1
|
Nguyen JDM, da Hora GCA, Mifflin MC, Roberts AG, Swanson JMJ. In silico design of foldable lasso peptides. Biophys J 2025; 124:1532-1547. [PMID: 40181537 DOI: 10.1016/j.bpj.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Lasso peptides are a unique class of natural products with distinctively threaded structures, conferring exceptional stability against thermal and proteolytic degradation. Despite their promising biotechnological and pharmaceutical applications, reported attempts to prepare them by chemical synthesis result in forming the nonthreaded branched-cyclic isomer, rather than the desired lassoed structure. This is likely due to the entropic challenge of folding a short, threaded motif before chemically mediated cyclization. Accordingly, this study aims to better understand and enhance the relative stability of pre-lasso conformations-the essential precursor to lasso peptide formation-through sequence optimization, chemical modification, and disulfide incorporation. Using Rosetta fixed backbone design, optimal sequences for several class II lasso peptides are identified. Enhanced sampling with well-tempered metadynamics confirmed that designed sequences derived from the lasso structures of rubrivinodin and microcin J25 exhibit a notable improvement in pre-lasso stability relative to the competing nonthreaded conformations. Chemical modifications to the isopeptide bond-forming residues of microcin J25 further increase the probability of pre-lasso formation, highlighting the beneficial role of noncanonical amino acid residues. Counterintuitively, the introduction of a disulfide cross-link decreased pre-lasso stability. Although cross-linking inherently constrains the peptide structure, decreasing the entropic dominance of unfolded phase space, it hinders the requisite wrapping of the N-terminal end around the tail to adopt the pre-lasso conformation. However, combining chemical modifications with the disulfide cross-link results in further pre-lasso stabilization, indicating that the ring modifications counteract the constraints and provide a cooperative benefit with cross-linking. These findings lay the groundwork for further design efforts to enable synthetic access to the lasso peptide scaffold.
Collapse
Affiliation(s)
- John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | | - Marcus C Mifflin
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
2
|
Yang Z, Ouyang X, Ran X, Xu H, Zhao YL, Link A, Al-Abssi R. Predicting 3D Structures of Lasso Peptides. RESEARCH SQUARE 2025:rs.3.rs-4579522. [PMID: 40235494 PMCID: PMC11998785 DOI: 10.21203/rs.3.rs-4579522/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Lasso peptides (LaPs), characterized by their entangled slipknot-like structures, are a large class of ribosomally synthesized and post-translationally modified peptides (RiPPs), with examples functioning as antibiotics, enzyme inhibitors, and molecular switches. Despite thousands of LaP sequences predicted by bioinformatics, only around 50 distinct LaPs have been structurally characterized in the past 30 years. Existing computational tools, such as AlphaFold2, AlphaFold3 and ESMfold, fail to accurately predict LaP structures due to their irregular scaffold featuring a lariat knot-like fold and the presence of an isopeptide bond. To address this challenge, we developed LassoPred, designed with a classifier to annotate the ring, loop, and tail of an LaP sequence and a constructor to build a 3D structure. Leveraging LassoPred, we predicted 3D structures for 4,749 unique LaP core sequences, creating the largest in silico -predicted lasso peptide structure database to date. LassoPred is publicly available through a web interface (https://lassopred.accre.vanderbilt.edu/) and a command-line tool, supporting future structure-function relationship studies and aiding in the discovery of functional lasso peptides for chemical and biomedical applications.
Collapse
|
3
|
Barrett SE, Yin S, Jordan P, Brunson JK, Gordon-Nunez J, Costa Machado da Cruz G, Rosario C, Okada BK, Anderson K, Pires TA, Wang R, Shukla D, Burk MJ, Mitchell DA. Substrate interactions guide cyclase engineering and lasso peptide diversification. Nat Chem Biol 2025; 21:412-419. [PMID: 39261643 DOI: 10.1038/s41589-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Lasso peptides are a diverse class of naturally occurring, highly stable molecules kinetically trapped in a distinctive [1]rotaxane conformation. How the ATP-dependent lasso cyclase constrains a relatively unstructured substrate peptide into a low entropy product has remained a mystery owing to poor enzyme stability and activity in vitro. In this study, we combined substrate tolerance data with structural predictions, bioinformatic analysis, molecular dynamics simulations and mutational scanning to construct a model for the three-dimensional orientation of the substrate peptide in the lasso cyclase active site. Predicted peptide cyclase molecular contacts were validated by rationally engineering multiple, phylogenetically diverse lasso cyclases to accept substrates rejected by the wild-type enzymes. Finally, we demonstrate the utility of lasso cyclase engineering by robustly producing previously inaccessible variants that tightly bind to integrin αvβ8, which is a primary activator of transforming growth factor β and, thus, an important anti-cancer target.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Song Yin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | | - Thomas A Pires
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ruoyang Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Douglas A Mitchell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Crone KK, Labonte JW, Elias MH, Freeman MF. α-N-Methyltransferase regiospecificity is mediated by proximal, redundant enzyme-substrate interactions. Protein Sci 2025; 34:e70021. [PMID: 39840790 PMCID: PMC11751858 DOI: 10.1002/pro.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025]
Abstract
N-Methylation of the peptide backbone confers pharmacologically beneficial characteristics to peptides that include greater membrane permeability and resistance to proteolytic degradation. The borosin family of ribosomally synthesized and post-translationally modified peptides offer a post-translational route to install amide backbone α-N-methylations. Previous work has elucidated the substrate scope and engineering potential of two examples of type I borosins, which feature autocatalytic precursors that encode N-methyltransferases that methylate their own C-termini in trans. We recently reported the first discrete N-methyltransferase and precursor peptide from Shewanella oneidensis MR-1, a minimally iterative, type IV borosin that allowed the first detailed kinetic analyses of borosin N-methyltransferases. Herein, we characterize the substrate scope and resilient regiospecificity of this discrete N-methyltransferase by comparison of relative rates and methylation patterns of over 40 precursor peptide variants along with structure analyses of nine enzyme-substrate complexes. Sequences critical to methylation are identified and demonstrated in assaying minimal peptide substrates and non-native peptide sequences for assessment of secondary structure requirements and engineering potential. This work grants understanding towards the mechanism of substrate recognition and iterative activity by discrete borosin N-methyltransferases.
