1
|
Bagherpoor Helabad M, Matlahov I, Kumar R, Daldrop JO, Jain G, Weingarth M, van der Wel PCA, Miettinen MS. Integrative determination of atomic structure of mutant huntingtin exon 1 fibrils implicated in Huntington disease. Nat Commun 2024; 15:10793. [PMID: 39737997 PMCID: PMC11686214 DOI: 10.1038/s41467-024-55062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts. We present and analyze the structure of fibrils formed by polyQ peptides and polyQ-expanded HTTex1 in vitro. Atomic-resolution perspectives are enabled by an integrative analysis and unrestrained all-atom molecular dynamics (MD) simulations incorporating experimental data from electron microscopy (EM), solid-state NMR, and other techniques. Alongside the use of prior data, we report magic angle spinning NMR studies of glutamine residues of the polyQ fibril core and surface, distinguished via hydrogen-deuterium exchange (HDX). Our study provides a molecular understanding of the structure of the core as well as surface of aggregated HTTex1, including the fuzzy coat and polyQ-water interface. The obtained data are discussed in context of their implications for understanding the detection of such aggregates (diagnostics) as well as known biological properties of the fibrils.
Collapse
Affiliation(s)
- Mahdi Bagherpoor Helabad
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Institute for Drug Discovery, Leipzig University Medical Center, 04103, Leipzig, Germany
- Institute of Chemistry, Martin Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Irina Matlahov
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Raj Kumar
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Jan O Daldrop
- Fachbereich Physik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Greeshma Jain
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Department of Chemistry, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands.
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
- Fachbereich Physik, Freie Universität Berlin, 14195, Berlin, Germany.
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008, Bergen, Norway.
| |
Collapse
|
2
|
van der Wel PC. Solid-state nuclear magnetic resonance in the structural study of polyglutamine aggregation. Biochem Soc Trans 2024; 52:719-731. [PMID: 38563485 PMCID: PMC11088915 DOI: 10.1042/bst20230731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.
Collapse
|
3
|
Chatterjee S, Venkatesh A, Sigurdsson ST, Mentink-Vigier F. Role of Protons in and around Strongly Coupled Nitroxide Biradicals for Cross-Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:2160-2168. [PMID: 38364262 PMCID: PMC11562033 DOI: 10.1021/acs.jpclett.3c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In magic angle spinning dynamic nuclear polarization (DNP), biradicals such as bis-nitroxides are used to hyperpolarize protons under microwave irradiation through the cross-effect mechanism. This mechanism relies on electron-electron spin interactions (dipolar coupling and exchange interaction) and electron-nuclear spin interactions (hyperfine coupling) to hyperpolarize the protons surrounding the biradical. This hyperpolarization is then transferred to the bulk sample via nuclear spin diffusion. However, the involvement of the protons in the biradical in the cross-effect DNP process has been under debate. In this work, we address this question by exploring the hyperpolarization pathways in and around bis-nitroxides. We demonstrate that for biradicals with strong electron-electron interactions, as in the case of the AsymPols, the protons on the biradical may not be necessary to quickly generate hyperpolarization. Instead, such biradicals can efficiently, and directly, polarize the surrounding protons of the solvent. The findings should impact the design of the next generation of biradicals.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310
| | - Snorri Th. Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310
| |
Collapse
|
4
|
Smith AN, Harrabi R, Halbritter T, Lee D, Aussenac F, van der Wel PCA, Hediger S, Sigurdsson ST, De Paëpe G. Fast magic angle spinning for the characterization of milligram quantities of organic and biological solids at natural isotopic abundance by 13C- 13C correlation DNP-enhanced NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 123:101850. [PMID: 36592488 DOI: 10.1016/j.ssnmr.2022.101850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We show that multidimensional solid-state NMR 13C-13C correlation spectra of biomolecular assemblies and microcrystalline organic molecules can be acquired at natural isotopic abundance with only milligram quantities of sample. These experiments combine fast Magic Angle Spinning of the sample, low-power dipolar recoupling, and dynamic nuclear polarization performed with AsymPol biradicals, a recently introduced family of polarizing agents. Such experiments are essential for structural characterization as they provide short- and long-range distance information. This approach is demonstrated on diverse sample types, including polyglutamine fibrils implicated in Huntington's disease and microcrystalline ampicillin, a small antibiotic molecule.
