu Liu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Zhaohan Shen
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Wei Yu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Yan H, Wang WW, Wu TR, Gu Y, Li KX, Wu DY, Zheng M, Dong Q, Yan J, Mao BW. Morphology-Dictated Mechanism of Efficient Reaction Sites for Li 2O 2 Decomposition. J Am Chem Soc 2023. [PMID: 37216562 DOI: 10.1021/jacs.2c12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the pursuit of a highly reversible lithium-oxygen (Li-O2) battery, control of reaction sites to maintain stable conversion between O2 and Li2O2 at the cathode side is imperatively desirable. However, the mechanism involving the reaction site during charging remains elusive, which, in turn, imposes challenges in recognition of the origin of overpotential. Herein, via combined investigations by in situ atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS), we propose a universal morphology-dictated mechanism of efficient reaction sites for Li2O2 decomposition. It is found that Li2O2 deposits with different morphologies share similar localized conductivities, much higher than that reported for bulk Li2O2, enabling the reaction site not only at the electrode/Li2O2/electrolyte interface but also at the Li2O2/electrolyte interface. However, while the mass transport process is more enhanced at the former, the charge-transfer resistance at the latter is sensitively related to the surface structure and thus the reactivity of the Li2O2 deposit. Consequently, for compact disk-like deposits, the electrode/Li2O2/electrolyte interface serves as the dominant decomposition site, which causes premature departure of Li2O2 and loss of reversibility; on the contrary, for porous flower-like and film-like Li2O2 deposits bearing a larger surface area and richer surface-active structures, both the interfaces are efficient for decomposition without premature departure of the deposit so that the overpotential arises primarily from the sluggish oxidation kinetics and the decomposition is more reversible. The present work provides instructive insights into the understanding of the mechanism of reaction sites during the charge process, which offers guidance for the design of reversible Li-O2 batteries.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tai-Rui Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai-Xuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - MingSen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Wang Z, Pei Q, Wang M, Tan J, Ye S. Observing Nonpreferential Absorption of Linear and Cyclic Carbonate on the Silicon Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2015-2021. [PMID: 36695809 DOI: 10.1021/acs.langmuir.2c03098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silicon is reported to be a promising anode material due to its high storage capacity and excellent energy conversion rate. Molecular-level insight into the interaction between silicon electrodes and electrolyte solutions is essential for understanding the formation of a stable solid electrolyte interphase (SEI), but it is yet to be explored. In this study, we apply femtosecond sum frequency generation vibrational spectroscopy to investigate the initial adsorption of various pure and mixed electrolyte molecules on the silicon anode surface by monitoring the SFG signals from the carbonyl group of electrolyte molecules. When the silicon comes in contact with a pure carbonate solution, the linear carbonates of diethyl carbonate and ethyl methyl carbonate adopt two conformations with opposite C═O orientations on the silicon interface while the cyclic carbonates of ethylene carbonate and propylene carbonate almost adopt one conformation with C═O bonds pointing toward the silicon electrode. When the silicon comes in contact with the mixed linear and cyclic carbonate solutions, the total SFG intensity from the mixed solutions is approximately 2∼5 times weaker than those of pure cyclic carbonates. The C═O bonds of cyclic carbonates point toward the silicon electrode, while the C═O bonds of linear carbonates face toward the bulk solution at the silicon/mixed solution interface. No preferential absorption behaviors of the linear and cyclic carbonate electrolytes on the silicon electrode are observed. Such findings may help to understand the mechanism by which the SEI formed on the silicon anode is unstable.
Collapse
Affiliation(s)
- Zhuo Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui230026, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui230026, China
| |
Collapse
|
8
|
Qian Y, Brown JB, Zhang T, Huang-Fu ZC, Rao Y. In Situ Detection of Chemical Compositions at Nanodroplet Surfaces and In-Nanodroplet Phases. J Phys Chem A 2022; 126:3758-3764. [PMID: 35667005 DOI: 10.1021/acs.jpca.2c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-volume nanodroplets play an increasingly common role in chemistry and biology. Such nanodroplets are believed to have unique chemical and physical properties at the interface between a droplet and its surrounding medium, however, they are underexamined. In this study, we present the novel technique of vibrational sum frequency scattering (VSFS) spectroscopy as an interface-specific, high-performance method for the in situ investigation of nanodroplets with sub-micron radii; as well as the droplet bulk through simultaneous hyper-Raman scattering (HRS) spectroscopy. We use laboratory-generated nanodroplets from aqueous alcohol solutions to demonstrate this technique's ability to separate the vibrational phenomena which take place at droplet surfaces from the underlying bulk phase. In addition, we systemically examine interfacial spectra of nanodroplets containing methanol, ethanol, 1-propanol, and 1-butanol through VSFS. Furthermore, we demonstrate interfacial differences between such nanodroplets and their analogous planar surfaces. The sensitivity of this technique to probe droplet surfaces with few-particle density at standard conditions validates VSFS as an analytical technique for the in situ investigation of small nanodroplets, providing breakthrough information about these species of ever-increasing relevance.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
9
|
Wang Z, Tan J, Yang Z, Luo Y, Ye S. Observing Two-Dimensional Spontaneous Reaction between a Silicon Electrode and a LiPF 6-Based Electrolyte In Situ and in Real Time. J Phys Chem Lett 2022; 13:3224-3229. [PMID: 35377653 DOI: 10.1021/acs.jpclett.2c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional spontaneous reactions between an electrode and an electrolyte are very important for the formation of a solid electrolyte interphase (SEI) but difficult to study because studying such reactions requires surface/interface sensitive techniques with sufficiently structural and temporal resolutions. In this study, we have applied femtosecond broadband sum-frequency generation vibrational spectroscopy (SFG-VS) to investigate the interaction between a silicon electrode and a LiPF6-based diethyl carbonate electrolyte solution in situ and in real time. We found that two kinds of diethyl carbonate species are present on the silicon surface and their C═O stretching aligns in opposite directions. Intrinsically spontaneous chemical reactions between silicon electrodes and a LiPF6 electrolyte solution are observed. The reactions generate silicon hydride and cause corrosion of the silicon electrodes. Coating of the silicon surface with a poly(vinyl alcohol) layer can effectively retard and attenuate these reactions. This work demonstrates that SFG-VS can provide a unique and powerful state-of-the-art tool for elucidating the molecular mechanisms of SEI formation.
