1
|
Petrov D, Plais L, Schira K, Cai J, Keller M, Lessing A, Bassi G, Cazzamalli S, Neri D, Gloger A, Scheuermann J. Flexibility-tuning of dual-display DNA-encoded chemical libraries facilitates cyclic peptide ligand discovery. Nat Commun 2025; 16:3273. [PMID: 40188178 PMCID: PMC11972359 DOI: 10.1038/s41467-025-58507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Cyclic peptides constitute an important drug modality since they offer significant advantages over small molecules and macromolecules. However, access to diverse chemical sets of cyclic peptides is difficult on a large library scale. DNA-encoded Chemical Libraries (DELs) provide a suitable tool to obtain large chemical diversity, but cyclic DELs made by standard DEL implementation cannot efficiently explore their conformational diversity. On the other hand, dual-display Encoded Self-Assembling Chemical (ESAC) Libraries can be used for modulating macrocycle flexibility since the two displayed peptides can be connected in an incremental fashion. In this work, we construct a 56 million dual-display ESAC library using a two-step cyclization strategy. We show that varying the level of conformational restraint is essential for the discovery of specific ligands for the three protein targets thrombin, human alkaline phosphatase and streptavidin.
Collapse
Affiliation(s)
- Dimitar Petrov
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Louise Plais
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Kristina Schira
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Junyu Cai
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Michelle Keller
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Alice Lessing
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Gabriele Bassi
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | | | - Dario Neri
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | - Andreas Gloger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
2
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025; 64:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
3
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
4
|
Nie Q, Fang X, Huang J, Xu T, Li Y, Zhang G, Li Y. The Evolution of Nucleic Acid Nanotechnology: From DNA Assembly to DNA-Encoded Library. SMALL METHODS 2025:e2401631. [PMID: 39806846 DOI: 10.1002/smtd.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Deoxyribonucleic acid (DNA), a fundamental biomacromolecule in living organisms, serves as the carrier of genetic information. Beyond its role in encoding biological functions, DNA's inherent ability to hybridize through base pairing has opened new avenues for its application in biological sciences. This review introduces DNA nanotechnology and DNA-encoded library (DEL), and highlights their shared design principles related to DNA assembly. First, a foundational overview of structural DNA nanotechnology, including its design strategies and historical development is provided. Subsequently, various approaches are examined to dynamic DNA nanotechnology, from strand displacement reactions to DNA-templated polymer synthesis. Second, how the principle of DNA assembly has facilitated the development of diverse formats of self-assembly-based DEL synthesis, DNA-template reactions (DTS), and DNA template-mediated proximity induction effects are examined. These advancements are all underpinned by the unique property of DNA assembly. Finally, this review summarizes the common principles shared by DNA nanotechnology and DEL in terms of methodology and design. Additionally, the potential synergies are explored between these two technologies, envisioning future applications where they can be combined to create more versatile and exquisite functionalities.
Collapse
Affiliation(s)
- Qigui Nie
- Chongqing Fuling Hospital, Chongqing University, Chongqing, 40800, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, 404100, China
| | - Jiale Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Tingting Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
5
|
Gonse A, Gajić J, Daguer JP, Barluenga S, Loewith R, Winssinger N. Small Molecule Modulator of the mTORC2 Pathway Discovered from a DEL Library Designed to Bind to Pleckstrin Homology Domains. ACS Chem Biol 2024; 19:2502-2514. [PMID: 39530383 PMCID: PMC11667669 DOI: 10.1021/acschembio.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Pleckstrin homology (PH) domains are structural motifs critical for cellular processes, such as signal transduction and cytoskeletal organization. Due to their involvement in various diseases, PH domains are promising therapeutic targets, yet their highly charged and hydrophobic binding sites are not ideal for traditional small drugs. In this study, we designed a DNA-encoded library (DEL) mimicking phospholipids to identify novel modulators targeting PH domains with uncharted chemical properties. Screening against several PH domains led to the discovery of 2DII, a small molecule that selectively binds to mSin1PH. This compound can modulate mTORC2 activity by impairing mTORC2's membrane interactions, resulting in reduced AKT1 phosphorylation. A micromapping via Dexter energy transfer based on 2DII bearing an iridium catalyst (2DII-Ir), along with a biotin-diazirine small molecule was used for target identification by proteomics, which confirmed mSin1 as the primary intracellular target of 2DII, demonstrating its potential for selective mTORC2 pathway modulation. These findings introduce a novel strategy for targeting PH domains and provide a foundation for the development of therapeutic interventions that modulate PH-domain-dependent signaling pathways.