Collapse
Affiliation(s)
- Kathryn K. Crone
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | - Jason W. Labonte
- Department of ChemistryNotre Dame of Maryland UniversityBaltimoreMarylandUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology InstituteUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | - Michael F. Freeman
- Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology InstituteUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| |
Collapse
|
5
|
Nguyen JDM, da Hora GCA, Mifflin MC, Roberts AG, Swanson JMJ. Tying the Knot: In Silico Design of Foldable Lasso Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633674. [PMID: 39896618 PMCID: PMC11785075 DOI: 10.1101/2025.01.17.633674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lasso peptides are a unique class of natural products with distinctively threaded structures, conferring exceptional stability against thermal and proteolytic degradation. Despite their promising biotechnological and pharmaceutical applications, reported attempts to prepare them by chemical synthesis result in forming the nonthreaded branched-cyclic isomer, rather than the desired lassoed structure. This is likely due to the entropic challenge of folding a short, threaded motif prior to chemically mediated cyclization. Accordingly, this study aims to better understand and enhance the relative stability of pre-lasso conformations-the essential precursor to lasso peptide formation-through sequence optimization, chemical modification, and disulfide incorporation. Using Rosetta fixed backbone design, optimal sequences for several class II lasso peptides are identified. Enhanced sampling with well-tempered metadynamics confirmed that designed sequences derived from the lasso structures of rubrivinodin and microcin J25 exhibit a notable improvement in pre-lasso stability relative to the competing nonthreaded conformations. Chemical modifications to the isopeptide bond-forming residues of microcin J25 further increase the probability of pre-lasso formation, highlighting the beneficial role of non-canonical amino acid residues. Counterintuitively, the introduction of a disulfide cross-link decreased pre-lasso stability. Although cross-linking inherently constrains the peptide structure, decreasing the entropic dominance of unfolded phase space, it hinders the requisite wrapping of the N-terminal end around the tail to adopt the pre-lasso conformation. However, combining chemical modifications with the disulfide cross-link results in further pre-lasso stabilization, indicating that the ring modifications counteract the constraints and provide a cooperative benefit with cross-linking. These findings lay the groundwork for further design efforts to enable synthetic access to the lasso peptide scaffold. SIGNIFICANCE Lasso peptides are a unique class of ribosomally synthesized and post-translationally modified natural products with diverse biological activities and potential for therapeutic applications. Although direct synthesis would facilitate therapeutic design, it has not yet been possible to fold these short sequences to their threaded architecture without the help of biosynthetic enzyme stabilization. Our work explores strategies to enhance the stability of the pre-lasso structure, the essential precursor to de novo lasso peptide formation. We find that sequence design, incorporating non-canonical amino acid residues, and design-guided cross-linking can augment stability to increase the likelihood of lasso motif accessibility. This work presents several strategies for the continued design of foldable lasso peptides.
Collapse
|
6
|
Al Musaimi O. Lasso peptides realm: Insights and applications. Peptides 2024; 182:171317. [PMID: 39489300 DOI: 10.1016/j.peptides.2024.171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lasso peptides exhibit a range of bioactivities, including antiviral effects, inhibition of the glucagon receptor, blockade of the endothelin type B receptor, inhibition of myosin light chain kinase, and modulation of the atrial natriuretic factor, as well as notable antimicrobial properties. Intriguingly, lasso peptides exhibit remarkable proteolytic and thermal stability, addressing one of the key challenges that traditional peptides often face. The challenge in producing those valuable peptides remains the main hurdle in the way of producing larger quantities or even modifying them with more potent analogues. Genome mining and heterologous expression approaches have greatly facilitated the production of lasso peptides, moving beyond mere isolation techniques. This advancement not only allows for larger quantities but also enables the creation of additional analogues with improved stability and potency. This review aims to explore the unique bioactivities and stability of lasso peptides, along with recent advancements in genome mining and heterologous expression that address production challenges and open pathways for engineering potent analogues.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne UK NE1 7RU, UK; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
7
|
Wong DA, Shaver ZM, Cabezas MD, Daniel-Ivad M, Warfel KF, Prasanna DV, Sobol SE, Fernandez R, Nicol R, DeLisa MP, Balskus EP, Karim AS, Jewett MC. Development of cell-free platforms for discovering, characterizing, and engineering post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586624. [PMID: 39651187 PMCID: PMC11623507 DOI: 10.1101/2024.03.25.586624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Post-translational modifications (PTMs) are important for the stability and function of many therapeutic proteins and peptides. Current methods for studying and engineering PTM installing proteins often suffer from low-throughput experimental techniques. Here we describe a generalizable, in vitro workflow coupling cell-free protein synthesis (CFPS) with AlphaLISA for the rapid expression and testing of PTM installing proteins. We apply our workflow to two representative classes of peptide and protein therapeutics: ribosomally synthesized and post-translationally modified peptides (RiPPs) and conjugate vaccines. First, we demonstrate how our workflow can be used to characterize the binding activity of RiPP recognition elements, an important first step in RiPP biosynthesis, and be integrated into a biodiscovery pipeline for computationally predicted RiPP products. Then, we adapt our workflow to study and engineer oligosaccharyltransferases (OSTs) involved in conjugate vaccine production, enabling the identification of mutant OSTs and sites within a carrier protein that enable high efficiency production of conjugate vaccines. In total, we expect that our workflow will accelerate design-build-test cycles for engineering PTMs.
Collapse
|
8
|
Barrett SE, Mitchell DA. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet 2024; 40:950-968. [PMID: 39218755 PMCID: PMC11537843 DOI: 10.1016/j.tig.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Tan HN, Liu WQ, Ho J, Chen YJ, Shieh FJ, Liao HT, Wang SP, Hegemann JD, Chang CY, Chu J. Structure Prediction and Protein Engineering Yield New Insights into Microcin J25 Precursor Recognition. ACS Chem Biol 2024; 19:1982-1990. [PMID: 39163642 PMCID: PMC11420955 DOI: 10.1021/acschembio.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Microcin J25 (MccJ25), a lasso peptide antibiotic with a unique structure that resembles the lariat knot, has been a topic of intense interest since its discovery in 1992. The precursor (McjA) contains a leader and a core segment. McjB is a protease activated upon binding to the leader, and McjC converts the core segment into the mature MccJ25. Previous studies suggested that these biosynthetic steps likely proceed in a (nearly) concerted fashion; however, there is only limited information regarding the structural and molecular intricacies of MccJ25 biosynthesis. To close this knowledge gap, we used AlphaFold2 to predict the structure of the precursor (McjA) in complex with its biosynthetic enzymes (McjB and McjC) and queried the critical predicted features by protein engineering. Based on the predicted structure, we designed protein variants to show that McjB can still be functional and form a proficient biosynthetic complex with McjC when its recognition and protease domains were circularly permutated or split into separate proteins. Specific residues important for McjA recognition were also identified, which permitted us to pinpoint a compensatory mutation (McjBM108T) to restore McjA/McjB interaction that rescued an otherwise nearly nonproductive precursor variant (McjAT-2M). Studies of McjA, McjB, and McjC have long been mired by them being extremely difficult to handle experimentally, and our results suggest that the AF2 predicted ternary complex structure may serve as a reasonable starting point for understanding MccJ25 biosynthesis. The prediction-validation workflow presented herein combined artificial intelligence and laboratory experiments constructively to gain new insights.