Collapse
Affiliation(s)
- Zhuo Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhe Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Lin T, Wu Y, Santos E, Chen X, Kelleher-Ferguson J, Tucker C, Ahn D, Mohler C, Chen Z. Probing Covalent Interactions at a Silicone Adhesive/Nylon Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2590-2600. [PMID: 35166546 DOI: 10.1021/acs.langmuir.1c03218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent bonding is one of the most robust forms of intramolecular interaction between adhesives and substrates. In contrast to most noncovalent interactions, covalent bonds can significantly enhance both the interfacial strength and durability. To utilize the advantages of covalent bonding, specific chemical reactions are designed to occur at interfaces. However, interfacial reactions are difficult to probe in situ, particularly at the buried interfaces found in well-bonded adhesive joints. In this work, sum frequency generational (SFG) vibrational spectroscopy was used to directly examine and analyze the interfacial chemical reactions and related molecular changes at buried nylon/silicone elastomer interfaces. For self-priming elastomeric silicone adhesives, silane coupling agents have been extensively used as adhesion promoters. Here with SFG, the interfacial chemical reactions between nylon and two alkoxysilane adhesion promoters with varied functionalities (maleic anhydride (MAH) and epoxy) formulated into the silicone were observed and investigated. Evidence of reactions between the organofunctional group of each silane and reactive groups on the polyamide was found at the buried interface between the cured silicone elastomer and nylon. The adhesion strength at the nylon/cured silicone interfaces was substantially enhanced with both silane additives. SFG results elucidated the mechanisms of organo-silane adhesion promotion for silicone at the molecular level. The ability to probe and analyze detailed interfacial reactions at buried nylon/silicone interfaces demonstrated that SFG is a powerful analytical technique to aid the design and optimization of materials with desired interfacial properties.
Collapse
Affiliation(s)
| | | | - Elizabeth Santos
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - Chris Tucker
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | | |
Collapse
|
11
|
Wang Y, Chen D. Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23033-23055. [PMID: 35130433 DOI: 10.1021/acsami.1c20893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The future of the energy industry and green transportation critically relies on exploration of high-performance, reliable, low-cost, and environmentally friendly energy storage and conversion materials. Understanding the chemical processes and phenomena involved in electrochemical energy storage and conversion is the premise of a revolutionary materials discovery. In this article, we review the recent advancements of application of state-of-the-art vibrational spectroscopic techniques in unraveling the nature of electrochemical energy, including bulk energy storage, dynamics of liquid electrolytes, interfacial processes, etc. Technique-wise, the review covers a wide range of spectroscopic methods, including classic vibrational spectroscopy (direct infrared absorption and Raman scattering), external field enhanced spectroscopy (surface enhanced Raman and IR, tip enhanced Raman, and near-field IR), and two-photon techniques (2D infrared absorption, stimulated Raman, and vibrational sum frequency generation). Finally, we provide perspectives on future directions in refining vibrational spectroscopy to contribute to the research frontier of electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- You Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Dongchang Chen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
12
|
Lu T, Guo W, Datar PM, Xin Y, Marsh ENG, Chen Z. Probing protein aggregation at buried interfaces: distinguishing between adsorbed protein monomers, dimers, and a monomer-dimer mixture in situ. Chem Sci 2022; 13:975-984. [PMID: 35211262 PMCID: PMC8790787 DOI: 10.1039/d1sc04300e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022] Open
Abstract
Protein adsorption on surfaces greatly impacts many applications such as biomedical materials, anti-biofouling coatings, bio-separation membranes, biosensors, antibody protein drugs etc. For example, protein drug adsorption on the widely used lubricant silicone oil surface may induce protein aggregation and thus affect the protein drug efficacy. It is therefore important to investigate the molecular behavior of proteins at the silicone oil/solution interface. Such an interfacial study is challenging because the targeted interface is buried. By using sum frequency generation vibrational spectroscopy (SFG) with Hamiltonian local mode approximation method analysis, we studied protein adsorption at the silicone oil/protein solution interface in situ in real time, using bovine serum albumin (BSA) as a model. The results showed that the interface was mainly covered by BSA dimers. The deduced BSA dimer orientation on the silicone oil surface from the SFG study can be explained by the surface distribution of certain amino acids. To confirm the BSA dimer adsorption, we treated adsorbed BSA dimer molecules with dithiothreitol (DTT) to dissociate these dimers. SFG studies on adsorbed BSA after the DTT treatment indicated that the silicone oil surface is covered by BSA dimers and BSA monomers in an approximate 6 : 4 ratio. That is to say, about 25% of the adsorbed BSA dimers were converted to monomers after the DTT treatment. Extensive research has been reported in the literature to determine adsorbed protein dimer formation using ex situ experiments, e.g., by washing off the adsorbed proteins from the surface then analyzing the washed-off proteins, which may induce substantial errors in the washing process. Dimerization is a crucial initial step for protein aggregation. This research developed a new methodology to investigate protein aggregation at a solid/liquid (or liquid/liquid) interface in situ in real time using BSA dimer as an example, which will greatly impact many research fields and applications involving interfacial biological molecules.