Collapse
Affiliation(s)
- Arthur Gonse
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| | - Jelena Gajić
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
- Department
of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva 1204, Switzerland
| | - Jean-Pierre Daguer
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| | - Sofia Barluenga
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| | - Robbie Loewith
- Department
of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva 1204, Switzerland
| | - Nicolas Winssinger
- Department
of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva 12004, Switzerland
| |
Collapse
|
6
|
Wichert M, Guasch L, Franzini RM. Challenges and Prospects of DNA-Encoded Library Data Interpretation. Chem Rev 2024; 124:12551-12572. [PMID: 39508428 DOI: 10.1021/acs.chemrev.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
DNA-encoded library (DEL) technology is a powerful platform for the efficient identification of novel chemical matter in the early drug discovery process enabled by parallel screening of vast libraries of encoded small molecules through affinity selection and deep sequencing. While DEL selections provide rich data sets for computational drug discovery, the underlying technical factors influencing DEL data remain incompletely understood. This review systematically examines the key parameters affecting the chemical information in DEL data and their impact on hit triaging and machine learning integration. The need for rigorous data handling and interpretation is emphasized, with standardized methods being critical for the success of DEL-based approaches. Major challenges include the relationship between sequence counts and binding affinities, frequent hitters, and the influence of factors such as inhomogeneous library composition, DNA damage, and linkers on binding modes. Experimental artifacts, such as those caused by protein immobilization and screening matrix effects, further complicate data interpretation. Recent advancements in using machine learning to denoise DEL data and predict drug candidates are highlighted. This review offers practical guidance on adopting best practices for integrating robust methodologies, comprehensive data analysis, and computational tools to improve the accuracy and efficacy of DEL-driven hit discovery.
Collapse
Affiliation(s)
- Moreno Wichert
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Suo Y, Qian X, Xiong Z, Liu X, Wang C, Mu B, Wu X, Lu W, Cui M, Liu J, Chen Y, Zheng M, Lu X. Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy. J Med Chem 2024; 67:18969-18980. [PMID: 39441849 DOI: 10.1021/acs.jmedchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu Qian
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Zhaoping Xiong
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Xiaohong Liu
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Shandong Second Medical University, Weifang 261053, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Meiying Cui
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Jiaxiang Liu
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Yujie Chen
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
A protein-templated selection approach for the identification of full ligands from DNA-encoded libraries. Nat Chem 2024; 16:487-488. [PMID: 38332332 DOI: 10.1038/s41557-024-01441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
|
10
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
11
|
Plais L, Trachsel L, Scheuermann J. Asymmetry of Dual-Display DNA-Encoded Chemical Libraries. Bioconjug Chem 2024; 35:147-153. [PMID: 38266192 DOI: 10.1021/acs.bioconjchem.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
While dual-display DNA-encoded chemical libraries (DELs) are increasingly employed for ligand discovery, some of their fundamental properties have not yet been studied in-depth. Aided with fluorescence polarization experiments, we demonstrate that dual-display DELs are intrinsically asymmetrical entities, and we deduce practical guidelines to perform better-informed on-DNA hit validation from these libraries.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Louis Trachsel
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|
12
|
Lee H, Yoon H. Mitochondrial sirtuins: Energy dynamics and cancer metabolism. Mol Cells 2024; 47:100029. [PMID: 38331199 PMCID: PMC10960136 DOI: 10.1016/j.mocell.2024.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Mitochondria are pivotal for energy regulation and are linked to cancer. Mitochondrial sirtuins, (Sirtuin) SIRT3, SIRT4, and SIRT5, play crucial roles in cancer metabolism. This review explores their impact on cellular processes, with a focus on the NAD+ interplay and the modulation of their enzymatic activities. The varied roles of SIRT3, SIRT4, and SIRT5 in metabolic adaptation and cancer are outlined, emphasizing their tumor suppressor or oncogenic nature. We propose new insights into sirtuin biology, and cancer therapeutics, suggesting an integrated proteomics and metabolomics approach for a comprehensive understanding of mitochondrial sirtuins in cancer.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
13
|
Wei H, Zhang T, Li Y, Zhang G, Li Y. Covalent Capture and Selection of DNA-Encoded Chemical Libraries via Photo-Activated Lysine-Selective Crosslinkers. Chem Asian J 2023; 18:e202300652. [PMID: 37721712 DOI: 10.1002/asia.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Covalent crosslinking probes have arisen as efficient toolkits to capture and elucidate biomolecular interaction networks. Exploiting the potential of crosslinking in DNA-encoded chemical library (DEL) selection methods significantly boosted bioactive ligand discovery in complex physiological contexts. Herein, we incorporated o-nitrobenzyl alcohol (o-NBA) as a photo-activated lysine-selective crosslinker into divergent DEL formats and achieved covalent capture of ligand-target interactions featuring improved crosslinking efficiency and site-specificity. In addition, covalent DEL selection was realized with the modularly designed o-NBA-functionalized mock libraries.