Collapse
Affiliation(s)
- Adam N Smith
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Rania Harrabi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Thomas Halbritter
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | | | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107, Reykjavik, Iceland
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM, 38000, Grenoble, France.
| |
Collapse
|
5
|
Dorn RW, Wall BJ, Ference SB, Norris SR, Lubach JW, Rossini AJ, VanVeller B. Attached Nitrogen Test by 13C- 14N Solid-State NMR Spectroscopy for the Structure Determination of Heterocyclic Isomers. Org Lett 2022; 24:5635-5640. [PMID: 35731042 PMCID: PMC9933616 DOI: 10.1021/acs.orglett.2c01576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Differentiation of heterocyclic isomers by solution 1H, 13C, and 15N NMR spectroscopy is often challenging due to similarities in their spectroscopic signatures. Here, 13C{14N} solid-state NMR spectroscopy experiments are shown to operate as an "attached nitrogen test", where heterocyclic isomers are easy to distinguish based on one-dimensional nitrogen-filtered 13C solid-state NMR. We anticipate that these NMR experiments will facilitate the assignment of heterocyclic isomers during synthesis and natural product discovery.
Collapse
Affiliation(s)
- Rick W. Dorn
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.,US Department of Energy, Ames Laboratory, Ames, IS, USA, 50011
| | - Brendan J. Wall
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Sarah B. Ference
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | - Sean R. Norris
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011
| | | | - Aaron J. Rossini
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.,US Department of Energy, Ames Laboratory, Ames, IS, USA, 50011.,Corresponding Author, 515-294-8952 , 515-294-7613
| | - Brett VanVeller
- Iowa State University, Department of Chemistry, Ames, IA, USA, 50011.,Corresponding Author, 515-294-8952 , 515-294-7613
| |
Collapse
|
6
|
Elathram N, Ackermann BE, Debelouchina GT. DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100057. [PMID: 35707629 PMCID: PMC9191766 DOI: 10.1016/j.jmro.2022.100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chromatin is a DNA-protein polymer that represents the functional form of the genome. The main building block of chromatin is the nucleosome, a structure that contains 147 base pairs of DNA and two copies each of the histone proteins H2A, H2B, H3 and H4. Previous work has shown that magic angle spinning (MAS) NMR spectroscopy can capture the nucleosome at high resolution although studies have been challenging due to low sensitivity, the presence of dynamic and rigid components, and the complex interaction networks of nucleosomes within the chromatin polymer. Here, we use dynamic nuclear polarization (DNP) to enhance the sensitivity of MAS NMR experiments of nucleosome arrays at 100 K and show that well-resolved 13C-13C MAS NMR correlations can be obtained much more efficiently. We evaluate the effect of temperature on the chemical shifts and linewidths in the spectra and demonstrate that changes are relatively minimal and clustered in regions of histone-DNA or histone-histone contacts. We also compare samples prepared with and without DNA and show that the low temperature 13C-13C correlations exhibit sufficient resolution to detect chemical shift changes and line broadening for residues that form the DNA-histone interface. On the other hand, we show that the measurement of DNP-enhanced 15N-13C histone-histone interactions within the nucleosome core is complicated by the natural 13C abundance network in the sample. Nevertheless, the enhanced sensitivity afforded by DNP can be used to detect long-range correlations between histone residues and DNA. Overall, our experiments demonstrate that DNP-enhanced MAS NMR spectroscopy of chromatin samples yields spectra with high resolution and sensitivity and can be used to capture functionally relevant protein-DNA interactions that have implications for gene regulation and genome organization.
