1
|
Li X, Huang L, Baryshnikov G, Ali A, Dai P, Yang Z, Sun Y, Dai C, Guo Z, Zhao Q, Zhang F, Zhu L. Thermally Activated Delayed Fluorescence-Guided Photodynamic Therapy Through Skeleton-Homologous Nanoparticles: a Rational Material Design for High-Efficient and High-Contrast Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500236. [PMID: 40317524 DOI: 10.1002/adma.202500236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Although photoluminescence imaging-guided photodynamic therapy (PDT) is promising for theranostics, it easily suffers from tissue autofluorescence and PDT photoproducts. To develop time-resolved imaging (TRI)-guided PDT with long-lived emission pathways, like thermally activated delayed fluorescence (TADF), is urgent but challenging, because of the triplet competition between radiative transition and reactive oxygen species (ROS) production. Herein, skeleton-homologous nanoparticles are designed and constructed to address this dilemma, thereby achieving in vivo TRI-guided PDT for the first time. This system is formed with a lipophilic TADF core (as a TRI probe) encapsulated by an amphiphilic photosensitizer shell (as the corona exposed to oxygen for PDT), both of which are derived from the same donor-acceptor skeleton to minimize phase separation in the single entity, and enable the same long-wavelength photoexcitation for TRI and PDT. The chloropropylamine group is helpful for endoplasmic reticulum targeting to enhance PDT upon minimizing the ROS transmission path. Synchronously, the TADF core exhibits a delayed fluorescence of 40 µs for a clear TRI. The NPs are eventually applied in vivo with a high signal-to-background ratio (45.25) and outstanding PDT effects in a mouse model of deep-seated kidney cancer. Such a material design is beneficial for developing high-efficient and high-contrast theranostic approaches.
Collapse
Affiliation(s)
- Xuping Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200033, P. R. China
| | - Liwen Huang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
| | - Gleb Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Amjad Ali
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Zhongxue Yang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Yuyu Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Chunling Dai
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Zhixiu Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Fan Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010070, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200033, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200033, P. R. China
| |
Collapse
|
2
|
Yang G, Hao S, Dan Y, Dang L, Zhang H, Zhang Q, Li A, Li MD, Yuan WZ. Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418042. [PMID: 39981778 DOI: 10.1002/adma.202418042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Organic materials with red persistent phosphorescence hold immense promise for biotechnology due to their excellent tissue permeability and high signal-to-background ratios. However, inefficient spin-orbit coupling, high triplet susceptibility, and narrow energy gapspromoted nonradiative deactivations, pose a formidable obstacle to achieving efficient red phosphorescence. This study addresses these challenges by introducing xanthone (Xan)-based host-guest systems. Utilizing polyaromatic hydrocarbons (PAHs) as guests, efficient red to near-infrared (NIR) phosphorescent materials with ultralong lifetimes and high quantum yields of up to 821 ms and 2.32%, respectively, are successfully developed. Ultrafast spectroscopy and theoretical studies reveal that Dexter energy transfer (DET) is the dominant mechanism responsible for red phosphorescence. This DET process between Xan and PAHs not only effectively utilizes the dark triplet state of the Xan host but also significantly enhances the triplet generation of the PAH guests, transforming them into potent phosphorescent luminophores. Furthermore, the inherent rigidity of Xan and PAHs endows the resulting materials with excellent phosphorescence performance, even at elevated temperatures (e.g., 423 K). This strategy, proven to be general, paves the way for designing efficient red/NIR phosphorescent materials through the DET mechanism, enabling their applications in molecular imaging and advanced high-temperature encryption.
Collapse
Affiliation(s)
- Guangxin Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Subin Hao
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No. 243 Daxue Rd., Jinping District, Shantou, 515063, China
| | - Yuxin Dan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Li Dang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No. 243 Daxue Rd., Jinping District, Shantou, 515063, China
| | - Han Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Anze Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, No. 243 Daxue Rd., Jinping District, Shantou, 515063, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| |
Collapse
|
3
|
Barman D, Rajamalli P, Bidkar AP, Sarmah T, Ghosh SS, Zysman-Colman E, Iyer PK. Modulation of Donor in Purely Organic Triplet Harvesting AIE-TADF Photosensitizer for Image-guided Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409533. [PMID: 39780649 DOI: 10.1002/smll.202409533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively. Further, different donor strengths and unique aggregations (H-, J- and X-type packings) greatly influence their color-tunable up-converted luminescence and endow them with superb dispersibility in water. The confocal microscopy-based cellular uptake study confirms the successful internalization of the nano-probes, while BTMCz enables the generation of reactive oxygen species (singlet oxygen) under white-light irradiation, enabling the efficient killing of cancer cells.
Collapse
Affiliation(s)
- Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Anil Parsram Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
| | - Tapashi Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
4
|
Chu Y, Jin X, Ji G, Li P, Xiao S, Wang W, Song Z. Rigid, α-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging. ACS NANO 2025; 19:680-690. [PMID: 39743728 DOI: 10.1021/acsnano.4c11719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration. The nanoprobes thus exhibited >600 nm microsecond emission even in the presence of oxygen, facilitating cellular and animal imaging with a high signal-to-background ratio (SBR) by minimizing the interferences from autofluorescence signals. We believe that this work highlights the impact of the supporting polymeric conformation on the TADF performance, offering insights for the future design of time-resolved imaging probes.
Collapse
Affiliation(s)
- Yang Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaoxiong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Pengfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shanshan Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wanying Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Nguyen SV, Planalp RP, Vashisth H. Role of sequence length and functionalization in interactions of bioconjugated peptides with mitomembranes. Biointerphases 2025; 20:011006. [PMID: 39998173 PMCID: PMC11906191 DOI: 10.1116/6.0004197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Cell-penetrating peptides are efficient tools for intracellular delivery of a variety of cargoes. In this study, we explored the effect of chain length, side chain chemistry, and the locations of conjugated molecules on the interaction between iron-chelating peptides and a mitochondrial-mimicking membrane. We report that a longer chain length enhanced peptide/membrane interactions, and conjugation at the N-terminus lowered the free-energy barrier for peptide translocation across the membrane. Peptides containing Phe side chains and those containing modified Phe (cyclohexane) side chains showed comparable peptide/membrane energetics and translocation energy barriers. Using steered molecular dynamics (SMD) simulations, we further probed the mechanistic details of translocation of each N-terminated peptide across the membrane and compared their metastable states. At a higher steering velocity, the peptide adopted a compact structure due to frequent π-π interactions among conjugated molecules, but at lower steering velocities, each N-terminated peptide adopted an extended structure. This structure allowed cationic residues to maximize their interactions with phosphate headgroups in the mitomembrane. The hydrophobic residues also formed interactions with the lipid acyl tails, facilitating the passage of peptides across the membrane with decreased free energy barriers. Our results highlight the significance of peptide chain length and conjugation in facilitating peptide transport across the membrane.