Collapse
Affiliation(s)
- Haimei Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Tianyang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
14
|
Lessing A, Petrov D, Scheuermann J. Advancing small-molecule drug discovery by encoded dual-display technologies. Trends Pharmacol Sci 2023; 44:817-831. [PMID: 37739829 DOI: 10.1016/j.tips.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
DNA-encoded chemical library technology (DECL or DEL) has become an important pillar for small-molecule drug discovery. The technology rapidly identifies small-molecule hits for relevant target proteins at low cost and with a high success rate, including ligands for targeted protein degradation (TPD). More recently, the setup of DNA- or peptide nucleic acid (PNA)-encoded chemical libraries based on the simultaneous display of ligand pairs, termed dual-display, allows for more sophisticated applications which will be reviewed herein. Both stable and dynamic dual-display DEL technologies enable innovative affinity-based selection modalities, even on and in cells. Novel methods for a seamless conversion between single- and double-stranded library formats allow for even more versatility. We present the first candidates emerging from dual-display technologies and discuss the future potential of dual-display for drug discovery.
Collapse
Affiliation(s)
- Alice Lessing
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Dimitar Petrov
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Jörg Scheuermann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland.
| |
Collapse
|
15
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
16
|
Cui M, Nguyen D, Gaillez MP, Heiden S, Lin W, Thompson M, Reddavide FV, Chen Q, Zhang Y. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat Commun 2023; 14:1481. [PMID: 36932079 PMCID: PMC10023787 DOI: 10.1038/s41467-023-37071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The split-and-pool method has been widely used to synthesize chemical libraries of a large size for early drug discovery, albeit without the possibility of meaningful quality control. In contrast, a self-assembled DNA-encoded chemical library (DEL) allows us to construct an m x n-member library by mixing an m-member and an n-member pre-purified sub-library. Herein, we report a trio-pharmacophore DEL (T-DEL) of m x l x n members through assembling three pre-purified and validated sub-libraries. The middle sub-library is synthesized using DNA-templated synthesis with different reaction mechanisms and designed as a linkage connecting the fragments displayed on the flanking two sub-libraries. Despite assembling three fragments, the resulting compounds do not exceed the up-to-date standard of molecular weight regarding drug-likeness. We demonstrate the utility of T-DEL in linker optimization for known binding fragments against trypsin and carbonic anhydrase II and by de novo selections against matrix metalloprotease-2 and -9.
Collapse
Affiliation(s)
- Meiying Cui
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Weilin Lin
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | - Qinchang Chen
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Dockerill M, Winssinger N. DNA-Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angew Chem Int Ed Engl 2023; 62:e202215542. [PMID: 36458812 DOI: 10.1002/anie.202215542] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype-phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow "translation" into the synthetic product it is linked to. In this Review, we cover technologies that enable the "translation" of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
18
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
19
|
Gao Z, Chen Y, Nie Y, Chen K, Cao X, Ke S. Structural diversity-guided optimization of carbazole derivatives as potential cytotoxic agents. Front Chem 2023; 11:1104868. [PMID: 36742033 PMCID: PMC9890180 DOI: 10.3389/fchem.2023.1104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Carbazole alkaloids, as an important class of natural products, have been widely reported to have extensive biological activities. Based on our previous three-component reaction to construct carbazole scaffolds, we introduced a methylene group to provide a rotatable bond, and designed series of carbazole derivatives with structural diversity including carbazole amide, carbazole hydrazide and carbazole hydrazone. All synthesized carbazole derivatives were evaluated for their in vitro cytotoxic activity against 7901 (gastric adenocarcinoma), A875 (human melanoma) and MARC145 (African green monkey kidney) cell lines. The preliminary results indicated that compound 14a exhibited high inhibitory activities on 7901 and A875 cancer cells with the lowest IC50 of 11.8 ± 1.26 and 9.77 ± 8.32 μM, respectively, which might be the new lead compound for discovery of novel carbazole-type anticancer agents.