Collapse
Affiliation(s)
| | | | - Galia T. Debelouchina
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
7
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
8
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
9
|
van der Wel PCA. Dihedral Angle Measurements for Structure Determination by Biomolecular Solid-State NMR Spectroscopy. Front Mol Biosci 2021; 8:791090. [PMID: 34938776 PMCID: PMC8685456 DOI: 10.3389/fmolb.2021.791090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
In structural studies of immobilized, aggregated and self-assembled biomolecules, solid-state NMR (ssNMR) spectroscopy can provide valuable high-resolution structural information. Among the structural restraints provided by magic angle spinning (MAS) ssNMR the canonical focus is on inter-atomic distance measurements. In the current review, we examine the utility of ssNMR measurements of angular constraints, as a complement to distance-based structure determination. The focus is on direct measurements of angular restraints via the judicious recoupling of multiple anisotropic ssNMR parameters, such as dipolar couplings and chemical shift anisotropies. Recent applications are highlighted, with a focus on studies of nanocrystalline polypeptides, aggregated peptides and proteins, receptor-substrate interactions, and small molecule interactions with amyloid protein fibrils. The review also examines considerations of when and where ssNMR torsion angle experiments are (most) effective, and discusses challenges and opportunities for future applications.
Collapse
Affiliation(s)
- Patrick C. A. van der Wel
- Solid-state NMR Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Li Y, Chaklashiya R, Takahashi H, Kawahara Y, Tagami K, Tobar C, Han S. Solid-state MAS NMR at ultra low temperature of hydrated alanine doped with DNP radicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107090. [PMID: 34717278 DOI: 10.1016/j.jmr.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments at ultra low temperature (ULT) (≪ 100 K) have demonstrated clear benefits for obtaining large signal sensitivity gain and probing spin dynamics phenomena at ULT. ULT NMR is furthermore a highly promising platform for solid-state dynamic nuclear polarization (DNP). However, ULT NMR is not widely used, given limited availability of such instrumentation from commercial sources. In this paper, we present a comprehensive study of hydrated [U-13C]alanine, a standard bio-solid sample, from the first commercial 14.1 Tesla NMR spectrometer equipped with a closed-cycle helium ULT-MAS system. The closed-cycle helium MAS system provides precise temperature control from 25 K to 100 K and stable MAS from 1.5 kHz to 12 kHz. The 13C CP-MAS NMR of [U-13C]alanine showed 400% signal gain at 28 K compared with at 100 K. The large sensitivity gain results from the Boltzmann factor, radio frequency circuitry quality factor improvement, and the suppression of its methyl group rotation at ULT. We further observed that the addition of organic biradicals widely used for solid-state DNP significantly shortens the 1H T1 spin lattice relaxation time at ULT, without further broadening the 13C spectral linewidth compared to at 90 K. The mechanism of 1H T1 shortening is dominated by the two-electron-one-nucleus triple flip transition underlying the Cross Effect mechanism, widely relied upon to drive solid-state DNP. Our experimental observations suggest that the prospects of MAS NMR and DNP under ULT conditions established with a closed-cycle helium MAS system are bright.
Collapse
Affiliation(s)
- Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raj Chaklashiya
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | | | | | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Celeste Tobar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
11
|
Mentink-Vigier F. Numerical recipes for faster MAS-DNP simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107106. [PMID: 34837803 PMCID: PMC8639796 DOI: 10.1016/j.jmr.2021.107106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 05/11/2023]
Abstract
Numerical simulations of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) have transformed the way the DNP process is understood in rotating samples. In 2012, two methods were concomitantly developed to simulate small spin systems (< 4 spin-1/2). The development of new polarizing agents, including those containing metal centers with S > 1/2, makes it necessary to further expand the numerical tools with minimal approximations that will help rationalize the experimental observations and build approximate models. In this paper, three strategies developed in the past five years are presented: an adaptive integration scheme, a hybrid Hilbert/Liouville formalism, and a method to truncate the Liouville space basis for periodic Hamiltonian. Each of these methods enable time savings ranging from a factor of 3 to > 100. We illustrate the code performance by reporting for the first time the MAS-DNP field profiles for "AMUPol", in which the couplings to the nitrogen nuclei are explicitly considered, as well as Cross-Effect MAS-DNP field profiles with two electrons spin 5/2 interacting with a nuclear spin 1/2.