Collapse
Affiliation(s)
- Hui-Ni Tan
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Qi Liu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Josh Ho
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ju Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Fang-Jie Shieh
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Tzu Liao
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Shu-Ping Wang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Julian D. Hegemann
- Helmholtz
Institute for Pharmaceutical Research Saarland, Helmholtz Centre for
Infection Research, Saarland
University Campus, 66123 Saarbrücken, Germany
| | - Chin-Yuan Chang
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - John Chu
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Schiefelbein K, Lang J, Schuster M, Grigglestone CE, Striga R, Bigler L, Schuman MC, Zerbe O, Li Y, Hartrampf N. Merging Flow Synthesis and Enzymatic Maturation to Expand the Chemical Space of Lasso Peptides. J Am Chem Soc 2024; 146:17261-17269. [PMID: 38759637 PMCID: PMC11212047 DOI: 10.1021/jacs.4c03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Many peptidic natural products, such as lasso peptides, cyclic peptides, and cyclotides, are conformationally constrained and show biological stability, making them attractive scaffolds for drug development. Although many peptides can be synthesized and modified through chemical methods, knot-like lasso peptides such as microcin J25 (MccJ25) and their analogues remain elusive. As the chemical space of MccJ25 analogues accessible through purely biological methods is also limited, we proposed a hybrid approach: flow-based chemical synthesis of non-natural precursor peptides, followed by in vitro transformation with recombinant maturation enzymes, to yield a more diverse array of lasso peptides. Herein, we established the rapid, flow-based synthesis of chemically modified MccJ25 precursor peptides (57 amino acids). Heterologous expression of enzymes McjB and McjC was extensively optimized to improve yields and facilitate the synthesis of multiple analogues of MccJ25, including the incorporation of non-canonical tyrosine and histidine derivatives into the lasso scaffold. Finally, using our chemoenzymatic strategy, we produced a biologically active analogue containing three d-amino acids in the loop region and incorporated backbone N-methylations. Our method provides rapid access to chemically modified lasso peptides that could be used to investigate structure-activity relationships, epitope grafting, and the improvement of therapeutic properties.
Collapse
Affiliation(s)
- Kevin Schiefelbein
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jakob Lang
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Schuster
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Claire E. Grigglestone
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Robin Striga
- Laboratory
Molecules of Communication and Adaptation of Microorganisms (MCAM).
UMR7245, CNRS-Muséum National d’Histoire
Naturelle (MNHN), Alliance Sorbonne Université, 57 rue Cuvier, 75005 Paris, France
| | - Laurent Bigler
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meredith C. Schuman
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oliver Zerbe
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yanyan Li
- Laboratory
Molecules of Communication and Adaptation of Microorganisms (MCAM).
UMR7245, CNRS-Muséum National d’Histoire
Naturelle (MNHN), Alliance Sorbonne Université, 57 rue Cuvier, 75005 Paris, France
| | - Nina Hartrampf
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
11
|
da Hora GCA, Oh M, Nguyen JDM, Swanson JMJ. One Descriptor to Fold Them All: Harnessing Intuition and Machine Learning to Identify Transferable Lasso Peptide Reaction Coordinates. J Phys Chem B 2024; 128:4063-4075. [PMID: 38568862 PMCID: PMC11282586 DOI: 10.1021/acs.jpcb.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Identifying optimal reaction coordinates for complex conformational changes and protein folding remains an outstanding challenge. This study combines collective variable (CV) discovery based on chemical intuition and machine learning with enhanced sampling to converge the folding free energy landscape of lasso peptides, a unique class of natural products with knot-like tertiary structures. This knotted scaffold imparts remarkable stability, making lasso peptides resistant to proteolytic degradation, thermal denaturation, and extreme pH conditions. Although their direct synthesis would enable therapeutic design, it has not yet been possible due to the improbable occurrence of spontaneous lasso folding. Thus, simulations characterizing the folding propensity are needed to identify strategies for increasing access to the lasso architecture by stabilizing the pre-lasso ensemble before isopeptide bond formation. Herein, harmonic linear discriminant analysis (HLDA) is combined with metadynamics-enhanced sampling to discover CVs capable of distinguishing the pre-lasso fold and converging the folding propensity. Intuitive CVs are compared to iterative rounds of HLDA to identify CVs that not only accomplish these goals for one lasso peptide but also seem to be transferable to others, establishing a protocol for the identification of folding reaction coordinates for lasso peptides.
Collapse
Affiliation(s)
- Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Myongin Oh
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Harris LA, Saad H, Shelton K, Zhu L, Guo X, Mitchell DA. Tryptophan-Centric Bioinformatics Identifies New Lasso Peptide Modifications. Biochemistry 2024; 63:865-879. [PMID: 38498885 PMCID: PMC11197979 DOI: 10.1021/acs.biochem.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by a macrolactam linkage between the N-terminus and the side chain of an internal aspartic acid or glutamic acid residue. Instead of adopting a branched-cyclic conformation, lasso peptides are "threaded", with the C-terminal tail passing through the macrocycle to present a kinetically trapped rotaxane conformation. The availability of enhanced bioinformatics methods has led to a significant increase in the number of secondary modifications found on lasso peptides. To uncover new ancillary modifications in a targeted manner, a bioinformatic strategy was developed to discover lasso peptides with modifications to tryptophan. This effort identified numerous putative lasso peptide biosynthetic gene clusters with core regions of the precursor peptides enriched in tryptophan. Parsing of these tryptophan (Trp)-rich biosynthetic gene clusters uncovered several putative ancillary modifying enzymes, including halogenases and dimethylallyltransferases expected to act upon Trp. Characterization of two gene products yielded a lasso peptide with two 5-Cl-Trp modifications (chlorolassin) and another bearing 5-dimethylallyl-Trp and 2,3-didehydro-Tyr modifications (wygwalassin). Bioinformatic analysis of the requisite halogenase and dimethylallyltransferase revealed numerous other putative Trp-modified lasso peptides that remain uncharacterized. We anticipate that the Trp-centric strategy reported herein may be useful in discovering ancillary modifications for other RiPP classes and, more generally, guide the functional prediction of enzymes that act on specific amino acids.
Collapse
Affiliation(s)
- Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hamada Saad
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kyle Shelton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaorui Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Baquero F, Beis K, Craik DJ, Li Y, Link AJ, Rebuffat S, Salomón R, Severinov K, Zirah S, Hegemann JD. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep 2024; 41:469-511. [PMID: 38164764 DOI: 10.1039/d3np00046j] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Network Center for Research in Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Yanyan Li
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - A James Link
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Raúl Salomón
- Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
da Hora GCA, Oh M, Mifflin MC, Digal L, Roberts AG, Swanson JMJ. Lasso Peptides: Exploring the Folding Landscape of Nature's Smallest Interlocked Motifs. J Am Chem Soc 2024; 146:4444-4454. [PMID: 38166378 PMCID: PMC11282585 DOI: 10.1021/jacs.3c10126] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lasso peptides make up a class of natural products characterized by a threaded structure. Given their small size and stability, chemical synthesis would offer tremendous potential for the development of novel therapeutics. However, the accessibility of the pre-folded lasso architecture has limited this advance. To better understand the folding process de novo, simulations are used herein to characterize the folding propensity of microcin J25 (MccJ25), a lasso peptide known for its antimicrobial properties. New algorithms are developed to unambiguously distinguish threaded from nonthreaded precursors and determine handedness, a key feature in natural lasso peptides. We find that MccJ25 indeed forms right-handed pre-lassos, in contrast to past predictions but consistent with all natural lasso peptides. Additionally, the native pre-lasso structure is shown to be metastable prior to ring formation but to readily transition to entropically favored unfolded and nonthreaded structures, suggesting that de novo lasso folding is rare. However, by altering the ring forming residues and appending thiol and thioester functionalities, we are able to increase the stability of pre-lasso conformations. Furthermore, conditions leading to protonation of a histidine imidazole side chain further stabilize the modified pre-lasso ensemble. This work highlights the use of computational methods to characterize lasso folding and demonstrates that de novo access to lasso structures can be facilitated by optimizing sequence, unnatural modifications, and reaction conditions like pH.