Collapse
Affiliation(s)
- Tieyi Lu
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Wen Guo
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Prathamesh M Datar
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Yue Xin
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| |
Collapse
|
13
|
Zhang P, Han B, Yang X, Zou Y, Lu X, Liu X, Zhu Y, Wu D, Shen S, Li L, Zhao Y, Francisco JS, Gu M. Revealing the Intrinsic Atomic Structure and Chemistry of Amorphous LiO 2-Containing Products in Li-O 2 Batteries Using Cryogenic Electron Microscopy. J Am Chem Soc 2022; 144:2129-2136. [PMID: 35075901 DOI: 10.1021/jacs.1c10146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aprotic lithium-oxygen batteries (LOBs) are promising energy storage systems characterized by ultrahigh theoretical energy density. Extensive research has been devoted to this battery technology, yet the detailed operational mechanisms involved, particularly unambiguous identification of various discharge products and their specific distributions, are still unknown or are subjects of controversy. This is partly because of the intrinsic complexity of the battery chemistry but also because of the lack of atomic-level insight into the oxygen electrodes acquired via reliable techniques. In the current study, it is demonstrated that electron beam irradiation could induce crystallization of amorphous discharge products. Cryogenic conditions and a low beam dosage have to be used for reliable transmission electron microscopy (TEM) characterization. High-resolution cryo-TEM and electron energy loss spectroscopy (EELS) analysis of toroidal discharge particles unambiguously identified the discharge products as a dominating amorphous LiO2 phase with only a small amount of nanocrystalline Li2O2 islands dispersed in it. In addition, uniform mixing of carbon-containing byproducts is identified in the discharge particles with cryo-EELS, which leads to a slightly higher charging potential. The discharge products can be reversibly cycled, with no visible residue after full recharge. We believe that the amorphous superoxide dominating discharge particles can lead researchers to reconsider the chemistry of LOBs and pay special attention to exclude beam-induced artifacts in traditional TEM characterizations.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Bing Han
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,Department of Nano Engineering, University of California San Diego, La Jolla, California 92093-0448, United States
| | - Xuming Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yucheng Zou
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xinzhen Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Yuanmin Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.,School of Material Science and Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Duojie Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shaocheng Shen
- Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77251, United States
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
14
|
Das SK, Shyamal S, Das M, Mondal S, Chowdhury A, Chakraborty D, Dey RS, Bhaumik A. Metal-Free Pyrene-Based Conjugated Microporous Polymer Catalyst Bearing N- and S-Sites for Photoelectrochemical Oxygen Evolution Reaction. Front Chem 2022; 9:803860. [PMID: 35004623 PMCID: PMC8739966 DOI: 10.3389/fchem.2021.803860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
The development of an efficient, sustainable, and inexpensive metal-free catalyst for oxygen evolution reaction (OER) via photoelectrochemical water splitting is very demanding for energy conversion processes such as green fuel generators, fuel cells, and metal-air batteries. Herein, we have developed a metal-free pyrene-based nitrogen and sulfur containing conjugated microporous polymer having a high Brunauer-Emmett-Teller surface area (761 m2 g−1) and a low bandgap of 2.09 eV for oxygen evolution reaction (OER) in alkaline solution. The π-conjugated as-synthesized porous organic material (PBTDZ) has been characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state 13C (cross-polarization magic angle spinning-nuclear magnetic resonance) CP-MAS NMR, N2 adsorption/desorption analysis, field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) experiments. The material acts as an efficient catalyst for photoelectrochemical OER with a current density of 80 mA/cm2 at 0.8 V vs. Ag/AgCl and delivered 104 µmol of oxygen in a 2 h run. The presence of low bandgap energy, π-conjugated conducting polymeric skeleton bearing donor heteroatoms (N and S), and higher specific surface area associated with inherent microporosity are responsible for this admirable photoelectrocatalytic activity of PBTDZ catalyst.