Collapse
Affiliation(s)
- Zilin Gao
- College of Science, Huazhong Agricultural University, Wuhan, China,National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yufei Nie
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Keming Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xiufang Cao
- College of Science, Huazhong Agricultural University, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| |
Collapse
|
20
|
Montoya AL, Glavatskikh M, Halverson BJ, Yuen LH, Schüler H, Kireev D, Franzini RM. Combining pharmacophore models derived from DNA-encoded chemical libraries with structure-based exploration to predict Tankyrase 1 inhibitors. Eur J Med Chem 2023; 246:114980. [PMID: 36495630 PMCID: PMC9805525 DOI: 10.1016/j.ejmech.2022.114980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
DNA-encoded chemical libraries (DECLs) interrogate the interactions of a target of interest with vast numbers of molecules. DECLs hence provide abundant information about the chemical ligand space for therapeutic targets, and there is considerable interest in methods for exploiting DECL screening data to predict novel ligands. Here we introduce one such approach and demonstrate its feasibility using the cancer-related poly-(ADP-ribose)transferase tankyrase 1 (TNKS1) as a model target. First, DECL affinity selections resulted in structurally diverse TNKS1 inhibitors with high potency including compound 2 with an IC50 value of 0.8 nM. Additionally, TNKS1 hits from four DECLs were translated into pharmacophore models, which were exploited in combination with docking-based screening to identify TNKS1 ligand candidates in databases of commercially available compounds. This computational strategy afforded TNKS1 inhibitors that are outside the chemical space covered by the DECLs and yielded the drug-like lead compound 12 with an IC50 value of 22 nM. The study further provided insights in the reliability of screening data and the effect of library design on hit compounds. In particular, the study revealed that while in general DECL screening data are in good agreement with off-DNA ligand binding, unpredictable interactions of the DNA-attachment linker with the target protein contribute to the noise in the affinity selection data.
Collapse
Affiliation(s)
- Alba L Montoya
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Marta Glavatskikh
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Brayden J Halverson
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Lik Hang Yuen
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| | - Dmitri Kireev
- Department of Chemistry, 36 Schlundt Hall, University of Missouri, Columbia, MO, 65211, USA.
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84112, USA; Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, UT, 84112, USA.
| |
Collapse
|
21
|
Cai B, Mhetre AB, Krusemark CJ. Selection methods for proximity-dependent enrichment of ligands from DNA-encoded libraries using enzymatic fusion proteins. Chem Sci 2023; 14:245-250. [PMID: 36687357 PMCID: PMC9811540 DOI: 10.1039/d2sc05495g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we report a selection approach to enrich ligands from DNA-encoded libraries (DELs) based on proximity to an enzymatic tag on the target protein. This method involves uncaging or installation of a biotin purification tag on the DNA construct either through photodeprotection of a protected biotin group using a light emitting protein tag (nanoluciferase) or by acylation using an engineered biotin ligase (UltraID). This selection does not require purification of the target protein and results in improved recovery and enrichment of DNA-linked ligands. This approach should serve as a general and convenient tool for molecular discovery with DELs.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| | - Amol B. Mhetre
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
22
|
Zhang Z, Lin J, Liu Z, Tian G, Li XM, Jing Y, Li X, Li XD. Photo-Cross-Linking To Delineate Epigenetic Interactome. J Am Chem Soc 2022; 144:20979-20997. [DOI: 10.1021/jacs.2c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuoyuan Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
23
|
Discovery of novel compounds as potent activators of Sirt3. Bioorg Med Chem 2022; 73:116999. [DOI: 10.1016/j.bmc.2022.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
24
|
Xu H, Wang Y, Dong H, Zhang Y, Gu Y, Zhang S, Meng Y, Li J, Shi XJ, Ji Q, Liu L, Ma P, Ma F, Yang G, Hou W. Selenylation Chemistry Suitable for On‐Plate Parallel and On‐DNA Library Synthesis Enabling High‐Throughput Medicinal Chemistry. Angew Chem Int Ed Engl 2022; 61:e202206516. [DOI: 10.1002/anie.202206516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yu Meng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Xiao Jie Shi
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
- Shanghai Key Laboratory of Orthopedic Implants Department of Orthopedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 201210 Shanghai China
- Zhejiang Laboratory Hangzhou 311121 China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
25
|
Onizuka K, Yamano Y, Abdelhady AM, Nagatsugi F. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Org Biomol Chem 2022; 20:4699-4708. [PMID: 35622064 DOI: 10.1039/d2ob00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interstrand crosslinking and threaded structures of nucleic acids have high potential in oligonucleotide therapeutics, chemical biology, and nanotechnology. For example, properly designed crosslinking structures provide high activity and nuclease resistance for anti-miRNAs. The noncovalent labeling and modification by the threaded structures are useful as new chemical biology tools. Photoreversible crosslinking creates smart materials, such as reversible photoresponsive gels and DNA origami objects. This review introduces the creation of interstrand crosslinking and threaded structures, such as catenanes and rotaxanes, based on hybridization-specific chemical reactions and their functions and perspectives.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuuhei Yamano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
26
|
Xu H, Wang Y, Dong H, Zhang Y, Gu Y, Zhang S, Meng Y, Li J, Shi XJ, Ji Q, Liu L, Ma P, Ma F, Yang G, Hou W. Selenylation Chemistry Suitable for On‐Plate Parallel and On‐DNA Library Synthesis Enabling High‐Throughput Medicinal Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yu Meng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Xiao Jie Shi
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
- Shanghai Key Laboratory of Orthopedic Implants Department of Orthopedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 201210 Shanghai China
- Zhejiang Laboratory Hangzhou 311121 China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
27
|
Abstract
Sirtuins are NAD+-dependent protein lysine deacylase and mono-ADP ribosylases present in both prokaryotes and eukaryotes. The sirtuin family comprises seven isoforms in mammals, each possessing different subcellular localization and biological functions. Sirtuins have received increasing attention in the past two decades given their pivotal functions in a variety of biological contexts, including cytodifferentiation, transcriptional regulation, cell cycle progression, apoptosis, inflammation, metabolism, neurological and cardiovascular physiology and cancer. Consequently, modulation of sirtuin activity has been regarded as a promising therapeutic option for many pathologies. In this review, we provide an up-to-date overview of sirtuin biology and pharmacology. We examine the main features of the most relevant inhibitors and activators, analyzing their structure-activity relationships, applications in biology, and therapeutic potential.