Collapse
Affiliation(s)
- Son V Nguyen
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824
| | - Roy P Planalp
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824
| | - Harish Vashisth
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, New Hampshire 03824
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, New Hampshire 03824
| |
Collapse
|
6
|
Zhao Z, Du R, Feng X, Wang Z, Wang T, Xie Z, Yuan H, Tan Y, Ou H. Regulating Triplet Excitons of Organic Luminophores for Promoted Bioimaging. Curr Med Chem 2025; 32:322-342. [PMID: 38468516 DOI: 10.2174/0109298673301552240305064259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Afterglow materials with organic room temperature phosphorescence (RTP) or thermally activated delayed fluorescence (TADF) exhibit significant potential in biological imaging due to their long lifetime. By utilizing time-resolved technology, interference from biological tissue fluorescence can be mitigated, enabling high signal-tobackground ratio imaging. Despite the continued emergence of individual reports on RTP or TADF in recent years, comprehensive reviews addressing these two materials are rare. Therefore, this review aims to provide a comprehensive overview of several typical molecular designs for organic RTP and TADF materials. It also explores the primary methods through which triplet excitons resist quenching by water and oxygen. Furthermore, we analyze the principal challenges faced by afterglow materials and discuss key directions for future research with the hope of inspiring developments in afterglow imaging.
Collapse
Affiliation(s)
- Zhipeng Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Rui Du
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Xiaodi Feng
- Qingdao Hiser Hospital Affiliated to Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No. 4, Renmin Rd., Shibei District, Qingdao, 266033, China
| | - Zhengshuo Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Tianjie Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Zongzhao Xie
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hua Yuan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Hanlin Ou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, No. 308, Ningxia Rd., Shinan District, Qingdao, 266071, China
| |
Collapse
|
7
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
8
|
Wu KJ, Sun W, Sun JM, Lu C, Sun N, Leung CH, Li Y, Wu C. An iridium(III) complex-based luminogenic probe for high-throughput screening of hydrogen sulfide donors in living cells. Commun Chem 2024; 7:263. [PMID: 39537892 PMCID: PMC11560935 DOI: 10.1038/s42004-024-01332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The scarcity of suitable high-throughput screening technology for hydrogen sulfide (H2S) donors has hampered the discovery of H2S donors. In this study, a long-lived cyclometalated iridium complex was rationally designed as a mitochondria-targeted H2S probe to monitor the real-time dynamic change of H2S. By using the time-resolved emission spectroscopy (TRES) technique, an anti-interference high-throughput screening system was developed to monitor H2S in living cells with decreased false negative results. As a proof-of-concept, three natural products were identified as potential H2S donors from a natural product library using the developed TRES probe. Notably, the discovery of allicin and diallyl trisulfide demonstrated the feasibility of this screening platform, while garlic-derived allyl methyl sulfide was explored as a H2S donor candidate. The results were further validated by a commercial assay. We anticipate this high-throughput platform could facilitate the discovery of H2S donors by discriminating the endogenous interfering fluorescence from biological systems.
Collapse
Affiliation(s)
- Ke-Jia Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wen Sun
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan, China
| | - Jian-Min Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chang Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yan Li
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan, China.
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
9
|
Sevilla-Pym A, Primrose WL, Luppi BT, Bergmann K, Hudson ZM. Organelle-Targeting Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Subcellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46133-46144. [PMID: 39166441 DOI: 10.1021/acsami.4c10311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Selective imaging of specific subcellular structures provides valuable information about the cellular microenvironment. Materials exhibiting thermally activated delayed fluorescence (TADF) are rapidly emerging as metal-free probes with long-lived emission for intracellular time-gated imaging applications. Polymers incorporating TADF emitters can self-assemble into luminescent nanoparticles, termed polymer dots (Pdots), and this strategy enables them to circumvent the limitations of commercial organelle trackers and small molecule TADF emitters. In this study, diblock copolymers comprised of a hydrophilic block containing organelle-targeting monomers and a hydrophobic TADF-active block were synthesized by ring-opening metathesis polymerization (ROMP). Oxanorbornene-based monomers incorporating morpholine and triphenylphosphonium groups for lysosome and mitochondria targeting, respectively, were also synthesized. ROMP by sequential addition yielded well-defined diblock copolymers with dispersities <1.28. To analyze the effect of tuning the hydrophilic corona on cellular viability and uptake, we prepared Pdots with poly(ethylene glycol) (PEG) and bis-guanidinium (BGN) coronas, resulting in limited and efficient cellular uptake, respectively. Red-emissive Pdots with BGN-based coronas and organelle-targeting functionality were obtained with quantum yields up to 12% in water under air. Colocalization analysis confirmed that lysosome and mitochondria labeling in live HeLa cells was accomplished within 2 h of incubation, affording Pearson's correlation coefficients of 0.37 and 0.70, respectively. The potential application of these Pdots for time-resolved imaging is highlighted by a proof of concept using time-gated spectroscopy, which effectively separates the delayed emission of the TADF Pdots from the background autofluorescence of biological serum.
Collapse
Affiliation(s)
- Angelica Sevilla-Pym
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Bruno T Luppi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
10
|
Li Z, Lu J, Li X. Recent Progress in Thermally Activated Delayed Fluorescence Photosensitizers for Photodynamic Therapy. Chemistry 2024; 30:e202401001. [PMID: 38742479 DOI: 10.1002/chem.202401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) is a rapidly growing discipline that is expected to become an encouraging noninvasive therapeutic strategy for cancer treatment. In the PDT process, an efficient intersystem crossing (ISC) process for photosensitizers from the singlet excited state (S1) to the triplet excited state (T1) is critical for the formation of cytotoxic reactive oxygen species and improvement of PDT performance. Thermally activated delayed fluorescence (TADF) molecules featuring an extremely small singlet-triplet energy gap and an efficient ISC process represent an enormous breakthrough for the PDT process. Consequently, the development of advanced TADF photosensitizers has become increasingly crucial and pressing. The most recent developments in TADF photosensitizers aimed at enhancing PDT efficiency for bio-applications are presented in this review. TADF photosensitizers with water dispersibility, targeting ability, activatable ability, and two-photon excitation properties are highlighted. Furthermore, the future challenges and perspectives of TADF photosensitizers in PDT are proposed.
Collapse
Affiliation(s)
- Ziqi Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Jianjun Lu
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Xuping Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010020, P.R. China
| |
Collapse
|
11
|
Luppi BT, Primrose WL, Hudson ZM. Polymer Dots with Delayed Fluorescence and Tunable Cellular Uptake for Photodynamic Therapy and Time-Gated Imaging. Angew Chem Int Ed Engl 2024; 63:e202400712. [PMID: 38439710 DOI: 10.1002/anie.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
By combining bioimaging and photodynamic therapy (PDT), it is possible to treat cancer through a theranostic approach with targeted action for minimum invasiveness and side effects. Thermally activated delayed fluorescence (TADF) probes have gained recent interest in theranostics due to their ability to generate singlet oxygen (1O2) while providing delayed emission that can be used in time-gated imaging. However, it is still challenging to design systems that simultaneously show (1) high contrast for imaging, (2) low dark toxicity but high phototoxicity and (3) tunable biological uptake. Here, we circumvent shortcomings of TADF systems by designing block copolymers and their corresponding semiconducting polymer dots (Pdots) that encapsulate a TADF dye in the core and expose an additional boron-dipyrromethene (BODIPY) oxygen sensitizer in the corona. This architecture provides orange-red luminescent particles (ΦPL up to 18 %) that can efficiently promote PDT (1O2 QY=42 %) of HeLa cells with very low photosensitizer loading (IC50 ~0.05-0.13 μg/mL after 30 min). Additionally, we design Pdots with tunable cellular uptake but similar PDT efficiencies using either polyethylene glycol or guanidinium-based coronas. Finally, we demonstrate that these Pdots can be used for time-gated imaging to effectively filter out background fluorescence from biological samples and improve image contrast.