Collapse
Affiliation(s)
- Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Myongin Oh
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lori Digal
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
17
|
Fernandez HN, Kretsch AM, Kunakom S, Kadjo AE, Mitchell DA, Eustáquio AS. High-Yield Lasso Peptide Production in a Burkholderia Bacterial Host by Plasmid Copy Number Engineering. ACS Synth Biol 2024; 13:337-350. [PMID: 38194362 PMCID: PMC10947786 DOI: 10.1021/acssynbio.3c00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The knotted configuration of lasso peptides confers thermal stability and proteolytic resistance, addressing two shortcomings of peptide-based drugs. However, low isolation yields hinder the discovery and development of lasso peptides. While testing Burkholderia sp. FERM BP-3421 as a bacterial host to produce the lasso peptide capistruin, an overproducer clone was previously identified. In this study, we show that an increase in the plasmid copy number partially contributed to the overproducer phenotype. Further, we modulated the plasmid copy number to recapitulate titers to an average of 160% relative to the overproducer, which is 1000-fold higher than previously reported with E. coli, reaching up to 240 mg/L. To probe the applicability of the developed tools for lasso peptide discovery, we targeted a new lasso peptide biosynthetic gene cluster from endosymbiont Mycetohabitans sp. B13, leading to the isolation of mycetolassin-15 and mycetolassin-18 in combined titers of 11 mg/L. These results validate Burkholderia sp. FERM BP-3421 as a production platform for lasso peptide discovery.
Collapse
Affiliation(s)
- Hannah N. Fernandez
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ashley M. Kretsch
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Adjo E. Kadjo
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Douglas A. Mitchell
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
18
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-guided discovery of biaryl-linked lasso peptides. Chem Sci 2023; 14:13176-13183. [PMID: 38023510 PMCID: PMC10664482 DOI: 10.1039/d3sc02380j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Using mass spectrometry, stable isotope incorporation, and extensive 2D-NMR spectrometry, we report the structural characterization of two unique examples of (C-N) biaryl-linked lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with a Trp-Tyr crosslink, while longipepetin A, from Longimycelium tulufanense, features a Trp-Trp linkage. Besides the unusual bicyclic frame, a Met of longipepetin A undergoes S-methylation to yield a trivalent sulfonium, a heretofore unprecedented RiPP modification. A bioinformatic survey revealed additional lasso peptide BGCs containing P450 enzymes which await future characterization. Lastly, nocapeptin A bioactivity was assessed against a panel of human and bacterial cell lines with modest growth-suppression activity detected towards Micrococcus luteus.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Dinh T Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| | - Douglas A Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| |
Collapse
|
19
|
Duan Y, Niu W, Pang L, Mu DS, Du ZJ, Zhang Y, Bian X, Zhong G. Leader peptide removal in lasso peptide biosynthesis based on penultimate isoleucine residue. Front Microbiol 2023; 14:1181125. [PMID: 37497541 PMCID: PMC10368454 DOI: 10.3389/fmicb.2023.1181125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Lasso peptides are ribosomally synthesized peptides that undergo post-translational modifications including leader peptide removal by B (or the segregated B1 and B2) proteins and core peptide macrolactamization by C proteins to form a unique lariat topology. A conserved threonine residue at the penultimate position of leader peptide is hitherto found in lasso peptide precursors and shown to be a critical recognition element for effective enzymatic processing. We identified a lasso peptide biosynthetic gene cluster (bsf) from Bradymonas sediminis FA350, a Gram-negative and facultatively prey-dependent bacterium that belongs to a novel bacterial order Bradymonadales in the class Deltaproteobacteria. The kinase BsfK specifically catalyzes the phosphorylation of the precursor peptide BsfA on the Ser3 residue. BsfB1 performs dual functions to accelerate the post-translational phosphorylation and assist BsfB2 in leader peptide removal. Most importantly, the penultimate residue of leader peptide is an isoleucine rather than the conserved threonine and this isoleucine has a marked impact on the phosphorylation of Ser3 as well as leader peptide removal, implying that BsfB1 and BsfB2 exhibit a new substrate selectivity for leader peptide binding and excision. This is the first experimentally validated penultimate isoleucine residue in a lasso peptide precursor to our knowledge. In silico analysis reveals that the leader peptide Ile/Val(-2) residue is rare but not uncommon in phosphorylated lasso peptides, as this residue is also discovered in Acidobacteriaceae and Sphingomonadales in addition to Bradymonadales.
Collapse
Affiliation(s)
- Yuwei Duan
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weijing Niu
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Linlin Pang
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Da-Shuai Mu
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Marine College, Shandong University, Weihai, China
| | - Zong-Jun Du
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Marine College, Shandong University, Weihai, China
| | - Youming Zhang
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology and Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guannan Zhong
- Helmholtz International Laboratory for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Suzhou Research Institute of Shandong University, Suzhou, China
| |
Collapse
|
20
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-Guided Discovery of Biaryl-Tailored Lasso Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531328. [PMID: 36945544 PMCID: PMC10028836 DOI: 10.1101/2023.03.06.531328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Here, we report the structural characterization of two unique examples of (C-N) biaryl-containing lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with Trp-Tyr crosslink while longipepetin A, from Longimycelium tulufanense, features Trp-Trp linkage. Besides the unusual bicyclic frame, longipepetin A receives an S-methylation by a new Met methyltransferase resulting in unprecedented sulfonium-bearing RiPP. Our bioinformatic survey revealed P450(s) and further maturating enzyme(s)-containing lasso BGCs awaiting future characterization.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Dinh T. Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen (Germany)
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Douglas A. Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| |
Collapse
|
21
|
Kretsch AM, Gadgil MG, DiCaprio AJ, Barrett SE, Kille BL, Si Y, Zhu L, Mitchell DA. Peptidase Activation by a Leader Peptide-Bound RiPP Recognition Element. Biochemistry 2023; 62:956-967. [PMID: 36734655 PMCID: PMC10126823 DOI: 10.1021/acs.biochem.2c00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The RiPP precursor recognition element (RRE) is a conserved domain found in many prokaryotic ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic gene clusters (BGCs). RREs bind with high specificity and affinity to a recognition sequence within the N-terminal leader region of RiPP precursor peptides. Lasso peptide biosynthesis involves an RRE-dependent leader peptidase, which is discretely encoded or fused to the RRE as a di-domain protein. Here we leveraged thousands of predicted BGCs to define the RRE:leader peptidase interaction through evolutionary covariance analysis. Each interacting domain contributes a three-stranded β-sheet to form a hydrophobic β-sandwich-like interface. The bioinformatics-guided predictions were experimentally confirmed using proteins from discrete and fused lasso peptide BGC architectures. Support for the domain-domain interface derived from chemical shift perturbation, paramagnetic relaxation enhancement experiments, and rapid variant activity screening using cell-free biosynthesis. Further validation of selected variants was performed with purified proteins. We developed a p-nitroanilide-based leader peptidase assay to illuminate the role of RRE domains. Our data show that RRE domains play a dual function. RRE domains deliver the precursor peptide to the leader peptidase, and the rate is saturable as expected for a substrate. RRE domains also partially compose the elusive S2 proteolytic pocket that binds the penultimate threonine of lasso leader peptides. Because the RRE domain is required to form the active site, leader peptidase activity is greatly diminished when the RRE domain is supplied at substoichiometric levels. Full proteolytic activation requires RRE engagement with the recognition sequence-containing portion of the leader peptide. Together, our observations define a new mechanism for protease activity regulation.