Collapse
Affiliation(s)
- Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, India.,Institute of Nano Science and Technology, Mohali, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Manisha Das
- Institute of Nano Science and Technology, Mohali, India
| | - Saptarsi Mondal
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), Seoul, South Korea.,Department of Chemistry, Korea University, Seoul, South Korea
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | | | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
15
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Nishioka K, Morimoto K, Kusumoto T, Harada T, Kamiya K, Mukouyama Y, Nakanishi S. Isotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li-O 2 Battery with a Redox Mediator. J Am Chem Soc 2021; 143:7394-7401. [PMID: 33945262 DOI: 10.1021/jacs.1c00868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prior to the practical application of rechargeable aprotic Li-O2 batteries, the high charging overpotentials of these devices (which inevitably cause irreversible parasitic reactions) must be addressed. The use of redox mediators (RMs) that oxidatively decompose the discharge product, Li2O2, is one promising solution to this problem. However, the mitigating effect of RMs is currently insufficient, and so it would be beneficial to clarify the Li2O2 reductive growth and oxidative decomposition mechanisms. In the present work, Nanoscale secondary ion mass spectrometry (Nano-SIMS) isotopic three-dimensional imaging and differential electrochemical mass spectrometry (DEMS) analyses of individual Li2O2 particles established that both growth and decomposition proceeded at the Li2O2/electrolyte interface in a system containing the Br-/Br3- redox couple as the RM. The results of this study also indicated that the degree of oxidative decomposition of Li2O2 was highly dependent on the cell voltage. These data show that increasing the RM reaction rate at the Li2O2/electrolyte interface is critical to improve the cycle life of Li-O2 batteries.
Collapse
Affiliation(s)
- Kiho Nishioka
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kota Morimoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Kusumoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuhide Kamiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiharu Mukouyama
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Division of Science, College of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Shuji Nakanishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
17
|
Guo W, Liu B, He Y, You E, Zhang Y, Huang S, Wang J, Wang Z. Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection. NANOMATERIALS 2020; 10:nano10122557. [PMID: 33352752 PMCID: PMC7766786 DOI: 10.3390/nano10122557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
Nobel metal nanohole arrays have been used extensively in chemical and biological systems because of their fascinating optical properties. Gold nanohole arrays (Au NHAs) were prepared as surface plasmon polariton (SPP) generators for the surface-enhanced sum-frequency generation (SFG) detection of 4-Mercaptobenzonitrile (4-MBN). The angle-resolved reflectance spectra revealed that the Au NHAs have three angle-dependent SPP modes and two non-dispersive localized surface plasmon resonance (LSPR) modes under different structural orientation angles (sample surface orientation). An enhancement factor of ~30 was achieved when the SPP and LSPR modes of the Au NHAs were tuned to match the incident visible (VIS) and output SFG, respectively. This multi-mode matching strategy provided flexible controls and selective spectral windows for surface-enhanced measurements, and was especially useful in nonlinear spectroscopy where more than one light beam was involved. The structural orientation- and power-dependent performance demonstrated the potential of plasmonic NHAs in SFG and other nonlinear sensing applications, and provided a promising surface molecular analysis development platform.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Bowen Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Correspondence: (B.L.); (Z.W.)
| | - Yuhan He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Enming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Yongyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Shengchao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Jingjing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Zhaohui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
- Correspondence: (B.L.); (Z.W.)
| |
Collapse
|
18
|
Lin T, Wu Y, Santos E, Chen X, Ahn D, Mohler C, Chen Z. Molecular Insights into Adhesion at a Buried Silica-Filled Silicone/Polyethylene Terephthalate Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15128-15140. [PMID: 33283520 DOI: 10.1021/acs.langmuir.0c02719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicone adhesives are widely used in many important applications in aviation, automotive, construction, and electronics industries. The mixture of (3-glycidoxypropyl)trimethoxysilane (γ-GPS) and hydroxy-terminated dimethyl methylvinyl co-siloxanol (DMMVS) has been widely used as an adhesion promoter in silicone elastomers to enhance the adhesion between silicone and other materials including polymers. The interfacial molecular structures of silicone elastomers and the adhesion promotion mechanisms of a γ-GPS-DMMVS mixture in silicone without a filler or an adhesion catalyst (AC) have been extensively investigated using sum frequency generation (SFG) vibrational spectroscopy previously. In this research, SFG was applied to study interfacial structures of silicone elastomeric adhesives in the presence of a silica filler and/or a zirconium(IV) acetylacetonate adhesion catalyst at the silicone/polyethylene terephthalate (PET) interface in situ nondestructively to understand their individual and synergy effects. The interfacial structures obtained from the SFG study were correlated to the adhesion behavior to PET. The interfacial reactions of methoxy and epoxy groups of the adhesion promoter were found to play significant roles in enhancing the interfacial adhesion of the buried interface. This research provides an in-depth molecular-level understanding on the effects of a filler and an adhesion catalyst on the interfacial behavior of the adhesion promotion system for silicone elastomers as well as the related impact on adhesion.