Collapse
Affiliation(s)
- Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, FL 32310, USA.
| |
Collapse
|
12
|
Li Y, Equbal A, Tabassum T, Han S. 1H Thermal Mixing Dynamic Nuclear Polarization with BDPA as Polarizing Agents. J Phys Chem Lett 2020; 11:9195-9202. [PMID: 33058676 DOI: 10.1021/acs.jpclett.0c01721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamic Nuclear Polarization (DNP) is a sensitivity enhancing technique for Nuclear Magnetic Resonance. A recent discovery of Overhauser Effect (OE) DNP in insulating systems under cryogenic conditions using 1,3-bisdiphenylene-2-phenylallyl (BDPA) as the polarizing agent (PA) has caught attention due to its promising DNP performance at a high magnetic field and under fast magic angle spinning conditions. However, the mechanism of OE in insulating-solids/BDPA is unclear. We present an alternative explanation that the dominant underlying DNP mechanism of BDPA is Thermal Mixing (TM). This is ascertained with the discovery that TM effect is enhanced by multi-electron spin coupling, which is corroborated by an asymmetric electron paramagnetic resonance line shape signifying the coexistence of clustered and isolated BDPA species, and by hyperpolarized electron spin populations giving rise to an electron spin polarization gradient which are characteristic signatures of TM DNP. Finally, quantum mechanical simulations using spatially asymmetrically coupled three electron spins and a nuclear spin demonstrate that triple-flip DNP, with hyperfine fluctuations turned off, can yield the 1H DNP profile as observed with BDPA. Clarifying the DNP mechanism is critical to develop design principles for optimizing the PA for achieving optimal DNP efficiency.
Collapse
Affiliation(s)
- Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tarnuma Tabassum
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Implications of the Orb2 Amyloid Structure in Huntington's Disease. Int J Mol Sci 2020; 21:ijms21186910. [PMID: 32967102 PMCID: PMC7555547 DOI: 10.3390/ijms21186910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington’s disease is a progressive, autosomal dominant, neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. As a result, the translated protein, huntingtin, contains an abnormally long polyglutamine stretch that makes it prone to misfold and aggregating. Aggregation of huntingtin is believed to be the cause of Huntington’s disease. However, understanding on how, and why, huntingtin aggregates are deleterious has been hampered by lack of enough relevant structural data. In this review, we discuss our recent findings on a glutamine-based functional amyloid isolated from Drosophila brain and how this information provides plausible structural insight on the structure of huntingtin deposits in the brain.