Collapse
Affiliation(s)
- Ashley M. Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Mayuresh G. Gadgil
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Adam J. DiCaprio
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Susanna E. Barrett
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Bryce L. Kille
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Lingyang Zhu
- School of Chemical Sciences, NMR Laboratory, University of Illinois, Urbana, Illinois, United States of America
| | - Douglas A. Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
22
|
Carson DV, Patiño M, Elashal HE, Cartagena AJ, Zhang Y, Whitley ME, So L, Kayser-Browne AK, Earl AM, Bhattacharyya RP, Link AJ. Cloacaenodin, an Antimicrobial Lasso Peptide with Activity against Enterobacter. ACS Infect Dis 2023; 9:111-121. [PMID: 36519726 PMCID: PMC10038104 DOI: 10.1021/acsinfecdis.2c00446] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using genome mining and heterologous expression, we report the discovery and production of a new antimicrobial lasso peptide from species related to the Enterobacter cloacae complex. Using NMR and mass spectrometric analysis, we show that this lasso peptide, named cloacaenodin, employs a threaded lasso fold which imparts proteolytic resistance that its unthreaded counterpart lacks. Cloacaenodin has selective, low micromolar, antimicrobial activity against species related to the E. cloacae complex, including species implicated in nosocomial infections and against clinical isolates of carbapenem-resistant Enterobacterales. We further used site-directed mutagenesis to probe the importance of specific residues to the peptide's biosynthesis, stability, and bioactivity.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Monica Patiño
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Hader E. Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexis Jaramillo Cartagena
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Yi Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Megan E. Whitley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Larry So
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Angelo K. Kayser-Browne
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Roby P. Bhattacharyya
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Shelton KE, Mitchell DA. Bioinformatic prediction and experimental validation of RiPP recognition elements. Methods Enzymol 2022; 679:191-233. [PMID: 36682862 PMCID: PMC9871372 DOI: 10.1016/bs.mie.2022.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products for which discovery efforts have rapidly grown over the past decade. There are currently 38 known RiPP classes encoded by prokaryotes. Half of the prokaryotic RiPP classes include a protein domain called the RiPP Recognition Element (RRE) for successful installation of post-translational modifications on a RiPP precursor peptide. In most cases, the RRE domain binds to the N-terminal "leader" region of the precursor peptide, facilitating enzymatic modification of the C-terminal "core" region. The prevalence of the RRE domain renders it a theoretically useful bioinformatic handle for class-independent RiPP discovery; however, first-in-class RiPPs have yet to be isolated and experimentally characterized using an RRE-centric strategy. Moreover, with most known RRE domains engaging their cognate precursor peptide(s) with high specificity and nanomolar affinity, evaluation of the residue-specific interactions that govern RRE:substrate complexation is a necessary first step to leveraging the RRE domain for various bioengineering applications. This chapter details protocols for developing custom bioinformatic models to predict and annotate RRE domains in a class-specific manner. Next, we outline methods for experimental validation of precursor peptide binding using fluorescence polarization binding assays and in vitro enzyme activity assays. We anticipate the methods herein will guide and enhance future critical analyses of the RRE domain, eventually enabling its future use as a customizable tool for molecular biology.
Collapse
Affiliation(s)
- Kyle E Shelton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
24
|
Andersen FD, Pedersen KD, Wilkens Juhl D, Mygind T, Chopin P, B Svenningsen E, Poulsen TB, Braad Lund M, Schramm A, Gotfredsen CH, Tørring T. Triculamin: An Unusual Lasso Peptide with Potent Antimycobacterial Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:1514-1521. [PMID: 35748039 DOI: 10.1021/acs.jnatprod.2c00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) produced by microorganisms. Here we show that the two natural products triculamin and alboverticillin, originally isolated in 1967 and 1958, respectively, with potent and specific activity against mycobacteria are in fact the same lasso peptide. We solved the structure using 2D NMR spectroscopy and expanded on the previously reported bioactivity. Through genome sequencing, we identify the responsible biosynthetic gene clusters, which curiously revealed that, unlike any known lasso peptides, their precursor peptides appear to have a follower instead of a leader peptide.
Collapse
Affiliation(s)
- Frederikke D Andersen
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Katja D Pedersen
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Dennis Wilkens Juhl
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Mygind
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Paul Chopin
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Marie Braad Lund
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Schramm
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Thomas Tørring
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Abstract
The past decade has seen impressive advances in understanding the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs). One of the most common modifications found in these natural products is macrocyclization, a strategy also used by medicinal chemists to improve metabolic stability and target affinity and specificity. Another tool of the peptide chemist, modification of the amides in a peptide backbone, has also been observed in RiPPs. This review discusses the molecular mechanisms of biosynthesis of a subset of macrocyclic RiPP families, chosen because of the unusual biochemistry involved: the five classes of lanthipeptides (thioether cyclization by Michael-type addition), sactipeptides and ranthipeptides (thioether cyclization by radical chemistry), thiopeptides (cyclization by [4+2] cycloaddition), and streptide (cyclization by radical C-C bond formation). In addition, the mechanisms of backbone amide methylation, backbone epimerization, and backbone thioamide formation are discussed, as well as an unusual route to small molecules by posttranslational modification.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wilfred A van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Alfi A, Popov A, Kumar A, Zhang KYJ, Dubiley S, Severinov K, Tagami S. Cell-Free Mutant Analysis Combined with Structure Prediction of a Lasso Peptide Biosynthetic Protease B2. ACS Synth Biol 2022; 11:2022-2028. [PMID: 35674818 DOI: 10.1021/acssynbio.2c00176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biochemical and structural analyses of purified proteins are essential for the understanding of their properties. However, many proteins are unstable and difficult to purify, hindering their characterization. The B2 proteins of the lasso peptide biosynthetic pathways are cysteine proteases that cleave precursor peptides during the maturation process. The B2 proteins are poorly soluble, and no experimentally solved structures are available. Here, we performed a rapid semicomprehensive mutational analysis of the B2 protein from the thermophilic actinobacterium, Thermobifida fusca (FusB2), using a cell-free transcription/translation system, and compared the results with the structure prediction by AlphaFold2. Analysis of 34 FusB2 mutants with substitutions of hydrophobic residues confirmed the accuracy of the predicted structure, and revealed a hydrophobic patch on the protein surface, which likely serves as the binding site of the partner protein, FusB1. Our results suggest that the combination of rapid cell-free mutant analyses with precise structure predictions can greatly accelerate structure-function research of proteins for which no structures are available.