Collapse
|
28
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
29
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
30
|
Discovery of dual-target ligands binding to beta2-adrenoceptor and cysteinyl-leukotriene receptor for the potential treatment of asthma from natural products derived DNA-encoded library. Eur J Med Chem 2022; 233:114212. [DOI: 10.1016/j.ejmech.2022.114212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
|
31
|
Abdelhady AM, Onizuka K, Ishida K, Yajima S, Mano E, Nagatsugi F. Rapid Alkene-Alkene Photo-Cross-Linking on the Base-Flipping-Out Field in Duplex DNA. J Org Chem 2022; 87:2267-2276. [PMID: 34978198 DOI: 10.1021/acs.joc.1c01498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific chemical reactions by enzymes acting on a nucleobase are realized by flipping the target base out of the helix. Similarly, artificial oligodeoxynucleotides (ODNs) can also induce the base flipping and a specific chemical reaction. We now report an easily prepared and unique structure-providing photo-cross-linking reaction by taking advantage of the base-flipping-out field formed by alkene-type base-flipping-inducing artificial bases. Two 3-arylethenyl-5-methyl-2-pyridone nucleosides with the Ph or An group were synthesized and incorporated into the ODNs. We found that the two Ph derivatives provided the cross-linked product in a high yield only by a 10 s photoirradiation when their alkenes overlap each other in the duplex DNA. The highly efficient reaction enabled forming a cross-linked product even when using the duplex with a low Tm value.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kei Ishida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Sayaka Yajima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
32
|
Yang S, Zhao G, Gao Y, Sun Y, Zhang G, Fan X, Li Y, Li Y. In-solution direct oxidative coupling for the integration of sulfur/selenium into DNA-encoded chemical libraries. Chem Sci 2022; 13:2604-2613. [PMID: 35340849 PMCID: PMC8890091 DOI: 10.1039/d1sc06268a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 12/27/2022] Open
Abstract
Sulfur/selenium-containing electron-rich arenes (ERAs) exist in a wide range of both approved and investigational drugs with diverse pharmacological activities. These unique chemical structures and bioactive properties, if combined with the emerging DNA-encoded chemical library (DEL) technique, would facilitate drug and chemical probe discovery. However, it remains challenging, as there is no general DNA-compatible synthetic methodology available for the formation of C-S and C-Se bonds in aqueous solution. Herein, an in-solution direct oxidative coupling procedure that could efficiently integrate sulfur/selenium into the ERA under mild conditions is presented. This method features simple DNA-conjugated electron-rich arenes with a broad substrate scope and a transition-metal free process. Furthermore, this synthetic methodology, examined by a scale-up reaction test and late-stage precise modification in a mock peptide-like DEL synthesis, will enable its utility for the synthesis of sulfur/selenium-containing DNA-encoded libraries and the discovery of bioactive agents.