Collapse
|
14
|
El Hariri El Nokab M, van der Wel PC. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr Polym 2020; 240:116276. [DOI: 10.1016/j.carbpol.2020.116276] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
15
|
Chakraborty A, Deligey F, Quach J, Mentink-Vigier F, Wang P, Wang T. Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. Biochem Soc Trans 2020; 48:1089-1099. [PMID: 32379300 PMCID: PMC7565284 DOI: 10.1042/bst20191084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin. These structural features provide an atomic-level understanding of many cellular processes, promoting the development of better biomaterials and inhibitors. It is anticipated that the capabilities of MAS-DNP in biomolecular and biomaterial research will be further enlarged by the rapid development of instrumentation and methodology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jenny Quach
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
Zhao W, Fernando LD, Kirui A, Deligey F, Wang T. Solid-state NMR of plant and fungal cell walls: A critical review. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101660. [PMID: 32251983 DOI: 10.1016/j.ssnmr.2020.101660] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 05/22/2023]
Abstract
The cell walls of plants and microbes are a central source for bio-renewable energy and the major targets of antibiotics and antifungal agents. It is highly challenging to determine the molecular structure of complex carbohydrates, protein and lignin, and their supramolecular assembly in intact cell walls. This article selectively highlights the recent breakthroughs that employ 13C/15N solid-state NMR techniques to elucidate the architecture of fungal cell walls in Aspergillus fumigatus and the primary and secondary cell walls in a large variety of plant species such as Arabidopsis, Brachypodium, maize, and spruce. Built upon these pioneering studies, we further summarize the underexplored aspects of fungal and plant cell walls. The new research opportunities introduced by innovative methods, such as the detection of proton and quadrupolar nuclei on ultrahigh-field magnets and under fast magic-angle spinning, paramagnetic probes, natural-abundance DNP, and software development, are also critically discussed.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
17
|
Yu Y, Keil P, Hansen MR, Edén M. Improved Magnetization Transfers among Quadrupolar Nuclei in Two-Dimensional Homonuclear Correlation NMR Experiments Applied to Inorganic Network Structures. Molecules 2020; 25:molecules25020337. [PMID: 31947638 PMCID: PMC7024165 DOI: 10.3390/molecules25020337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
We demonstrate that supercycles of previously introduced two-fold symmetry dipolar recoupling schemes may be utilized successfully in homonuclear correlation nuclear magnetic resonance (NMR) spectroscopy for probing proximities among half-integer spin quadrupolar nuclei in network materials undergoing magic-angle-spinning (MAS). These (SR221)M, (SR241)M, and (SR281)M recoupling sequences with M=3 and M=4 offer comparably efficient magnetization transfers in single-quantum–single-quantum (1Q–1Q) correlation NMR experiments under moderately fast MAS conditions, as demonstrated at 14.1 T and 24 kHz MAS in the contexts of 11B NMR on a Na2O–CaO–B2O3–SiO2 glass and 27Al NMR on the open framework aluminophosphate AlPO-CJ19 [(NH4)2Al4(PO4)4HPO4·H2O]. Numerically simulated magnetization transfers in spin–3/2 pairs revealed a progressively enhanced tolerance to resonance offsets and rf-amplitude errors of the recoupling pulses along the series (SR221)M< (SR241)M< (SR281)M for increasing differences in chemical shifts between the two nuclei. Nonetheless, for scenarios of a relatively minor chemical-shift dispersions (≲3 kHz), the (SR221)M supercycles perform best both experimentally and in simulations.
Collapse
Affiliation(s)
- Yang Yu
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Philipp Keil
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, DE-48 149 Münster, Germany; (P.K.); (M.R.H.)
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, DE-48 149 Münster, Germany; (P.K.); (M.R.H.)
| | - Mattias Edén
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
18
|
Smith AN, Märker K, Hediger S, De Paëpe G. Natural Isotopic Abundance 13C and 15N Multidimensional Solid-State NMR Enabled by Dynamic Nuclear Polarization. J Phys Chem Lett 2019; 10:4652-4662. [PMID: 31361489 DOI: 10.1021/acs.jpclett.8b03874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dynamic nuclear polarization (DNP) has made feasible solid-state NMR experiments that were previously thought impractical due to sensitivity limitations. One such class of experiments is the structural characterization of organic and biological samples at natural isotopic abundance (NA). Herein, we describe the many advantages of DNP-enabled ssNMR at NA, including the extraction of long-range distance constraints using dipolar recoupling pulse sequences without the deleterious effects of dipolar truncation. In addition to the theoretical underpinnings in the analysis of these types of experiments, numerous applications of DNP-enabled ssNMR at NA are discussed.