Collapse
Affiliation(s)
- Almasul Alfi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Aleksandr Popov
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
| | - Ashutosh Kumar
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kam Y J Zhang
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Svetlana Dubiley
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Konstantin Severinov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Waksman Institute for Microbiology, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
27
|
Malit JJL, Leung HYC, Qian PY. Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery. Mar Drugs 2022; 20:398. [PMID: 35736201 PMCID: PMC9231227 DOI: 10.3390/md20060398] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Large-scale genome-mining analyses have identified an enormous number of cryptic biosynthetic gene clusters (BGCs) as a great source of novel bioactive natural products. Given the sheer number of natural product (NP) candidates, effective strategies and computational methods are keys to choosing appropriate BGCs for further NP characterization and production. This review discusses genomics-based approaches for prioritizing candidate BGCs extracted from large-scale genomic data, by highlighting studies that have successfully produced compounds with high chemical novelty, novel biosynthesis pathway, and potent bioactivities. We group these studies based on their BGC-prioritization logics: detecting presence of resistance genes, use of phylogenomics analysis as a guide, and targeting for specific chemical structures. We also briefly comment on the different bioinformatics tools used in the field and examine practical considerations when employing a large-scale genome mining study.
Collapse
Affiliation(s)
- Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hiu Yu Cherie Leung
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
28
|
Hills E, Woodward TJ, Fields S, Brandsen BM. Comprehensive Mutational Analysis of the Lasso Peptide Klebsidin. ACS Chem Biol 2022; 17:998-1010. [PMID: 35315272 PMCID: PMC9976627 DOI: 10.1021/acschembio.2c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotic resistance is a growing threat to public health, making the development of antibiotics of critical importance. One promising class of potential new antibiotics are ribosomally synthesized and post-translationally modified peptides (RiPPs), which include klebsidin, a lasso peptide from Klebsiella pneumoniae that inhibits certain bacterial RNA polymerases. We develop a high-throughput assay based on growth inhibition of Escherichia coli to analyze the mutational tolerance of klebsidin. We transform a library of klebsidin variants into E. coli and use next-generation DNA sequencing to count the frequency of each variant before and after its expression, thereby generating functional scores for 320 of 361 single amino acid changes. We identify multiple positions in the macrocyclic ring and the C-terminal tail region of klebsidin that are intolerant to mutation, as well as positions in the loop region that are highly tolerant to mutation. Characterization of selected peptide variants scored as active reveals that each adopts a threaded lasso conformation; active loop variants applied extracellularly as peptides slow the growth of E. coli and K. pneumoniae. We generate an E. coli strain with a mutation in RNA polymerase that confers resistance to klebsidin and similarly carry out a selection with the klebsidin library. We identify a single variant, klebsidin F9Y, that maintains activity against the resistant E. coli when expressed intracellularly. This finding supports the utility of this method and suggests that comprehensive mutational analysis of lasso peptides can identify unique and potentially improved variants.
Collapse
Affiliation(s)
- Ethan Hills
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Tyler J. Woodward
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska 68178, United States
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States,Department of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin M. Brandsen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States,Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska 68178, United States,Correspondence: Benjamin M. Brandsen, , ph. 402 280-2153
| |
Collapse
|
29
|
Xiu H, Wang M, Fage CD, He Y, Niu X, Han M, Li F, An X, Fan H, Song L, Zheng G, Zhu S, Tong Y. Discovery and Characterization of Rubrinodin Provide Clues into the Evolution of Lasso Peptides. Biochemistry 2022; 61:595-607. [PMID: 35298141 DOI: 10.1021/acs.biochem.2c00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lasso peptides are unique natural products that comprise a class of ribosomally synthesized and post-translationally modified peptides. Their defining three-dimensional structure is a lariat knot, in which the C-terminal tail is threaded through a macrolactam ring formed between the N-terminal amino group and an Asp or Glu side chain (i.e., an isopeptide bond). Recent genome mining strategies have revealed various types of lasso peptide biosynthetic gene clusters and have thus redefined the known chemical space of lasso peptides. To date, over 20 different types of these gene clusters have been discovered, including several different clades from Proteobacteria. Despite the diverse architectures of these gene clusters, which may or may not encode various tailoring enzymes, most currently known lasso peptides are synthesized by two discrete clades defined by the presence of an ATP-binding cassette transporter or its absence and (sometimes) concurrent appearance of an isopeptidase, raising questions about their evolutionary history. Herein, we discovered and characterized the lasso peptide rubrinodin, which is assembled by a gene cluster encoding both an ATP-binding cassette transporter and an isopeptidase. Our bioinformatics analyses of this and other representative cluster types provided new clues into the evolutionary history of lasso peptides. Furthermore, our structural and biochemical investigations of rubrinodin permitted the conversion of this thermolabile lasso peptide into a more thermostable scaffold.
Collapse
Affiliation(s)
- Huanhuan Xiu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Mengjiao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guojun Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaozhou Zhu
- National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
30
|
Hegemann JD. Combined thermal and carboxypeptidase Y stability assays for probing the threaded fold of lasso peptides. Methods Enzymol 2022; 663:177-204. [PMID: 35168788 DOI: 10.1016/bs.mie.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lasso peptides are natural products belonging to the superfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). The defining characteristic of lasso peptides is their threaded structure, which is reminiscent of a lariat knot. When working with lasso peptides, it is therefore of major importance to understand and evidence their threaded folds. While the full elucidation of their three-dimensional structures via NMR spectroscopy or crystallization remains the gold standard, these methods are time-consuming, require large quantities of highly pure lasso peptides, and therefore might not always be applicable. Instead, the unique properties of lasso peptides in context of their behavior at elevated temperatures and toward carboxypeptidase Y treatment can be leveraged as a tool to investigate and evidence the threaded lasso fold using only minute amounts of compound that does not need to be purified first. This chapter will provide insights into the thermal stability properties of lasso peptides and their behavior when treated with carboxypeptidase Y in comparison to a branched-cyclic peptide with the same amino acid sequence. Furthermore, it will be described in detail how to set up a combined thermal and carboxypeptidase Y stability assay and how to analyze its outcomes.
Collapse
Affiliation(s)
- Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
31
|
Generation of Lasso Peptide-Based ClpP Binders. Int J Mol Sci 2021; 23:ijms23010465. [PMID: 35008890 PMCID: PMC8745299 DOI: 10.3390/ijms23010465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
The Clp protease system fulfills a plethora of important functions in bacteria. It consists of a tetradecameric ClpP barrel holding the proteolytic centers and two hexameric Clp-ATPase rings, which recognize, unfold, and then feed substrate proteins into the ClpP barrel for proteolytic degradation. Flexible loops carrying conserved tripeptide motifs protrude from the Clp-ATPases and bind into hydrophobic pockets (H-pockets) on ClpP. Here, we set out to engineer microcin J25 (MccJ25), a ribosomally synthesized and post-translationally modified peptide (RiPP) of the lasso peptide subfamily, by introducing the conserved tripeptide motifs into the lasso peptide loop region to mimic the Clp-ATPase loops. We studied the capacity of the resulting lasso peptide variants to bind to ClpP and affect its activity. From the nine variants generated, one in particular (12IGF) was able to activate ClpP from Staphylococcus aureus and Bacillus subtilis. While 12IGF conferred stability to ClpP tetradecamers and stimulated peptide degradation, it did not trigger unregulated protein degradation, in contrast to the H-pocket-binding acyldepsipeptide antibiotics (ADEPs). Interestingly, synergistic interactions between 12IGF and ADEP were observed.