Collapse
Affiliation(s)
- Bruno T Luppi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
12
|
Luo Z, Zhou Z, Pan Y, Zhu Z, Yuan H, Li Y, Feng S, Hong Y, Xu L. Cell-penetrating peptides noncovalently modified red phosphorescent nanoparticles for high-efficiency imaging. RSC Adv 2024; 14:11891-11899. [PMID: 38623284 PMCID: PMC11017195 DOI: 10.1039/d4ra01531b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
The application of long-lived phosphorescence probes in time-resolved luminescence imaging is limited by their low quantum yield in aqueous solutions. However, sensitization of thermally activated delayed fluorescence (TADF) materials can compensate for this limitation while addressing the issue of insufficient proportion of their own long lifetime. In this study, we utilized the characteristics of phosphorescence and TADF materials simultaneously by doping the receptor iridium complex PMD-Ir into the donor TADF polymer PCzDP-20 through donor-receptor doping method, and successfully prepared highly efficient red phosphorescent nanoparticles. The quantum yield of the nanoparticles obtained by this method reaches up to 30%, and the luminescence lifetime can reach several thousand nanoseconds. Additionally, due to the low concentration doping of PMD-Ir, the risk of transition metal toxicity is greatly reduced. Furthermore, we used non-covalent modification with amphiphilic cell-penetrating peptides (CPPs) to increase the cell membrane permeability of the nanoparticles. The CPPs modified nanoparticles achieve in vivo confocal imaging of zebrafish and intracellular time-resolved imaging by its significantly improved bioimaging capabilities. The functional nanoparticles designing method fully utilizes the characteristics of PMD-Ir, PCzDP-20, and CPPs, solving the problems of low quantum yield and poor membrane permeability of Ir-complex nanoparticles. This will greatly promote the development of time-resolved luminescence imaging.
Collapse
Affiliation(s)
- Zihan Luo
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Zhuofan Zhou
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Yiwen Pan
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Zece Zhu
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 P. R. China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 P. R. China
| | - Yutao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Shumin Feng
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Yi Hong
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| | - Li Xu
- Department of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 P. R. China
| |
Collapse
|
13
|
Lee KW, Wan Y, Huang Z, Zhao Q, Li S, Lee CS. Organic Optoelectronic Materials: A Rising Star of Bioimaging and Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306492. [PMID: 37595570 DOI: 10.1002/adma.202306492] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Recently, many organic optoelectronic materials (OOMs), especially those used in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs), are explored for biomedical applications including imaging and photoexcited therapies. In this review, recently developed OOMs for fluorescence imaging, photoacoustic imaging, photothermal therapy, and photodynamic therapy, are summarized. Relationships between their molecular structures, nanoaggregation structures, photophysical mechanisms, and properties for various biomedical applications are discussed. Mainly four kinds of OOMs are covered: thermally activated delayed fluorescence materials in OLEDs, conjugated small molecules and polymers in OSCs, and charge-transfer complexes in OFETs. Based on the OOMs unique optical properties, including excitation light wavelength and exciton dynamics, they are respectively exploited for suitable biomedical applications. This review is intended to serve as a bridge between researchers in the area of organic optoelectronic devices and those in the area of biomedical applications. Moreover, it provides guidance for selecting or modifying OOMs for high-performance biomedical uses. Current challenges and future perspectives of OOMs are also discussed with the hope of inspiring further development of OOMs for efficient biomedical applications.
Collapse
Affiliation(s)
- Ka-Wai Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
14
|
Meng Y, Gao J, Zhou P, Qin X, Tian M, Wang X, Zhou C, Li K, Huang F, Cao Y. NIR-II Conjugated Electrolytes as Biomimetics of Lipid Bilayers for In Vivo Liposome Tracking. Angew Chem Int Ed Engl 2024; 63:e202318632. [PMID: 38327029 DOI: 10.1002/anie.202318632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Liposomes serve as promising and versatile vehicles for drug delivery. Tracking these nanosized vesicles, particularly in vivo, is crucial for understanding their pharmacokinetics. This study introduces the design and synthesis of three new conjugated electrolyte (CE) molecules, which emit in the second near-infrared window (NIR-II), facilitating deeper tissue penetration. Additionally, these CEs, acting as biomimetics of lipid bilayers, demonstrate superior compatibility with lipid membranes compared to commonly used carbocyanine dyes like DiR. To counteract the aggregation-caused quenching effect, CEs employ a twisted backbone, as such their fluorescence intensities can effectively enhance after a fluorophore multimerization strategy. Notably, a "passive" method was employed to integrate CEs into liposomes during the liposome formation, and membrane incorporation efficiency was significantly promoted to nearly 100%. To validate the in vivo tracking capability, the CE-containing liposomes were functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides, serving as tumor-targeting ligands. Clear fluorescent images visualizing tumor site in living mice were captured by collecting the NIR-II emission. Uniquely, these CEs exhibit additional emission peak in visible region, enabling in vitro subcellular analysis using routine confocal microscopy. These results underscore the potential of CEs as a new-generation of membrane-targeting probes to facilitate the liposome-based medicine research.
Collapse
Affiliation(s)
- Yingying Meng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peirong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xudong Qin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Miao Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Cheng Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
15
|
Nguyen SV, Levintov L, Planalp RP, Vashisth H. Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane. Bioconjug Chem 2024; 35:371-380. [PMID: 38404183 PMCID: PMC10961729 DOI: 10.1021/acs.bioconjchem.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π-π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.