Collapse
Affiliation(s)
- Ting Lin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuchen Wu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth Santos
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Xiaoyun Chen
- Core R&D, Dow Chemical, Midland, Michigan 48674, United States
| | - Dongchan Ahn
- Dow Performance Silicones, Auburn, Michigan 48611, United States
| | - Carol Mohler
- Core R&D, Dow Chemical, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Ge A, Inoue KI, Ye S. Probing the electrode-solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. J Chem Phys 2020; 153:170902. [PMID: 33167651 DOI: 10.1063/5.0026283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An in-depth understanding of the electrode-electrolyte interaction and electrochemical reactions at the electrode-solution interfaces in rechargeable batteries is essential to develop novel electrolytes and electrode materials with high performance. In this perspective, we highlight the advantages of the interface-specific sum-frequency generation (SFG) spectroscopy on the studies of the electrode-solution interface for the Li-ion and Li-O2 batteries. The SFG studies in probing solvent adsorption structures and solid-electrolyte interphase formation for the Li-ion battery are briefly reviewed. Recent progress on the SFG study of the oxygen reaction mechanisms and stability of the electrolyte in the Li-O2 battery is also discussed. Finally, we present the current perspective and future directions in the SFG studies on the electrode-electrolyte interfaces toward providing deeper insight into the mechanisms of discharging/charging and parasitic reactions in novel rechargeable battery systems.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Zhang S, Andre JS, Hsu L, Toolis A, Esarey SL, Li B, Chen Z. Nondestructive In Situ Detection of Chemical Reactions at the Buried Interface between Polyurethane and Isocyanate-Based Primer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuqing Zhang
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - John S Andre
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Lorraine Hsu
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Amy Toolis
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Samuel L Esarey
- Coatings and Innovation Center, PPG, 4325 Rosanna Drive, Allison Park, Pennsylvania 15101, United States
| | - Bolin Li
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Macromolecular Science and Engineering, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Enhancement of the electrochemical stability of tetraglyme-Li[TFSA] electrolyte systems by adding [Bimps] zwitterion: An in-situ IV-SFG study. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Galloway TA, Attard G, Hardwick LJ. An electrochemical investigation of oxygen adsorption on Pt single crystal electrodes in a non-aqueous Li+ electrolyte. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Li B, Andre JS, Chen X, Walther B, Paradkar R, Feng C, Tucker C, Mohler C, Chen Z. Probing Molecular Behavior of Carbonyl Groups at Buried Nylon/Polyolefin Interfaces in Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11349-11357. [PMID: 32870007 DOI: 10.1021/acs.langmuir.0c02188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nylon and maleic anhydride (MAH)-grafted polyolefin-based thin co-extruded multilayer films are widely used in packaging applications encountered in daily life. The molecular structure of the nylon/MAH-grafted polyolefin buried interface and molecular bonding between these two chemically dissimilar layers are thought to play an important role in achieving packaging structures with good adhesion. Here, the molecular bonds present at a nylon/maleic anhydride (MAH)-grafted polyethylene buried interface were systematically examined in situ for the first time using sum frequency generation (SFG) vibrational spectroscopy. The carbonyl stretching frequency region of the SFG spectra of a nylon/MAH-grafted polyethylene buried interface showed the presence of hydrolyzed MAH groups grafted to the polyethylene chain and very low levels of unreacted MAH enriched at the buried interface. The ability of SFG to detect these molecular species at the buried interface yields important understanding of the interfacial molecular structure and provides the basis for subsequent in situ studies of the bonding reaction between the grafted MAH and nylon directly at the interface. This understanding may guide the design of multilayer films with improved properties such as enhanced adhesion between polymer layers. The approach used in this study is general and is applicable to study the molecular characteristics of other buried interfaces of significance, such as buried interfaces involving polymers in solar cells, polymer semiconductors, and batteries. Nylon impact modification is another area of interest where the interaction between the MAH-grafted elastomer and the continuous phase of nylon is important.
Collapse
Affiliation(s)
- Bolin Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John S Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoyun Chen
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Brian Walther
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77541, United States
| | - Rajesh Paradkar
- Packaging and Specialty Plastics, The Dow Chemical Company, Lake Jackson, Texas 77541, United States
| | - Chuang Feng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher Tucker
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Carol Mohler
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Li B, Andre JS, Chen X, Walther B, Paradkar R, Feng C, Tucker C, Mohler C, Chen Z. Observing a Chemical Reaction at a Buried Solid/Solid Interface in Situ. Anal Chem 2020; 92:14145-14152. [DOI: 10.1021/acs.analchem.0c03228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bolin Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John S. Andre
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoyun Chen
- Core R&D,The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Brian Walther
- Packaging and Specialty Plastics,The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Rajesh Paradkar
- Packaging and Specialty Plastics,The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | - Chuang Feng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher Tucker
- Core R&D,The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Carol Mohler
- Core R&D,The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Hou B, Lei X, Zhong S, Sun B, Ouyang C. Dissociation of (Li 2O 2) 0,+ on graphene and boron-doped graphene: insights from first-principles calculations. Phys Chem Chem Phys 2020; 22:14216-14224. [PMID: 32555834 DOI: 10.1039/d0cp02597f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reducing charge overpotential is of great significance to enhance the efficiency and cyclability of Li-O2 batteries. Here, a dramatically reduced charge overpotential via boron-doped graphene as a catalytic substrate is successfully predicted. By first-principles calculations, from the perspective of reaction thermodynamics and kinetics, the results show that the electrochemical oxidation of the Li2O2+ cation is easier than the chemical oxidation of the neutral Li2O2 molecule, and the oxidation of (Li2O2)0,+ is facilitated by boron-doping in pristine graphene. More importantly, the results reveal the oxidation mechanism of (Li2O2)0,+: two-step dissociation with the LiO2 molecule as a reactive intermediate has advantages over one-step dissociation; the rate-determining step for the dissociation of (Li2O2+)G is the oxygen evolution process, while the lithium removal process is the rate-determining step for the dissociation of (Li2O20)G, (Li2O20)BG, and (Li2O2+)BG.