Collapse
|
32
|
Ramesh S, Guo X, DiCaprio AJ, De Lio AM, Harris LA, Kille BL, Pogorelov TV, Mitchell DA. Bioinformatics-Guided Expansion and Discovery of Graspetides. ACS Chem Biol 2021; 16:2787-2797. [PMID: 34766760 PMCID: PMC8688276 DOI: 10.1021/acschembio.1c00672] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Graspetides are a class of ribosomally synthesized and post-translationally modified peptide natural products featuring ATP-grasp ligase-dependent formation of macrolactones/macrolactams. These modifications arise from serine, threonine, or lysine donor residues linked to aspartate or glutamate acceptor residues. Characterized graspetides include serine protease inhibitors such as the microviridins and plesiocin. Here, we report an update to Rapid ORF Description and Evaluation Online (RODEO) for the automated detection of graspetides, which identified 3,923 high-confidence graspetide biosynthetic gene clusters. Sequence and co-occurrence analyses doubled the number of graspetide groups from 12 to 24, defined based on core consensus sequence and putative secondary modification. Bioinformatic analyses of the ATP-grasp ligase superfamily suggest that extant graspetide synthetases diverged once from an ancestral ATP-grasp ligase and later evolved to introduce a variety of ring connectivities. Furthermore, we characterized thatisin and iso-thatisin, two graspetides related by conformational stereoisomerism from Lysobacter antibioticus. Derived from a newly identified graspetide group, thatisin and iso-thatisin feature two interlocking macrolactones with identical ring connectivity, as determined by a combination of tandem mass spectrometry (MS/MS), methanolytic, and mutational analyses. NMR spectroscopy of thatisin revealed a cis conformation for a key proline residue, while molecular dynamics simulations, solvent-accessible surface area calculations, and partial methanolytic analysis coupled with MS/MS support a trans conformation for iso-thatisin at the same position. Overall, this work provides a comprehensive overview of the graspetide landscape, and the improved RODEO algorithm will accelerate future graspetide discoveries by enabling open-access analysis of existing and emerging genomes.
Collapse
Affiliation(s)
- Sangeetha Ramesh
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Xiaorui Guo
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam J. DiCaprio
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Ashley M. De Lio
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Ave, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 West Clark Street, Urbana, Illinois 61801, USA
| | - Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Bryce L. Kille
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Ave, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 West Clark Street, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Hegemann JD, Fouque KJD, Santos-Fernandez M, Fernandez-Lima F. A Bifunctional Leader Peptidase/ABC Transporter Protein Is Involved in the Maturation of the Lasso Peptide Cochonodin I from Streptococcus suis. JOURNAL OF NATURAL PRODUCTS 2021; 84:2683-2691. [PMID: 34597519 PMCID: PMC9390802 DOI: 10.1021/acs.jnatprod.1c00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lasso peptides are members of the natural product superfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). Here, we describe the first lasso peptide originating from a biosynthetic gene cluster belonging to a unique lasso peptide subclade defined by the presence of a bifunctional protein harboring both a leader peptidase (B2) and an ABC transporter (D) domain. Bioinformatic analysis revealed that these clusters also encode homologues of the NisR/NisK regulatory system and the NisF/NisE/NisG immunity factors, which are usually associated with the clusters of antimicrobial class I lanthipeptides, such as nisin, another distinct RiPP subfamily. The cluster enabling the heterologous production of the lasso peptide cochonodin I in E. coli originated from Streptococcus suis LSS65, and the threaded structure of cochonodin I was evidenced through extensive MS/MS analysis and stability assays. It was shown that the ABC transporter domain from SsuB2/D is not essential for lasso peptide maturation. By extensive genome mining dedicated exclusively to other lasso peptide biosynthetic gene clusters featuring bifunctional B2/D proteins, it was furthermore revealed that many bacteria associated with human or animal microbiota hold the biosynthetic potential to produce cochonodin-like lasso peptides, implying that these natural products might play roles in human and animal health.
Collapse
Affiliation(s)
- Julian D. Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
- Corresponding Author: (J. D. Hegemann):
| | - Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Miguel Santos-Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
34
|
Wang M, Fage CD, He Y, Mi J, Yang Y, Li F, An X, Fan H, Song L, Zhu S, Tong Y. Recent Advances and Perspectives on Expanding the Chemical Diversity of Lasso Peptides. Front Bioeng Biotechnol 2021; 9:741364. [PMID: 34631682 PMCID: PMC8498205 DOI: 10.3389/fbioe.2021.741364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products that exhibit a range of structures and bioactivities. Initially assembled from the twenty proteinogenic amino acids in a ribosome-dependent manner, RiPPs assume their peculiar bioactive structures through various post-translational modifications. The essential modifications representative of each subfamily of RiPP are performed on a precursor peptide by the so-called processing enzymes; however, various tailoring enzymes can also embellish the precursor peptide or processed peptide with additional functional groups. Lasso peptides are an interesting subfamily of RiPPs characterized by their unique lariat knot-like structure, wherein the C-terminal tail is inserted through a macrolactam ring fused by an isopeptide bond between the N-terminal amino group and an acidic side chain. Until recently, relatively few lasso peptides were found to be tailored with extra functional groups. Nevertheless, the development of new routes to diversify lasso peptides and thus introduce novel or enhanced biological, medicinally relevant, or catalytic properties is appealing. In this review, we highlight several strategies through which lasso peptides have been successfully modified and provide a brief overview of the latest findings on the tailoring of these peptides. We also propose future directions for lasso peptide tailoring as well as potential applications for these peptides in hybrid catalyst design.