Collapse
Affiliation(s)
- Son V. Nguyen
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Lev Levintov
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Roy P. Planalp
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
16
|
Nongthombam GS, Barman D, Iyer PK. Through-Space Charge-Transfer-Based Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence in Fused 2H-Chromene Coumarin Congener Generating ROS for Antiviral (SARS-CoV-2) Approach. ACS APPLIED BIO MATERIALS 2024; 7:1899-1909. [PMID: 38417048 DOI: 10.1021/acsabm.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Harvesting triplets in metal-free organic frameworks at ambient conditions and finding appropriate applications are a formidable challenge. Herein, we report a donor-acceptor-type system composed of carbazole and fused 2H-chromene coumarin derivative, exhibiting triplet harvesting thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) behavior in solid and aggregated states, respectively. The presence of an sp3 linker and the introduction of a selected cyano/ester group in the acceptor result in twisted D-A architectures, further assisting in the suppression of nonradiative deactivation via through-space charge transfer and H-bonding interactions, fulfilling the stringent requirements for the simultaneous process of TADF and AIE, successively. Experimental and theoretical results revealed that the participation of the singlet/triplet charge transfer (1CT/3CT) and the higher lying hybrid triplet locally excited charge-transfer state (3LE + 3CT) leads to an efficient TADF. Both of the synthesized AIE-TADF congeners actively participated in the generation of reactive oxygen species (ROS) in nanoaggregate forms and were further explored computationally for antiviral prospects as inhibitors of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
| | - Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
18
|
Das S, Batra A, Kundu S, Sharma R, Patra A. Unveiling autophagy and aging through time-resolved imaging of lysosomal polarity with a delayed fluorescent emitter. Chem Sci 2023; 15:102-112. [PMID: 38131076 PMCID: PMC10732132 DOI: 10.1039/d3sc02450d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023] Open
Abstract
Detecting the lysosomal microenvironmental changes like viscosity, pH, and polarity during their dynamic interorganelle interactions remains an intriguing area that facilitates the elucidation of cellular homeostasis. The subtle variation of physiological conditions can be assessed by deciphering the lysosomal microenvironments during lysosome-organelle interactions, closely related to autophagic pathways leading to various cellular disorders. Herein, we shed light on the dynamic lysosomal polarity in live cells and a multicellular model organism, Caenorhabditis elegans (C. elegans), through time-resolved imaging employing a thermally activated delayed fluorescent probe, DC-Lyso. The highly photostable and cytocompatible DC-Lyso rapidly labels the lysosomes (within 1 min of incubation) and exhibits red luminescence and polarity-sensitive long lifetime under the cellular environment. The distinct variation in the fluorescence lifetime of DC-Lyso suggests an increase in local polarity during the lysosomal dynamics and interorganelle interactions, including lipophagy and mitophagy. The lifetime imaging analysis reveals increasing lysosomal polarity as an indicator for probing the successive development of C. elegans during aging. The in vivo microsecond timescale imaging of various cancerous cell lines and C. elegans, as presented here, therefore, expands the scope of delayed fluorescent emitters for unveiling complex biological processes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Abhilasha Batra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
19
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
20
|
Asrorov AM, Wang H, Zhang M, Wang Y, He Y, Sharipov M, Yili A, Huang Y. Cell penetrating peptides: Highlighting points in cancer therapy. Drug Dev Res 2023; 84:1037-1071. [PMID: 37195405 DOI: 10.1002/ddr.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
Cell-penetrating peptides (CPPs), first identified in HIV a few decades ago, deserved great attention in the last two decades; especially to support the penetration of anticancer drug means. In the drug delivery discipline, they have been involved in various approaches from mixing with hydrophobic drugs to the use of genetically conjugated proteins. The early classification as cationic and amphipathic CPPs has been extended to a few more classes such as hydrophobic and cyclic CPPs so far. Developing potential sequences utilized almost all methods of modern science: choosing high-efficiency peptides from natural protein sequences, sequence-based comparison, amino acid substitution, obtaining chemical and/or genetic conjugations, in silico approaches, in vitro analysis, animal experiments, etc. The bottleneck effect in this discipline reveals the complications that modern science faces in drug delivery research. Most CPP-based drug delivery systems (DDSs) efficiently inhibited tumor volume and weight in mice, but only in rare cases reduced their levels and continued further processes. The integration of chemical synthesis into the development of CPPs made a significant contribution and even reached the clinical stage as a diagnostic tool. But constrained efforts still face serious problems in overcoming biobarriers to reach further achievements. In this work, we reviewed the roles of CPPs in anticancer drug delivery, focusing on their amino acid composition and sequences. As the most suitable point, we relied on significant changes in tumor volume in mice resulting from CPPs. We provide a review of individual CPPs and/or their derivatives in a separate subsection.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
- Department of Natural Substances Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mirkomil Sharipov
- Institute of Bioorganic Chemistry, AS of Uzbekistan, Tashkent, Uzbekistan
| | - Abulimiti Yili
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, China
| |
Collapse
|
21
|
Deng Q, Zhu Z, Shu X. Dual-step reconstruction algorithm to improve microscopy resolution by deep learning. APPLIED OPTICS 2023; 62:3439-3444. [PMID: 37132845 DOI: 10.1364/ao.476488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deep learning plays an important role in the field of machine learning, which has been developed and used in a wide range of areas. Many deep-learning-based methods have been proposed to improve image resolution, most of which are based on image-to-image translation algorithms. The performance of neural networks used to achieve image translation always depends on the feature difference between input and output images. Therefore, these deep-learning-based methods sometimes do not have good performance when the feature differences between low-resolution and high-resolution images are too large. In this paper, we introduce a dual-step neural network algorithm to improve image resolution step by step. Compared with conventional deep-learning methods that use input and output images with huge differences for training, this algorithm learning from input and output images with fewer differences can improve the performance of neural networks. This method was used to reconstruct high-resolution images of fluorescence nanoparticles in cells.
Collapse
|
22
|
Liu Y, Zhu S, Fan J, Guo W, Min Y, Jiang X, Li J. Photo-Cross-Linked Polymeric Dispersants of Comb-Shaped Benzophenone-Containing Poly(ether amine). ACS APPLIED MATERIALS & INTERFACES 2023; 15:19470-19479. [PMID: 37023404 DOI: 10.1021/acsami.3c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Efficient dispersion of nanoparticles (NPs) is a crucial challenge in the preparation and application of composites that contain NPs, particularly in coatings, inks, and related materials. Physical adsorption and chemical modification are the two common methods used to disperse NPs. However, the former suffers from desorption, and the latter is more specific and has limited versatility. To address these issues, we developed a novel photo-cross-linked polymeric dispersant, comb-shaped benzophenone-containing poly(ether amine) (bPEA), using a one-pot nucleophilic/cyclic-opening addition reaction. The results demonstrated that the bPEA dispersant forms a dense and stable shell on the surface of pigment NPs through physical adsorption and subsequent chemical photo-cross-linking, which effectively overcome the drawbacks of the desorption occurred in physical adsorption and the specificity of the chemical modification. By means of the dispersing effect of bPEA, the obtained pigment dispersions show high solvent, thermal, and pH stability without flocculation during storage. Moreover, the NPs dispersants show good compatibility with screen printing, coating, and 3D printing, endowing the ornamental products with high uniformity, color fastness, and less color shading. These properties make bPEA dispersants ideal candidates in fabrication dispersions of other NPs.