Collapse
Affiliation(s)
- Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Chongqing 404100 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
33
|
Abstract
![]()
Natural products
are the result of Nature’s exploration
of biologically relevant chemical space through evolution and an invaluable
source of bioactive small molecules for chemical biology and medicinal
chemistry. Novel concepts for the discovery of new bioactive compound
classes based on natural product structure may enable exploration
of wider biologically relevant chemical space. The pseudo-natural
product concept merges the relevance of natural product structure
with efficient exploration of chemical space by means of fragment-based
compound development to inspire the discovery of new bioactive chemical
matter through de novo combination of natural product
fragments in unprecedented arrangements. The novel scaffolds retain
the biological relevance of natural products but are not obtainable
through known biosynthetic pathways which can lead to new chemotypes
that may have unexpected or unprecedented bioactivities. Herein, we
cover the workflow of pseudo-natural product design and development,
highlight recent examples, and discuss a cheminformatic analysis in
which a significant portion of biologically active synthetic compounds
were found to be pseudo-natural products. We compare the concept to
natural evolution and discuss pseudo-natural products as the human-made
equivalent, i.e. the chemical evolution of natural product structure.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
34
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double‐ and Single‐Stranded DNA‐Encoded Chemical Libraries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University 400044 Chongqing P. R. China
| |
Collapse
|
35
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
36
|
Vummidi BR, Farrera-Soler L, Daguer JP, Dockerill M, Barluenga S, Winssinger N. A mating mechanism to generate diversity for the Darwinian selection of DNA-encoded synthetic molecules. Nat Chem 2022; 14:141-152. [PMID: 34873299 DOI: 10.1038/s41557-021-00829-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
DNA-encoded library technologies enable the screening of synthetic molecules but have thus far not tapped into the power of Darwinian selection with iterative cycles of selection, amplification and diversification. Here we report a simple strategy to rapidly assemble libraries of conformationally constrained peptides that are paired in a combinatorial fashion (suprabodies). We demonstrate that the pairing can be shuffled after each amplification cycle in a process similar to DNA shuffling or mating to regenerate diversity. Using simulations, we show the benefits of this recombination in yielding a more accurate correlation of selection fitness with affinity after multiple rounds of selection, particularly if the starting library is heterogeneous in the concentration of its members. The method was validated with selections against streptavidin and applied to the discovery of PD-L1 binders. We further demonstrate that the binding of self-assembled suprabodies can be recapitulated by smaller (∼7 kDa) synthetic products that maintain the conformational constraint of the peptides.
Collapse
Affiliation(s)
- Balayeshwanth R Vummidi
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Lluc Farrera-Soler
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jean-Pierre Daguer
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
37
|
Plais L, Lessing A, Keller M, Martinelli A, Oehler S, Bassi G, Neri D, Scheuermann J. Universal encoding of next generation DNA-encoded chemical libraries. Chem Sci 2022; 13:967-974. [PMID: 35211261 PMCID: PMC8790773 DOI: 10.1039/d1sc05721a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
DNA-encoded chemical libraries (DELs) are useful tools for the discovery of small molecule ligands to protein targets of pharmaceutical interest. Compared with single-pharmacophore DELs, dual-pharmacophore DELs simultaneously display two chemical moieties on both DNA strands, and allow for the construction of highly diverse and pure libraries, with a potential for targeting larger protein surfaces. Although methods for the encoding of simple, fragment-like dual-display libraries have been established, more complex libraries require a different encoding strategy. Here, we present a robust and convenient "large encoding design" (LED), which facilitates the PCR-amplification of multiple codes distributed among two partially complementary DNA strands. We experimentally implemented multiple coding regions and we compared the new DNA encoding scheme with previously reported dual-display DEL modalities in terms of amplifiability and performance in test selections against two target proteins. With the LED methodology in place, we foresee the construction and screening of DELs of unprecedented sizes and designs.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Alice Lessing
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Michelle Keller
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Gabriele Bassi
- Philochem AG Libernstrasse 3 CH-8112 Otelfingen Switzerland
| | - Dario Neri
- Philochem AG Libernstrasse 3 CH-8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
38
|
Zhao G, Zhong S, Zhang G, Li Y, Li Y. Reversible Covalent Headpiece Enables Interconversion between Double- and Single-Stranded DNA-Encoded Chemical Libraries. Angew Chem Int Ed Engl 2021; 61:e202115157. [PMID: 34904335 DOI: 10.1002/anie.202115157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 02/03/2023]
Abstract
The use of a proper encoding methodology is one of the most important aspects when practicing DEL technology. A "headpiece"-based double-stranded DEL encoding method is currently the most widely used for productive DEL. However, the robustness of double-stranded DEL construction conflicts with the versatility presented by single-stranded DEL applications. We here report a novel encoding method, which is based on a "reversible covalent headpiece (RCHP)". The RCHP allows reversible interconversion between double- and single-stranded DNA formats, providing an avenue to robust synthesis and allowing for the applications in distinct setups. We have validated the versatility of this encoding method with encoded self-assembled chemical library and DNA-encoded dynamic library technology. Notably, based on the RCHP-settled library construction, a unique "ternary covalent complex" mediating ligand isolation methodology against non-immobilized targets was developed.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044, Chongqing, P. R. China
| |
Collapse
|
39
|
Oehler S, Plais L, Bassi G, Neri D, Scheuermann J. Modular assembly and encoding strategies for dual-display DNA-encoded chemical libraries. Chem Commun (Camb) 2021; 57:12289-12292. [PMID: 34730584 PMCID: PMC8603192 DOI: 10.1039/d1cc04306d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/27/2021] [Indexed: 01/11/2023]
Abstract
DNA-encoded chemical libraries (DELs) are increasingly being used for the discovery of protein ligands and can be constructed displaying either one or two molecules at the extremities of the two complementary DNA strands. Here, we describe that DELs, featuring the simultaneous display of two molecules, can be encoded using various types of DNA structures, which go beyond the use of conventional double-stranded DNA fragments. Specifically, we compared dual-display methodologies in hairpin, circular or linear formats in terms of polymerase chain reaction (PCR) amplifiability and performance in affinity capture selections. The methods reported in this article highlight the feasibility and modularity of the described encoding strategies and may thus further expand the scope of DNA-encoded chemistry, particularly for the identification of compounds which recognize adjacent epitopes on the surface of target proteins of interest.