Collapse
Affiliation(s)
- Binpeng Hou
- Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China.
| | | | | | | | | |
Collapse
|
26
|
Li X, Xu Y, Li Y, Fan X, Zhang G, Zhang F, Peng W. Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities. J Colloid Interface Sci 2020; 577:101-108. [PMID: 32473473 DOI: 10.1016/j.jcis.2020.05.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Graphene based materials are considered as promising catalysts towards electro-catalytic water splitting. Heteroatoms doping and structure defects creation in graphene matrix could enhance the electro-catalytic activity effectively. In this work, a nitrogen and sulfur co-doped graphene is synthesized and then activated by KOH to involve a porous structure. The atomic ratios of doped heteroatoms are found increased surprisingly. This should be due to the better thermal stability of doped heteroatoms compared with the origin carbon atoms. More carbon atoms will be removed, thus leading to the increased heteroatoms doping percentages. The increased surface area, larger heteroatoms ratios, and abundant structure defects result in the improved catalytic activity towards electrochemical oxygen evolution reaction (OER). The overpotential for OER could achieve as early as 281 mV vs. RHE at 10 mA·cm-2 in 1 M KOH, better than most of the metal free catalysts. The obtained sample is active over a wide pH range in electrochemical hydrogen evolution reaction (HER), thus could be used as bifunctional materials for water splitting. This work provides a simple and low-cost approach to increase the ratios of doped heteroatoms, and thus should have great potential both for carbon materials synthesis and hydrogen production.
Collapse
Affiliation(s)
- Xintong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongsheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
27
|
Zhang Y, Stirnemann G, Hynes JT, Laage D. Water dynamics at electrified graphene interfaces: a jump model perspective. Phys Chem Chem Phys 2020; 22:10581-10591. [PMID: 32149294 DOI: 10.1039/d0cp00359j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reorientation dynamics of water at electrified graphene interfaces was recently shown [J. Phys. Chem. Lett., 2020, 11, 624-631] to exhibit a surprising and strongly asymmetric behavior: positive electrode potentials slow down interfacial water reorientation, while for increasingly negative potentials water dynamics first accelerates before reaching an extremum and then being retarded for larger potentials. Here we use classical molecular dynamics simulations to determine the molecular mechanisms governing water dynamics at electrified interfaces. We show that changes in water reorientation dynamics with electrode potential arise from the electrified interfaces' impacts on water hydrogen-bond jump exchanges, and can be quantitatively described by the extended jump model. Finally, our simulations indicate that no significant dynamical heterogeneity occurs within the water interfacial layer next to the weakly interacting graphene electrode.
Collapse
Affiliation(s)
- Yiwei Zhang
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | |
Collapse
|
28
|
Kwak WJ, Rosy, Sharon D, Xia C, Kim H, Johnson LR, Bruce PG, Nazar LF, Sun YK, Frimer AA, Noked M, Freunberger SA, Aurbach D. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem Rev 2020; 120:6626-6683. [PMID: 32134255 DOI: 10.1021/acs.chemrev.9b00609] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal-air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal-air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li-O2 cells but include Na-O2, K-O2, and Mg-O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li-O2 cells.
Collapse
Affiliation(s)
- Won-Jin Kwak
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.,Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - Rosy
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Daniel Sharon
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chun Xia
- Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hun Kim
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Lee R Johnson
- School of Chemistry and GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, Nottingham NG7 2TU, U.K
| | - Peter G Bruce
- Departments of Materials and Chemistry, University of Oxford, Parks Road, Oxford OX1 3PH, U.K
| | - Linda F Nazar
- Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Aryeh A Frimer
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Malachi Noked
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Stefan A Freunberger
- Institute for Chemistry and Technology of Materials, Graz University of Technology, 8010 Graz, Austria.,Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Doron Aurbach
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
29
|
Liu T, Vivek JP, Zhao EW, Lei J, Garcia-Araez N, Grey CP. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. Chem Rev 2020; 120:6558-6625. [PMID: 32090540 DOI: 10.1021/acs.chemrev.9b00545] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonaqueous lithium-air batteries have garnered considerable research interest over the past decade due to their extremely high theoretical energy densities and potentially low cost. Significant advances have been achieved both in the mechanistic understanding of the cell reactions and in the development of effective strategies to help realize a practical energy storage device. By drawing attention to reports published mainly within the past 8 years, this review provides an updated mechanistic picture of the lithium peroxide based cell reactions and highlights key remaining challenges, including those due to the parasitic processes occurring at the reaction product-electrolyte, product-cathode, electrolyte-cathode, and electrolyte-anode interfaces. We introduce the fundamental principles and critically evaluate the effectiveness of the different strategies that have been proposed to mitigate the various issues of this chemistry, which include the use of solid catalysts, redox mediators, solvating additives for oxygen reaction intermediates, gas separation membranes, etc. Recently established cell chemistries based on the superoxide, hydroxide, and oxide phases are also summarized and discussed.