Collapse
Affiliation(s)
- Yanchi Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanfeng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenyao Guo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Dong X, Li R, Zheng Y, Huo J, Cao Y, Shi H. Synthesis, photoluminescence and electroluminescence properties of a new blue emitter with aggregation-induced emission and thermally activated delayed fluorescence characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122344. [PMID: 36682256 DOI: 10.1016/j.saa.2023.122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/17/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The emitters with aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) characteristics are in high demand in organic light-emitting diodes (OLEDs) owing to their strong fluorescence and high exciton utilization under electrical excitation. Herein, a blue emitter, 10-(3-((3,5-di(9H-carbazol-9-yl)phenyl)sulfonyl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (m-CZ-DPS-DMAC), was synthesized by incorporating carbazole as skeleton, acridine as electron donor, and diphenyl sulfone as electron acceptor. m-CZ-DPS-DMAC emits weak fluorescence in good solvent, while it is obviously enhanced in the aggregate state, which is typical of AIE molecules. Meanwhile, the energy levels of the singlet and triplet states (ΔEST) of the molecule is relatively small, and it also exhibits obvious temperature dependence and oxygen sensitivity, which directly proves its TADF properties. In view of the above properties, a series of non-doped and doped OLEDs were prepared using m-CZ-DPS-DMAC as light-emitting layers. Among them, non-doped OLED (device A) displays blue emission (488 nm) with the turn-on voltage (Von), the maximum luminance (Lmax), the maximum current efficiency (CEmax), the maximum power efficiency (PEmax) and the maximum external quantum efficiency (EQEmax) of 2.6 V, 3460 cd m-2, 26.09 cd A-1, 29.26 lm W-1 and 10.05%, respectively. Doped OLED (device C) constructed based on m-CZ-DPS-DMAC doped 30% in DPEPO shows the satisfactory performance with the maximum emission peak of 486 nm, the Von of 2.8 V, the Lmax of 4571 cd m-2, the CEmax of 21.37 cd A-1, the PEmax of 22.37 lm W-1, and the EQEmax of 9.44%, respectively. The outstanding performance of m-CZ-DPS-DMAC proves that it is a potential material for designing blue OLEDs with AIE-TADF properties.
Collapse
Affiliation(s)
- Xiaorui Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ronghua Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yanan Zheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinnan Huo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yinpeng Cao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Heping Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
24
|
Zhang X, Zhao X, Ye K, Zhao J. Detection of the Dark States in Thermally Activated Delayed Fluorescence (TADF) Process of Electron Donor-Acceptor Dyads: Insights from Optical Transient Absorption Spectroscopy. Chemistry 2023; 29:e202203737. [PMID: 36468907 DOI: 10.1002/chem.202203737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The photophysical processes involved in the electron donor-acceptor thermally activated delayed fluorescence (TADF) emitters are complicated and controversial. The recent consensus is that at least three states are involved, i. e. the singlet charge transfer state (1 CT), the triplet localized excited state (3 LE) and the triplet CT state (3 CT). It is clear the very often used steady state and time-resolved luminescence spectroscopic methods are unable to present direct evidence for the dark states, i. e. the 3 LE and 3 CT states, as well as the interconversion of these states. Concerning this aspect, the femtosecond-nanosecond transient absorption spectroscopic methods are in particular interests. Both the emissive state and the dark state can be detected in these spectra, and interconversion of the states involved in TADF process can be also revealed. This review article focuses on the recent development of using the transient absorption spectra to study the photophysics of the TADF emitters.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xiaoyu Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| | - Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| |
Collapse
|
25
|
Shen Y, Yuan L, Wu G, Yuan W, Cheng Z, Yan J, Zhang J, Tao Y, Yu Z. Microdroplet-Facilitated Assembly of Thermally Activated Delayed Fluorescence-Encoded Microparticles with Non-interfering Color Signals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:591-598. [PMID: 36542734 DOI: 10.1021/acsami.2c18870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Encoded microparticles (EMPs) have shown demonstrative value for multiplexed high-throughput bioassays such as drug discovery and diagnostics. Herein, we propose for the first time the incorporation of thermally activated delayed fluorescence (TADF) dyes with low-cost, heavy metal-free, and long-lived luminescence properties into polymer matrices via a microfluidic droplet-facilitated assembly technique. Benefiting from the uniform droplet template sizes and polymer-encapsulated structures, the resulting composite EMPs are highly monodispersed, efficiently shield TADF dyes from singlet oxygen, well preserve TADF emission, and greatly increase the delayed fluorescence lifetime. Furthermore, by combining with phase separation of polymer blends in the drying droplets, TADF dyes with distinct luminescent colors can be spatially separated within each EMP. It eliminates optical signal interference and generates multiple fluorescence colors in a compact system. Additionally, in vitro studies reveal that the resulting EMPs show good biocompatibility and allow cells to adhere and grow on the surface, thereby making them promising optically EMPs for biolabeling.
Collapse
Affiliation(s)
- Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Lingfeng Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Wenbo Yuan
- Key Lab for Flexible Electronics & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Zhengxiang Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Jing Yan
- Holosensor Medical Ltd., Building 12, 1798 West Zhonghuayuan Road, Suzhou City, Jiangsu 215300, China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
26
|
Li Y, Baryshnikov GV, Siddique F, Wei P, Wu H, Yi T. Vibration‐Regulated Multi‐State Long‐Lived Emission from Star‐Shaped Molecules. Angew Chem Int Ed Engl 2022; 61:e202213051. [DOI: 10.1002/anie.202213051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yiran Li
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Chemistry Fudan University Shanghai 200433 China
| | - Glib V. Baryshnikov
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Farhan Siddique
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
27
|
Advancing biomedical applications via manipulating intersystem crossing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Mayder DM, Christopherson CJ, Primrose WL, Lin ASM, Hudson ZM. Polymer dots and glassy organic dots using dibenzodipyridophenazine dyes as water-dispersible TADF probes for cellular imaging. J Mater Chem B 2022; 10:6496-6506. [PMID: 35979840 DOI: 10.1039/d2tb01252a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence imaging of living cells is key to better understanding cellular morphology and biological processes. Water-dispersible nanoparticles exhibiting thermally activated delayed fluorescence (TADF) have recently emerged as useful probes for time-resolved fluorescence imaging (TRFI), circumventing interference from biological autofluorescence. Many existing approaches, however, require TADF dyes with specific structural features, precluding many high-performance TADF materials from being used in this application. Here, we describe the synthesis of two TADF emitters based on the rigid and strongly electron-withdrawing dibenzo[a,c]dipyrido[3,2-h:2'-3'-j]phenazine-12-yl (BPPZ) motif, and demonstrate two parallel approaches for the encapsulation of these fluorophores to yield water-dispersible nanoparticles suitable for TRFI. First, fluorescent polymer dots (Pdots) were formed by dye encapsulation within cell-penetrating amphiphilic copolymers. Glassy organic nanoparticles (g-Odots) were also prepared, giving nanoparticles with higher photoluminescence quantum yields and improved colour purity. Both approaches yielded nanoparticles suitable for imaging, with reasonable uptake and cytotoxicity on the timescale of standard imaging experiments using human cervical (HeLa) and liver (HepG2) cancer cell lines. This work demonstrates two flexible strategies for preparing water-dispersible TADF nanoparticles for TRFI, both of which should be readily adaptable to nearly any existing hydrophobic TADF dye.