Collapse
Affiliation(s)
- Sebastian Oehler
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| | - Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| | - Dario Neri
- Philochem AG, Libernstrasse 3, Otelfingen, 8112, Switzerland.
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| |
Collapse
|
40
|
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci 2021; 43:4-15. [PMID: 34782164 DOI: 10.1016/j.tips.2021.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Kashida H, Asanuma H. Pseudo Base Pairs that Exhibit High Duplex Stability and Orthogonality through Covalent and Non-covalent Interactions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | | |
Collapse
|
42
|
Abstract
In the past two decades, a DNA-encoded chemical library (DEL or DECL) has emerged and has become a major technology platform for ligand discovery in drug discovery as well as in chemical biology research. Although based on a simple concept, i.e., encoding each compound with a unique DNA tag in a combinatorial chemical library, DEL has been proven to be a powerful tool for interrogating biological targets by accessing vast chemical space at a fraction of the cost of traditional high-throughput screening (HTS). Moreover, the recent technological advances and rapid developments of DEL-compatible reactions have greatly enhanced the chemical diversity of DELs. Today, DELs have been adopted by nearly all major pharmaceutical companies and are also gaining momentum in academia. However, this field is heavily biased toward library encoding and synthesis, and an underexplored aspect of DEL research is the selection methods. Generally, DEL selection is considered to be a massive binding assay conducted over an immobilized protein to identify the physical binders using the typical bind-wash-elute procedure. In recent years, we and other research groups have developed new approaches that can perform DEL selections in the solution phase, which has enabled the selection against complex biological targets beyond purified proteins. On the one hand, these methods have significantly widened the target scope of DELs; on the other hand, they have enabled the functional and potentially phenotypic assays of DELs beyond simple binding. An overview of these methods is provided in this Account.Our laboratory has been using DNA-programmed affinity labeling (DPAL) as the main strategy to develop new DEL selection methods. DPAL is based on DNA-templated synthesis; by using a known ligand to guide the target binding, DPAL is able to specifically establish a stable linkage between the target protein and the ligand. The DNA tag of the target-ligand conjugates serves as a programmable handle for protein characterization or hit compound decoding in the case of DEL selections. DPAL also takes advantage of the fast reaction kinetics of photo-cross-linking to achieve high labeling specificity and fidelity, especially in the selection of DNA-encoded dynamic libraries (DEDLs). DPAL has enabled DEL selections not only in buffer and cell lysates but also with complex biological systems, such as large protein complexes and live cells. Moreover, this strategy has also been employed in other biological applications, such as site-specific protein labeling, protein detection, protein profiling, and target identification. In the Account, we describe these methods, highlight their underlying principles, and conclude with perspectives of the development of the DEL technology.
Collapse
Affiliation(s)
- Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F, Building 17W, Hong Kong Science and Technology Parks, New
Territories, Hong Kong SAR, China
| |
Collapse
|
43
|
Zhou Y, Shen W, Peng J, Deng Y, Li X. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg Med Chem 2021; 45:116328. [PMID: 34364223 DOI: 10.1016/j.bmc.2021.116328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged to be a powerful ligand screening technology in drug discovery. Recently, we reported a DNA-encoded dynamic library (DEDL) approach that combines the principle of traditional dynamic combinatorial library (DCL) with DEL. DEDL has shown excellent potential in fragment-based ligand discovery with a variety of protein targets. Here, we further tested the utility of DEDL in identifying low molecular weight fragments that are selective for different isoforms or domains of the same protein family. A 10,000-member DEDL was selected against sirtuin-1, 2, and 5 (SIRT1, 2, 5) and the BD1 and BD2 domains of bromodomain 4 (BRD4), respectively. Albeit with modest potency, a series of isoform/domain-selective fragments were identified and the corresponding inhibitors were derived by fragment linking.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region; Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Innovation and Technology Commission, Hong Kong Special Administrative Region
| |
Collapse
|
44
|
Daguer JP, Gonse A, Shchukin Y, Farrera-Soler L, Barluenga S, Winssinger N. Dual Bcl-X L /Bcl-2 inhibitors discovered from DNA-encoded libraries using a fragment pairing strategy. Bioorg Med Chem 2021; 44:116282. [PMID: 34216984 DOI: 10.1016/j.bmc.2021.116282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
A dual Bcl-XL / Bcl-2 inhibitor was discovered from DNA-encoded libraries using a two steps process. In the first step, DNA was used to pair PNA-encoded fragments exploring > 250 000 combinations. In the second step, a focused library combining the selected fragments with linkers of different lengths and geometries led to the identification of tight binding adducts that were further investigated for their selective target engagement in pull-down assays, for their affinity by SPR, and their selectivity in a cytotoxicity assay. The best compound showed comparable cellular activity to venetoclax, the first-in-class therapeutic targeting Bcl-2.