Collapse
Affiliation(s)
- Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China.,Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - J Padmanabhan Vivek
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Evan Wenbo Zhao
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jiang Lei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
| | - Nuria Garcia-Araez
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Clare P Grey
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
30
|
Liu Z, Li Y, Xu Q, Wang H, Liu WT. Coherent Vibrational Spectroscopy of Electrochemical Interfaces with Plasmonic Nanogratings. J Phys Chem Lett 2020; 11:243-248. [PMID: 31724400 DOI: 10.1021/acs.jpclett.9b02985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fundamental understanding of electrochemistry urges accurate knowledge of all interfacial properties at the molecular level, but the retrieval of such information is a real challenge. Optical spectroscopies facilitated by surface plasmon enhancement can shed light on this field, yet past studies relied on either highly inhomogeneous "hot spots" or planar plasmon modes with limited enhancement. Here we report an in situ sum-frequency vibrational spectroscopy scheme using plasmonic nanogratings, which enable strong, coherent surface plasmon excitation even on planar electrodes. With two classical reactions, the gold oxidation and pyridine adsorption in water, we demonstrate the realization of coherent vibrational spectroscopy in the strong absorption region, revealing the polar orientation and ordering of interfacial species that are crucial toward the mechanistic understanding of electrochemical phenomena.
Collapse
Affiliation(s)
- Zhihua Liu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)] , Fudan University , Shanghai 200433 , China
| | - Ying Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)] , Fudan University , Shanghai 200433 , China
| | - Qian Xu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)] , Fudan University , Shanghai 200433 , China
| | - Hongqing Wang
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)] , Fudan University , Shanghai 200433 , China
| | - Wei-Tao Liu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)] , Fudan University , Shanghai 200433 , China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , China
| |
Collapse
|
31
|
Wang Z, Bao J, Liu W, Xu L, Hu Y, Guan M, Zhou M, Li H. Strong electronic coupled FeNi 3/Fe 2(MoO 4) 3 nanohybrids for enhancing the electrocatalytic activity for the oxygen evolution reaction. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00525h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong electronically coupled FeNi3/Fe2(MoO4)3 hybrid nanomaterials were successfully fabricated to enhance the electrocatalytic activity for the oxygen evolution reaction.
Collapse
Affiliation(s)
- Zhaolong Wang
- Institute for Energy Research
- Key Laboratory of Zhenjiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Jian Bao
- Institute for Energy Research
- Key Laboratory of Zhenjiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Wenjun Liu
- Institute for Energy Research
- Key Laboratory of Zhenjiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Li Xu
- Institute for Energy Research
- Key Laboratory of Zhenjiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Yiming Hu
- Institute for Energy Research
- Key Laboratory of Zhenjiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Meili Guan
- Institute for Energy Research
- Key Laboratory of Zhenjiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| | - Min Zhou
- Department of Applied Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China (USTC)
- Hefei
- P. R. China
| | - Huaming Li
- Institute for Energy Research
- Key Laboratory of Zhenjiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
| |
Collapse
|
32
|
Sakaushi K. Quantum electrocatalysts: theoretical picture, electrochemical kinetic isotope effect analysis, and conjecture to understand microscopic mechanisms. Phys Chem Chem Phys 2020; 22:11219-11243. [DOI: 10.1039/d0cp01052a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental aspects of quantum electrocatalysts are discussed together with the newly developed electrochemical kinetic isotope effect (EC-KIE) approach.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|
33
|
Huang-Fu ZC, Song QT, He YH, Liu XL, Wang JJ, Sun SG, Wang ZH. Surface configuration of CO adsorbed on nanostructured Pt electrodes probed using broadband sum frequency generation spectroscopy. Chem Commun (Camb) 2020; 56:9723-9726. [DOI: 10.1039/d0cc02469d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhomogeneity of adsorbed CO introduced by the aggregation of Pt nanoparticles.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surface
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Qian-Tong Song
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surface
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Yu-Han He
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surface
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiao-Lin Liu
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surface
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jing-Jing Wang
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surface
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Shi-Gang Sun
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surface
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Zhao-Hui Wang
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surface
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
34
|
Second Harmonic Generation for Moisture Monitoring in Dimethoxyethane at a Gold-Solvent Interface Using Plasmonic Structures. NANOMATERIALS 2019; 9:nano9121788. [PMID: 31888197 PMCID: PMC6955981 DOI: 10.3390/nano9121788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/27/2023]
Abstract
Second harmonic generation (SHG) is forbidden from most bulk metals because metals are characterized by centrosymmetric symmetry. Adsorption or desorption of molecules at the metal interface can break the symmetry and lead to SHG responses. Yet, the response is relatively low, and minute changes occurring at the interface, especially at solid/liquid interfaces, like in battery electrodes are difficult to assess. Herein, we use a plasmonic structure milled in a gold electrode to increase the overall SHG signal from the interface and gain information about small changes occurring at the interface. Using a specific homebuilt cell, we monitor changes at the liquid/electrode interface. Specifically, traces of water in dimethoxyethane (DME) have been detected following changes in the SHG responses from the plasmonic structures. We propose that by plasmonic structures this technique can be used for assessing minute changes occurring at solid/liquid interfaces such as battery electrodes.