Collapse
Affiliation(s)
- Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Cheyenne J Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Angela S-M Lin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| |
Collapse
|
29
|
Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater 2022; 13:125. [PMID: 36135560 PMCID: PMC9504125 DOI: 10.3390/jfb13030125] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
Diseases affecting the central nervous system (CNS) are among the most disabling and the most difficult to cure due to the presence of the blood-brain barrier (BBB) which represents an impediment from a therapeutic and diagnostic point of view as it limits the entry of most drugs. The use of biocompatible polymer nanoparticles (NPs) as vehicles for targeted drug delivery to the brain arouses increasing interest. However, the route of administration of these vectors remains critical as the drug must be delivered without being degraded to achieve a therapeutic effect. An innovative approach for the administration of drugs to the brain using polymeric carriers is represented by the nose-to-brain (NtB) route which involves the administration of the therapeutic molecule through the neuro-olfactory epithelium of the nasal mucosa. Nasal administration is a non-invasive approach that allows the rapid transport of the drug directly to the brain and minimizes its systemic exposure. To date, many studies involve the use of polymer NPs for the NtB transport of drugs to the brain for the treatment of a whole series of disabling neurological diseases for which, as of today, there is no cure. In this review, various types of biodegradable polymer NPs for drug delivery to the brain through the NtB route are discussed and particular attention is devoted to the treatment of neurological diseases such as Glioblastoma and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
30
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
31
|
Wiefermann J, Schmeinck P, Ganter C, Müller TJJ. Highly Deep‐Blue Luminescent Twisted Diphenylamino Terphenyl Emitters by Bromine‐Lithium Exchange Borylation‐Suzuki Sequence. Chemistry 2022; 28:e202200576. [PMID: 35298846 PMCID: PMC9322521 DOI: 10.1002/chem.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Four novel intensively blue luminescent chromophores were readily synthesized by bromine‐lithium exchange borylation‐Suzuki (BLEBS) sequence in moderate to good yields. Their electronic properties were studied by absorption and emission spectroscopy and quantum chemical calculations revealing deep‐blue emission in solution as well as in the solid state and upon embedding into a PMMA (polymethylmethacrylate) matrix with small FWHM (full width at half maximum) values and CIE y values smaller than 0.1. Moreover, high photoluminescence quantum yields (PLQY), partially close to unity, are found.
Collapse
Affiliation(s)
- Julia Wiefermann
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| | - Philipp Schmeinck
- Institut für Anorganische Chemie und Strukturchemie I Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Christian Ganter
- Institut für Anorganische Chemie und Strukturchemie I Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| |
Collapse
|
32
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
33
|
Song F, Ou X, Chou TY, Liu J, Gao H, Zhang R, Huang X, Zhao Z, Sun J, Chen S, Lam JWY, Tang BZ. Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS NANO 2022; 16:6176-6184. [PMID: 35318852 DOI: 10.1021/acsnano.1c11661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microviscosity is a fundamental parameter in the biophysics of life science and governs numerous cellular processes. Thus, the development of real-time quantitative monitoring of microviscosity inside cells is important. The traditional probes for detecting microviscosity via time-resolved luminescence imaging (TRLI) are generally disturbed by autofluorescence or surrounding oxygen in cells. Herein, we developed loose packing nanoaggregates with aggregation-induced delayed fluorescence (FKP-POA and FKP-PTA) and free from the effect of oxygen and autofluorescence for viscosity mapping via TRLI. The feasibility of FKP-PTA nanoparticles (NPs) for microviscosity mapping through TRLI was demonstrated by monitoring the variation of microviscosity inside HepG2 cancer cells, which demonstrated a value change from 14.9 cP to 216.9 cP during the apoptosis. This indicates that FKP-PTA NP can be used as a probe for cellular microviscosity mapping to help people to understand the physiologically dynamic microenvironment. The present results are expected to promote the advancement of diagnostic and therapeutic methods to cope with related diseases.
Collapse
Affiliation(s)
- Fengyan Song
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Department of Chemical Biology, School of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Tsu Yu Chou
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hui Gao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolin Huang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
34
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 02/06/2023]
Abstract
A supramolecular strategy to construct thermally activated delayed fluorescence (TADF) materials through host-guest charge transfer interactions was proposed. Consequently, a new class of macrocycle namely calix[3]acridan was conveniently synthesized in 90 % yield. The host-guest cocrystal formed by calix[3]acridan and 1,2-dicyanobenzene exhibited efficient TADF properties due to intense intermolecular charge transfer interactions. Moreover, the spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.014 eV and hence guaranteed an efficient reverse intersystem crossing for TADF. Especially, a high photoluminescence quantum yield of 70 % was achieved, and it represents the highest value among the reported intermolecular donor-acceptor TADF materials.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Qian W, Zuo M, Niu P, Hu XY, Wang L. The construction of aggregation-induced charge transfer emission systems in aqueous solution directed by supramolecular strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Jin Y, Yan R, Wang S, Wang X, Zhang X, Tang Y. Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination. Mikrochim Acta 2022; 189:96. [PMID: 35147788 DOI: 10.1007/s00604-022-05182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
A novel fluorescence platform was fabricated for enrofloxacin determination by using cDNA-modified dipeptide fluorescence nanoparticles (FDNP-cDNA) and aptamer-modified magnetic Fe3O4 nanoparticles (Fe3O4-Apt). The FDNP were prepared via tryptophan-phenylalanine self-assembling. When magnetic Fe3O4-Apt incubated with standard solution or sample extracts, the target enrofloxacin was selectively captured by the aptamer on the surface of the Fe3O4 nanoparticles. After removing interference by washing with phosphate-buffered saline, the FDNP-cDNA was added, which can bind to the aptamer on the surface of the Fe3O4 nanoparticles not occupied by the analyte. The higher the concentration of the target enrofloxacin in the standard or sample solution is, the less the FDNP-cDNA can be bound with the Fe3O4 nanoparticles, and the more the FDNP-cDNA can be observed in the supernatant. Fluorescence intensity (Ex/Em = 310/380 nm) increased linearly in the enrofloxacin concentration range 0.70 to 10.0 ng/mL with a detection limit of 0.26 ng/mL (S/N = 3). Good recoveries (88.17-99.30%) were obtained in spiked lake water, chicken, and eel samples with relative standard deviation of 2.7-6.2% (n = 3).
Collapse
Affiliation(s)
- Yuting Jin
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China
| | - Rongfang Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
37
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan‐Based Host−Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He-Ye Zhou
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Da-Wei Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Meng Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Chuan-Feng Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
38
|
Fang F, Yuan Y, Wan Y, Li J, Song Y, Chen WC, Zhao D, Chi Y, Li M, Lee CS, Zhang J. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106215. [PMID: 35018711 DOI: 10.1002/smll.202106215] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials with extremely small singlet-triplet energy offsets have opened new horizons for the development of metal-free photosensitizers for photodynamic therapy (PDT) in recent years. However, the exploration of near-infrared (NIR) TADF emitters for efficient two-photon-excited (TPE) PDT is still a formidable challenge, thus it has not been reported yet. In this study, purely organic photosensitizers (PSs) based on the TADF nanoparticles (NIR-TADF NPs) are designed for efficient TPE-PDT, which show excellent singlet oxygen generation ability. Thanks to the intrinsic two-photon excitation and NIR emission characteristics, the NIR-TADF NPs demonstrate promising potential in both single-photon-excited (SPE) and TPE NIR imaging. More importantly, the anti-tumor efficiency and biosafety of TADF-based PSs at the small animal level are confirmed in A549 tumor xenograft models under TPE laser irradiance, which will facilitate the practical biomedical applications of TADF materials. This work not only provides a promising strategy to develop metal-free PSs, but also expands the applied scope of TADF-based nanotherapeutics and advances their possible clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yi Yuan
- Department of Materials Science and Engineering, and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jing Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yun Chi
- Department of Materials Science and Engineering, and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
39
|
Zhu A, Yu J, Zhou T, Zhang K, Qiu S, Ban X, Wang Y, Shen Z, Da S, Gao X. Rational design of multi-functional thermally activated delayed fluorescence emitters for both sensor and OLED applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-conjugated linking as a molecular design strategy to construct multifunctional structures to achieve the TADF feature and sensor properties in a single system.