Collapse
Affiliation(s)
- Jean-Pierre Daguer
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Arthur Gonse
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Yevhenii Shchukin
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Lluc Farrera-Soler
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
45
|
Gironda-Martínez A, Donckele EJ, Samain F, Neri D. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacol Transl Sci 2021; 4:1265-1279. [PMID: 34423264 PMCID: PMC8369695 DOI: 10.1021/acsptsci.1c00118] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials. In this Review, we present an overview of diverse approaches for the generation and screening of DEL molecular repertoires. Recent success stories are described, detailing how novel ligands were isolated from DEL screening campaigns and were further optimized by medicinal chemistry. The goal of the Review is to capture some of the most recent developments in the field, while also elaborating on future challenges to further improve DEL technology as a therapeutic discovery platform.
Collapse
Affiliation(s)
| | | | - Florent Samain
- Philochem
AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology, CH-8093 Zürich, Switzerland
- Philogen
S.p.A, 53100 Siena, Italy
| |
Collapse
|
46
|
Castan IFSF, Graham JS, Salvini CLA, Stanway-Gordon HA, Waring MJ. On the design of lead-like DNA-encoded chemical libraries. Bioorg Med Chem 2021; 43:116273. [PMID: 34147943 DOI: 10.1016/j.bmc.2021.116273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 01/11/2023]
Abstract
DNA-encoded libraries (DELs) are becoming an established technology for finding ligands for protein targets. We have abstracted and analysed libraries from the literature to assess the synthesis strategy, selections of reactions and monomers and their propensity to reveal hits. DELs have led to hit compounds across a range of diverse protein classes. The range of reactions and monomers utilised has been relatively limited and the hits are often higher in molecular weight than might be considered ideal. Considerations for future library designs with reference to chemical diversity and lead-like properties are discussed.
Collapse
Affiliation(s)
- Isaline F S F Castan
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica S Graham
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Catherine L A Salvini
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Harriet A Stanway-Gordon
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
47
|
Shan J, Ling X, Liu J, Wang X, Lu X. DNA-encoded CH functionality via photoredox-mediated hydrogen atom transformation catalysis. Bioorg Med Chem 2021; 42:116234. [PMID: 34098191 DOI: 10.1016/j.bmc.2021.116234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023]
Abstract
We described a mode of catalytic activation that accomplished the α-alkylation of N-Boc saturated heterocycles with DNA-linked acrylamide via photoredox-mediated hydrogen atom transfer (HAT) catalysis. This C(sp3)-C(sp3) bond formation reaction tolerated five-, six- and seven-membered cyclic substrates, substantially streamline synthetic efforts to functionalize the α-position of heterocycles with native CH functional handle. This photoredox catalyzed CH functionalization proceeded in mild DNA-compatible condition, and suited for the construction of DNA-encoded libraries.
Collapse
Affiliation(s)
- Jinming Shan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - JiaXiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
48
|
Su D, Zhang Y, Ulrich S, Barboiu M. Constitutional Dynamic Inhibition/Activation of Carbonic Anhydrases. Chempluschem 2021; 86:1500-1510. [PMID: 34327867 DOI: 10.1002/cplu.202100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Indexed: 12/23/2022]
Abstract
In this review we consider one important member of the metalloenzymes family, the carbonic anhydrase (CA), involved in the treatment of several common diseases. Different approaches have emerged to regulate the activity of CA, mostly acting on the inner catalytic active site or outer microenvironment of the enzyme, leading to inhibition or activation of CA. In recent years, gradually increased attention has focused on the adoption of constitutional dynamic chemistry (CDC) strategies for the screening and discovery of potent inhibitors or activators. The participation of reversible covalent bonds enabled the enzyme itself to select the optimal ligands obtained from diverse building blocks with comparatively higher degree of variety, resulting in the fittest recognition of enzyme ligands from complex dynamic systems. With the increasing implementation of CDC for enzyme targets, it shows great potential for drug discovery or CO2 capture applications.
Collapse
Affiliation(s)
- Dandan Su
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P. R. China
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095, Montpellier, France
| |
Collapse
|
49
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
50
|
Shokova EA, Kovalev VV. Synthesis of Adamantylated Salicylic Acids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|