Collapse
Affiliation(s)
- Adam N Smith
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Katharina Märker
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, MEM , F-38000 Grenoble , France
| |
Collapse
|
19
|
Wang X, Caulkins BG, Riviere G, Mueller LJ, Mentink-Vigier F, Long JR. Direct dynamic nuclear polarization of 15N and 13C spins at 14.1 T using a trityl radical and magic angle spinning. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:85-91. [PMID: 31026722 PMCID: PMC6604067 DOI: 10.1016/j.ssnmr.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 05/05/2023]
Abstract
We investigate solid-state dynamic nuclear polarization of 13C and 15N nuclei using monoradical trityl OX063 as a polarizing agent in a magnetic field of 14.1 T with magic angle spinning at ∼100 K. We monitored the field dependence of direct 13C and 15N polarization for frozen [13C, 15N] urea and achieved maximum absolute enhancement factors of 240 and 470, respectively. The field profiles are consistent with polarization of 15N spins via either the solid effect or the cross effect, and polarization of 13C spins via a combination of cross effect and solid effect. For microcrystalline, 15N-enriched tryptophan synthase sample containing trityl radical, a 1500-fold increase in 15N signal was observed under microwave irradiation. These results show the promise of trityl radicals and their derivatives for direct polarization of low gamma, spin-½ nuclei at high magnetic fields and suggest a novel approach for selectively polarizing specific moieties or for polarizing systems which have low levels of protonation.
Collapse
Affiliation(s)
- Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Bethany G Caulkins
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Gwladys Riviere
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32610-0245, USA
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, 32610-0245, USA.
| |
Collapse
|
20
|
Thureau P, Juramy M, Ziarelli F, Viel S, Mollica G. Brute-force solvent suppression for DNP studies of powders at natural isotopic abundance. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 99:15-19. [PMID: 30836289 DOI: 10.1016/j.ssnmr.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
A method based on highly concentrated radical solutions is investigated for the suppression of the NMR signals arising from solvents that are usually used for dynamic nuclear polarization experiments. The presented method is suitable in the case of powders, which are impregnated with a radical-containing solution. It is also demonstrated that the intensity and the resolution of the signals due to the sample of interest is not affected by the high concentration of radicals. The method proposed here is therefore valuable when sensitivity is of the utmost importance, namely samples at natural isotopic abundance.
Collapse
Affiliation(s)
| | - Marie Juramy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | - Stephane Viel
- Aix Marseille Univ, CNRS, ICR, Marseille, France; Institut Universitaire de France, Paris, France
| | | |
Collapse
|
21
|
Matlahov I, van der Wel PC. Conformational studies of pathogenic expanded polyglutamine protein deposits from Huntington's disease. Exp Biol Med (Maywood) 2019; 244:1584-1595. [PMID: 31203656 PMCID: PMC6920524 DOI: 10.1177/1535370219856620] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Huntington’s disease, like other neurodegenerative diseases, continues to lack an
effective cure. Current treatments that address early symptoms ultimately fail
Huntington’s disease patients and their families, with the disease typically
being fatal within 10–15 years from onset. Huntington’s disease is an inherited
disorder with motor and mental impairment, and is associated with the genetic
expansion of a CAG codon repeat encoding a polyglutamine-segment-containing
protein called huntingtin. These Huntington’s disease mutations cause misfolding
and aggregation of fragments of the mutant huntingtin protein, thereby likely
contributing to disease toxicity through a combination of gain-of-toxic-function
for the misfolded aggregates and a loss of function from sequestration of
huntingtin and other proteins. As with other amyloid diseases, the mutant
protein forms non-native fibrillar structures, which in Huntington’s disease are
found within patients’ neurons. The intracellular deposits are associated with
dysregulation of vital processes, and inter-neuronal transport of aggregates may
contribute to disease progression. However, a molecular understanding of these
aggregates and their detrimental effects has been frustrated by insufficient
structural data on the misfolded protein state. In this review, we examine
recent developments in the structural biology of polyglutamine-expanded
huntingtin fragments, and especially the contributions enabled by advances in
solid-state nuclear magnetic resonance spectroscopy. We summarize and discuss
our current structural understanding of the huntingtin deposits and how this
information furthers our understanding of the misfolding mechanism and disease
toxicity mechanisms.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patrick Ca van der Wel
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|