Collapse
|
35
|
Zhang N, Zou Y, Tao L, Chen W, Zhou L, Liu Z, Zhou B, Huang G, Lin H, Wang S. Electrochemical Oxidation of 5‐Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angew Chem Int Ed Engl 2019; 58:15895-15903. [DOI: 10.1002/anie.201908722] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Nana Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Wei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Ling Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhijuan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bo Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Gen Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Hongzhen Lin
- i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
36
|
Zhang N, Zou Y, Tao L, Chen W, Zhou L, Liu Z, Zhou B, Huang G, Lin H, Wang S. Electrochemical Oxidation of 5‐Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908722] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nana Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Wei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Ling Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhijuan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bo Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Gen Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Hongzhen Lin
- i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics Provincial Hunan Key Laboratory for Graphene Materials and Devices College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
37
|
Ge A, Rudshteyn B, Videla PE, Miller CJ, Kubiak CP, Batista VS, Lian T. Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations. Acc Chem Res 2019; 52:1289-1300. [PMID: 31056907 DOI: 10.1021/acs.accounts.9b00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rhenium and manganese bipyridyl tricarbonyl complexes have attracted intense interest for their promising applications in photocatalytic and electrocatalytic CO2 reduction in both homogeneous and heterogenized systems. To date, there have been extensive studies on immobilizing Re catalysts on solid surfaces for higher catalytic efficiency, reduced catalyst loading, and convenient product separation. However, in order for the heterogenized molecular catalysts to achieve the combination of the best aspects of homogeneous and heterogeneous catalysts, it is essential to understand the fundamental physicochemical properties of such heterogeneous systems, such as surface-bound structures of Re/Mn catalysts, substrate-adsorbate interactions, and photoinduced or electric-field-induced effects on Re/Mn catalysts. For example, the surface may act to (un)block substrates, (un)trap charges, (de)stabilize particular intermediates (and thus affect scaling relations), and shift potentials in different directions, just as protein environments do. The close collaboration between the Lian, Batista, and Kubiak groups has resulted in an integrated approach to investigate how the semiconductor or metal surface affects the properties of the attached catalyst. Synthetic strategies to achieve stable and controlled attachment of Re/Mn molecular catalysts have been developed. Steady-state, time-resolved, and electrochemical vibrational sum-frequency generation (SFG) spectroscopic studies have provided insight into the effects of interfacial structures, ultrafast vibrational energy relaxation, and electric field on the Re/Mn catalysts, respectively. Various computational methods utilizing density functional theory (DFT) have been developed and applied to determine the molecular orientation by direct comparison to spectroscopy, unravel vibrational energy relaxation mechanisms, and quantify the interfacial electric field strength of the Re/Mn catalyst systems. This Account starts with a discussion of the recent progress in determining the surface-bound structures of Re catalysts on semiconductor and Au surfaces by a combined vibrational SFG and DFT study. The effects of crystal facet, length of anchoring ligands, and doping of the semiconductor on the bound structures of Re catalysts and of the substrate itself are discussed. This is followed by a summary of the progress in understanding the vibrational relaxation (VR) dynamics of Re catalysts covalently adsorbed on semiconductor and metal surfaces. The VR processes of Re catalysts on TiO2 films and TiO2 single crystals and a Re catalyst tethered on Au, particularly the role of electron-hole pair (EHP)-induced coupling on the VR of the Re catalyst bound on Au, are discussed. The Account also summarizes recent studies in quantifying the electric field strength experienced by the catalytically active site of the Re/Mn catalyst bound on a Au electrode based on a combined electrochemical SFG and DFT study of the Stark tuning of the CO stretching modes of these catalysts. Finally, future research directions on surface-immobilized molecular catalyst systems are discussed.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Benjamin Rudshteyn
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Pablo E. Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Christopher J. Miller
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
38
|
Wang Y, Lu YC. Isotopic Labeling Reveals Active Reaction Interfaces for Electrochemical Oxidation of Lithium Peroxide. Angew Chem Int Ed Engl 2019; 58:6962-6966. [PMID: 30903671 DOI: 10.1002/anie.201901350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 11/08/2022]
Abstract
The unresolved debate on the active reaction interface of electrochemical oxidation of lithium peroxide (Li2 O2 ) prevents rational electrode and catalyst design for lithium-oxygen (Li-O2 ) batteries. The reaction interface is studied by using isotope-labeling techniques combined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and on-line electrochemical mass spectroscopy (OEMS) under practical cell operation conditions. Isotopically labelled microsized Li2 O2 particles with an Li2 16 O2 /electrode interface and an Li2 18 O2 /electrolyte interface were fabricated. Upon oxidation, 18 O2 was evolved for the first quarter of the charge capacity followed by 16 O2 . These observations unambiguously demonstrate that oxygen loss starts from the Li2 O2 /electrolyte interface instead of the Li2 O2 /electrode interface. The Li2 O2 particles are in continuous contact with the catalyst/electrode, explaining why the solid catalyst is effective in oxidizing solid Li2 O2 without losing contact.
Collapse
Affiliation(s)
- Yu Wang
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong, SAR, China
| | - Yi-Chun Lu
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong, SAR, China
| |
Collapse
|
39
|
Wang Y, Lu Y. Isotopic Labeling Reveals Active Reaction Interfaces for Electrochemical Oxidation of Lithium Peroxide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- Electrochemical Energy and Interfaces LaboratoryDepartment of Mechanical and Automation EngineeringThe Chinese University of Hong Kong Shatin, N. T. 999077 Hong Kong, SAR China
| | - Yi‐Chun Lu
- Electrochemical Energy and Interfaces LaboratoryDepartment of Mechanical and Automation EngineeringThe Chinese University of Hong Kong Shatin, N. T. 999077 Hong Kong, SAR China
| |
Collapse
|