Collapse
Affiliation(s)
- Aiyun Zhu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Jianmin Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Tao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Kaizhi Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Suyu Qiu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Lianyungang, Jiangsu, 222005, China
| | - Yuanchu Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Zhouzhou Shen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shiji Da
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, Jiangsu, 222005, China
| |
Collapse
|
40
|
Zhu Z, Wang Q, Chen X, Wang Q, Yan C, Zhao X, Zhao W, Zhu WH. An Enzyme-Activatable Aggregation-Induced-Emission Probe: Intraoperative Pathological Fluorescent Diagnosis of Pancreatic Cancer via Specific Cathepsin E. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107444. [PMID: 34693566 DOI: 10.1002/adma.202107444] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Pancreatic cancer (PC) is one of the most devastating malignant tumors. However, fluorescence probes for early clinical diagnosis of PC often encounter difficulties in accuracy and penetrability. In this work, an enzyme-activated aggregation-induced-emission (AIE) probe, QM-HSP-CPP, for high-contrast fluorescence diagnosis of PC is developed by monitoring specific overexpressed enzyme Cathepsin E (CTSE). The probe is composed of an AIE fluorophore QM-COOH (QM = quinoline-malononitrile), CTSE-triggered hydrophobic peptide (HSP), and hydrophilic biocompatible cell penetrating peptide (CPP). The CPP unit can well-modulate the molecular dispersion properties, giving initial fluorescence-off state in the aqueous biosystem, thus endowing high signal-to-noise ratio, and finally overcoming the poor targeting selectivity of traditional AIE probes. CPP can ensure cell/tissue penetrating ability, thus allowing on-site monitoring of endogenous CTSE in PC cells, tissues, and living animal models. When the QM-HSP-CPP probe is specifically cleaved by CTSE, it can generate AIE signals in situ with high-specificity and long-term tracking ability, and successfully achieve intraoperative diagnosis of human PC sections, tracking PC in heterotopic nude mice models. The CTSE-enzyme-triggered AIEgens' liberation strategy improves accuracy and addresses the penetration problem simultaneously, which can expand the database of multitudinous biocompatible AIE-active probes, especially for establishing intraoperative pathological fluorescent diagnosis.
Collapse
Affiliation(s)
- Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chengxu Yan
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaolei Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijun Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
41
|
Liu XT, Hua W, Nie HX, Chen M, Chang Z, Bu XH. Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF. Natl Sci Rev 2021; 9:nwab222. [PMID: 36105943 PMCID: PMC9466880 DOI: 10.1093/nsr/nwab222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors (D) were confined to a cage-based porous MOF host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor (A) as the ligand. The spatially-separated D and A molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small singlet-triplet excited states energy splitting (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem crossing mechanism with S1 was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO + 1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.
Collapse
Affiliation(s)
- Xiao-Ting Liu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, Nanjing210094, China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing100871, China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
42
|
Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102970. [PMID: 34705318 PMCID: PMC8693050 DOI: 10.1002/advs.202102970] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The development of simple, efficient, and biocompatible organic luminescent molecules is of great significance to the clinical transformation of biomaterials. In recent years, purely organic thermally activated delayed fluorescence (TADF) materials with an extremely small single-triplet energy gap (ΔEST ) have been considered as the most promising new-generation electroluminescence emitters, which is an enormous breakthrough in organic optoelectronics. By merits of the unique photophysical properties, high structure flexibility, and reduced health risks, such metal-free TADF luminophores have attracted tremendous attention in biomedical fields, including conventional fluorescence imaging, time-resolved imaging and sensing, and photodynamic therapy. However, there is currently no systematic summary of the TADF materials for biomedical applications, which is presented in this review. Besides a brief introduction of the major developments of TADF material, the typical TADF mechanisms and fundamental principles on design strategies of TADF molecules and nanomaterials are subsequently described. Importantly, a specific emphasis is placed on the discussion of TADF materials for various biomedical applications. Finally, the authors make a forecast of the remaining challenges and future developments. This review provides insightful perspectives and clear prospects towards the rapid development of TADF materials in biomedicine, which will be highly valuable to exploit new luminescent materials.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
43
|
Du K, Xia Q, Sun J, Feng F. Visible Light and Glutathione Dually Responsive Delivery of a Polymer-Conjugated Temozolomide Intermediate for Glioblastoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55851-55861. [PMID: 34788006 DOI: 10.1021/acsami.1c16962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temozolomide (TMZ) is a prodrug of 5-(3-methyltriazene-1-yl)imidazole-4-carboxamide (MTIC, short-lived) and used as a first-line therapy drug for glioblastoma multiforme (GBM). However, little progress has been made in regulating the kinetics of TMZ to MTIC degradation to improve the therapeutic effect, particularly in the case of TMZ-resistant GBM. In this work, we introduced a strategy to cage MTIC by N-acylation of the triazene moiety to boost the MTIC stability, designed a diblock copolymer-based MTIC prodrug installed with a disulfide linkage, and achieved self-assembled polymer micelles without the concern of MTIC leakage under physiological conditions. Polymer micelles could be induced to disassemble by stimuli factors such as glutathione (GSH) and visible light irradiation through thiol/sulfide exchange and homolytic sulfide scission mechanisms, which contributed to MTIC release in GSH-dependent and GSH-independent pathways. The in vitro results demonstrated that microenvironment-responsive polymeric micelles benefited the suppression of both TMZ-sensitive and TMZ-resistant GBM cells. The chemistry of polymer-MTIC prodrug provided a new option for TMZ-based glioma treatment.
Collapse
Affiliation(s)
- Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiuyu Xia
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Sun
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
44
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
45
|
Feng W, Huang Z, Kang X, Zhao D, Li H, Li G, Xu J, Wang X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021; 22:4871-4882. [PMID: 34636237 DOI: 10.1021/acs.biomac.1c01164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing safe and efficient delivery vehicles for chemotherapeutic drugs has been a long-standing demanding. Amino acid-based polymers are promising candidates to address this challenge due to their excellent biocompatibility and biodegradation. Herein, a series of well-defined amphiphilic block copolymers were prepared by PET-RAFT polymerization of N-acryloyl amino acid monomers. By altering monomer types and the block ratio of the copolymers, the copolymers self-assembled into nanostructures with various morphologies, including spheres, rod-like, fibers, and lamellae via hydrophobic and hydrogen bonding interactions. Significantly, the nanoparticles (NPs) assembled from amphiphilic block copolymers poly(N-acryloyl-valine)-b-poly(N-acryloyl-aspartic acid) (PV-b-PD) displayed an appealing cargo loading efficiency (21.8-32.6%) for a broad range of drugs (paclitaxel, doxorubicin (DOX), cisplatin, etc.) due to strong interactions. The DOX-loaded PV-b-PD NPs exhibited rapid cellular uptake (within 1 min) and a great therapeutic performance. These drug delivery systems provide new insights for regulating the controlled morphologies and improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixuan Huang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
46
|
Zhang W, Gong C, Chen Z, Li M, Li Y, Gao J. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer. J Nanobiotechnology 2021; 19:339. [PMID: 34689761 PMCID: PMC8543810 DOI: 10.1186/s12951-021-01085-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Biomimetic nanotechnology-based RNA interference (RNAi) has been successful in improving theranostic efficacy in malignant tumors. Its integration with hybrid biomimetic membranes made of natural cell membranes fused with liposomal membranes is mutually beneficial and extends their biofunctions. However, limited research has focused on engineering such biomimetics to endow them with unique properties and functions, in particular, those essential for a "smart" drug delivery system, such as a tumor microenvironment (TME)-activated multifunctional biomimetic nanoplatform. RESULTS Herein, we utilized an integrated hybrid nanovesicle composed of cancer cell membranes (Cm) and matrix metallopeptidase 9 (MMP-9)-switchable peptide-based charge-reversal liposome membranes (Lipm) to coat lipoic acid-modified polypeptides (LC) co-loaded with phosphoglycerate mutase 1 (PGAM1) siRNA (siPGAM1) and DTX. The nanovesicle presented a negatively charged coating (citraconic anhydride-grafted poly-L-lysine, PC) in the middle layer for pH-triggered charge conversion functionalization. The established chemotherapeutic drug (DTX) co-delivery system CLip-PC@CO-LC nanoparticles (NPs) have a particle size of ~ 193 nm and present the same surface proteins as the Cm. Confocal microscopy and flow cytometry results indicated a greater uptake of MMP-9-treated CLip-PC@CO-LC NPs compared with that of the CLip-PC@CO-LC NPs without MMP-9 pretreatment. The exposure to MMP-9 activated positively charged cell-penetrating peptides on the surface of the hybrid nanovesicles. Moreover, pH triggered membrane disruption, and redox triggered DTX and siRNA release, leading to highly potent target-gene silencing in glycolysis and chemotherapy with enhanced antiproliferation ability. The biodistribution results demonstrated that the CLip-PC@LC-DiR NPs accumulated in the tumor owing to a combination of long blood retention time, homologous targeting ability, and TME-activated characteristics. The CLip-PC@CO-LC NPs led to more effective tumor growth inhibition than the DTX and free siPGAM1 formulations. CONCLUSIONS TME-activated cancer cell membrane-liposome integrated hybrid NPs provide an encouraging nanoplatform that combines RNAi with chemotherapy for precise treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Ziqiang Chen
- Department of Orthopaedic, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ming Li
- Department of Orthopaedic, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuping Li
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
47
|
Chen YK, Jayakumar J, Hsieh CM, Wu TL, Liao CC, Pandidurai J, Ko CL, Hung WY, Cheng CH. Triarylamine-Pyridine-Carbonitriles for Organic Light-Emitting Devices with EQE Nearly 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008032. [PMID: 34297444 DOI: 10.1002/adma.202008032] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application.
Collapse
Affiliation(s)
- Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayachandran Jayakumar
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chia-Min Hsieh
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chun-Cheng Liao
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Jayabalan Pandidurai
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chang-Lun Ko
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
48
|
Paisley NR, Halldorson SV, Tran MV, Gupta R, Kamal S, Algar WR, Hudson ZM. Near‐Infrared‐Emitting Boron‐Difluoride‐Curcuminoid‐Based Polymers Exhibiting Thermally Activated Delayed Fluorescence as Biological Imaging Probes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nathan R. Paisley
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Sarah V. Halldorson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Michael V. Tran
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Rupsa Gupta
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Saeid Kamal
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - W. Russ Algar
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| | - Zachary M. Hudson
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
49
|
Zhang X, Lei T, Du H. Prospect of cell penetrating peptides in stem cell tracking. Stem Cell Res Ther 2021; 12:457. [PMID: 34391472 PMCID: PMC8364034 DOI: 10.1186/s13287-021-02522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
Stem cell therapy has shown great efficacy in many diseases. However, the treatment mechanism is still unclear, which is a big obstacle for promoting clinical research. Therefore, it is particularly important to track transplanted stem cells in vivo, find out the distribution and condition of the stem cells, and furthermore reveal the treatment mechanism. Many tracking methods have been developed, including magnetic resonance imaging (MRI), fluorescence imaging, and ultrasound imaging (UI). Among them, MRI and UI techniques have been used in clinical. In stem cell tracking, a major drawback of these technologies is that the imaging signal is not strong enough, mainly due to the low cell penetration efficiency of imaging particles. Cell penetrating peptides (CPPs) have been widely used for cargo delivery due to its high efficacy, good safety properties, and wide delivery of various cargoes. However, there are few reports on the application of CPPs in current stem cell tracking methods. In this review, we systematically introduced the mechanism of CPPs into cell membranes and their advantages in stem cell tracking, discussed the clinical applications and limitations of CPPs, and finally we summarized several commonly used CPPs and their specific applications in stem cell tracking. Although it is not an innovation of tracer materials, CPPs as a powerful tool have broad prospects in stem cell tracking. ![]()
Collapse
Affiliation(s)
- Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
50
|
Christopherson CJ, Paisley NR, Xiao Z, Algar WR, Hudson ZM. Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging. J Am Chem Soc 2021; 143:13342-13349. [PMID: 34382775 DOI: 10.1021/jacs.1c06290] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescence imaging in living cells is key to understanding many biological processes, yet autofluorescence from the sample can lower sensitivity and hinder high-resolution imaging. Time-gated measurements using phosphorescent metal complexes can improve imaging, at the cost of potential toxicity from the use of heavy metals. Here, we describe orange/red-emitting polymer dots (Pdots) exhibiting thermally activated delayed fluorescence (TADF) for time-gated imaging. Inspired by the cell invasion mechanism of the HIV TAT protein, the Pdots were formed from block copolymers composed of a hydrophilic guanidine-rich block as a cell-penetrating peptide mimic, and a rigid organic semiconductor block to provide efficient delayed fluorescence. These all-organic polymer nanoparticles were shown to efficiently enter HeLa, CHO, and HepG2 cells within 30 min, with cell viabilities remaining high for Pdot concentrations up to 25 mg mL-1. Pdot quantum yields were as high as 0.17 in aerated water, with the Pdot structure effectively shielding the TADF emitters from quenching by oxygen. Colocalization experiments revealed that the Pdots primarily accumulate outside of lysosomes, minimizing lysosomal degradation. When used for fixed cellular imaging, Pdot-incubated cells showed high signal-to-background ratios compared to control samples with no Pdot exposure. Using time-resolved spectroscopy, the delayed emission of the TADF materials was effectively separated from that of both a biological serum and a secondary fluorescent dye.
Collapse
Affiliation(s)
- Cheyenne J Christopherson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Nathan R Paisley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Zhujun Xiao
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - W Russ Algar
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|