Collapse
Affiliation(s)
- Mengjiao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Christopher D Fage
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinhui Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yang Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
35
|
Liu T, Ma X, Yu J, Yang W, Wang G, Wang Z, Ge Y, Song J, Han H, Zhang W, Yang D, Liu X, Ma M. Rational generation of lasso peptides based on biosynthetic gene mutations and site-selective chemical modifications. Chem Sci 2021; 12:12353-12364. [PMID: 34603665 PMCID: PMC8480316 DOI: 10.1039/d1sc02695j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Lasso peptides are a unique family of natural products whose structures feature a specific threaded fold, which confers these peptides the resistance to thermal and proteolytic degradation. This stability gives lasso peptides excellent pharmacokinetic properties, which together with their diverse reported bioactivities have garnered extensive attention because of their drug development potential. Notably, the threaded fold has proven quite inaccessible by chemical synthesis, which has hindered efficient generation of structurally diverse lasso peptides. We herein report the discovery of a new lasso peptide stlassin (1) by gene activation based on a Streptomyces heterologous expression system. Site-directed mutagenesis on the precursor peptide-encoding gene is carried out systematically, generating 17 stlassin derivatives (2–17 and 21) with residue-replacements at specific positions of 1. The solution NMR structures of 1, 3, 4, 14 and 16 are determined, supporting structural comparisons that ultimately enabled the rational production of disulfide bond-containing derivatives 18 and 19, whose structures do not belong to any of the four classes currently used to classify lasso peptides. Several site-selective chemical modifications are first applied on 16 and 21, efficiently generating new derivatives (20, 22–27) whose structures bear various decorations beyond the peptidyl monotonicity. The high production yields of these stlassin derivatives facilitate biological assays, which show that 1, 4, 16, 20, 21 and 24 possess antagonistic activities against the binding of lipopolysaccharides to toll-like receptor 4 (TLR4). These results demonstrate proof-of-concept for the combined mutational/chemical generation of lasso peptide libraries to support drug lead development. A new class II lasso peptide stlassin (1) was discovered and stlassin derivatives (2–27) were rationally generated by biosynthetic gene mutations and site-selective chemical modifications, expanding the structural diversity of lasso peptides.![]()
Collapse
Affiliation(s)
- Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wensheng Yang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Zhengdong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yuanjie Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Hua Han
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Wen Zhang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xuehui Liu
- CAS Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chao-yang District Beijing 100101 China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
36
|
Li Y, Han Y, Zeng Z, Li W, Feng S, Cao W. Discovery and Bioactivity of the Novel Lasso Peptide Microcin Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8758-8767. [PMID: 34314160 DOI: 10.1021/acs.jafc.1c02659] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lasso peptides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) secreted by bacteria, have antimicrobial activity. Here, a novel lasso peptide, microcin Y (MccY), was discovered and characterized. The gene cluster for MccY synthesis was cloned for expression in Escherichia coli. This peptide was purified by HPLC and characterized by Q-TOF. MIC assays showed that some Bacillus, Staphylococcus, Pseudomonas, Shigella, and Salmonella strains were sensitive to MccY. Interestingly, Salmonellatyphimurium and Salmonella infantis were efficiently inhibited by MccY, while they were not affected by MccJ25, a lasso peptide that has antibacterial effects on many Salmonella strains. Furthermore, MccY-resistant strains of S. typhimurium were screened, and mutations were found in FhuA and SbmA, indicating the importance of these transporters for MccY absorption. This novel peptide can greatly broaden the antimicrobial spectrum of MccJ25 in Salmonella and is expected to be used in food preservation and animal feed additive areas.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
37
|
Cao L, Beiser M, Koos JD, Orlova M, Elashal HE, Schröder HV, Link AJ. Cellulonodin-2 and Lihuanodin: Lasso Peptides with an Aspartimide Post-Translational Modification. J Am Chem Soc 2021; 143:11690-11702. [PMID: 34283601 PMCID: PMC9206484 DOI: 10.1021/jacs.1c05017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by their threaded structure. Besides the class-defining isopeptide bond, other post-translational modifications (PTMs) that further tailor lasso peptides have been previously reported. Using genome mining tools, we identified a subset of lasso peptide biosynthetic gene clusters (BGCs) that are colocalized with genes encoding protein l-isoaspartyl methyltransferase (PIMT) homologues. PIMTs have an important role in protein repair, restoring isoaspartate residues formed from asparagine deamidation to aspartate. Here we report a new function for PIMT enzymes in the post-translational modification of lasso peptides. The PIMTs associated with lasso peptide BGCs first methylate an l-aspartate side chain found within the ring of the lasso peptide. The methyl ester is then converted into a stable aspartimide moiety, endowing the lasso peptide ring with rigidity relative to its unmodified counterpart. We describe the heterologous expression and structural characterization of two examples of aspartimide-modified lasso peptides from thermophilic Gram-positive bacteria. The lasso peptide cellulonodin-2 is encoded in the genome of actinobacterium Thermobifida cellulosilytica, while lihuanodin is encoded in the genome of firmicute Lihuaxuella thermophila. Additional genome mining revealed PIMT-containing lasso peptide BGCs in 48 organisms. In addition to heterologous expression, we have reconstituted PIMT-mediated aspartimide formation in vitro, showing that lasso peptide-associated PIMTs transfer methyl groups very rapidly as compared to canonical PIMTs. Furthermore, in stark contrast to other characterized lasso peptide PTMs, the methyltransferase functions only on lassoed substrates.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Moshe Beiser
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Joseph D. Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Margarita Orlova
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Hader E. Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Hendrik V. Schröder
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
38
|
Dit Fouque KJ, Scutelnic V, Hegemann JD, Rebuffat S, Maître P, Rizzo TR, Fernandez-Lima F. Structural Insights from Tandem Mass Spectrometry, Ion Mobility-Mass Spectrometry, and Infrared/Ultraviolet Spectroscopy on Sphingonodin I: Lasso vs Branched-Cyclic Topoisomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1096-1104. [PMID: 33765377 DOI: 10.1021/jasms.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lasso peptides form a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked topology, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Sphingonodin I is a lasso peptide that has not yet been structurally characterized using the traditional structural biology tools (e.g., NMR and X-ray crystallography), and its biological function has not yet been elucidated. In the present work, we describe structural signatures characteristic of the class II lasso peptide sphingonodin I and its branched-cyclic analogue using a combination of gas-phase ion tools (e.g., tandem mass spectrometry, MS/MS, trapped ion mobility spectrometry, TIMS, and infrared, IR, and ultraviolet, UV, spectroscopies). Tandem MS/MS CID experiments on sphingonodin I yielded mechanically interlocked species with associated bi and yj fragments demonstrating the presence of a lasso topology, while tandem MS/MS ECD experiments on sphingonodin I showed a significant increase in hydrogen migration in the loop region when compared to the branched-cyclic analogue. The high-mobility resolving power of TIMS permitted the separation of both topoisomers, where sphingonodin I adopted a more compact structure than its branched-cyclic analogue. Cryogenic and room-temperature IR spectroscopy experiments evidenced a different hydrogen bond network between the two topologies, while cryogenic UV spectroscopy experiments clearly demonstrated a distinct phenylalanine environment for the lasso peptide.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, AHC4-233, Miami, Florida 33199, United States
| | - Valeriu Scutelnic
- Laboratory of Molecular Physical Chemistry, Ecole Polytechnique Fedérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, National Museum of Natural History, CNRS, 57 rue Cuvier, CP-54, 75005 Paris, France
| | - Philippe Maître
- Laboratoire de Chimie Physique, Université Paris Sud, UMR 8000 CNRS, Faculté des Sciences, Bât. 349, 91405 Orsay Cedex France
| | - Thomas R Rizzo
- Laboratory of Molecular Physical Chemistry, Ecole Polytechnique Fedérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, AHC4-233, Miami, Florida 33199, United States
| |
Collapse
|
39
|
Si Y, Kretsch AM, Daigh LM, Burk MJ, Mitchell DA. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance. J Am Chem Soc 2021; 143:5917-5927. [PMID: 33823110 DOI: 10.1021/jacs.1c01452] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that display a unique lariat-like, threaded conformation. Owing to a locked three-dimensional structure, lasso peptides can be unusually stable toward heat and proteolytic degradation. Some lasso peptides have been shown to bind human cell-surface receptors and exhibit anticancer properties, while others display antibacterial or antiviral activities. All known lasso peptides are produced by bacteria and genome-mining studies indicate that lasso peptides are a relatively prevalent class of RiPPs; however, the discovery, isolation, and characterization of lasso peptides are constrained by the lack of an efficient production system. In this study, we employ a cell-free biosynthesis (CFB) strategy to address longstanding challenges associated with lasso peptide production. We report the successful use of CFB for the formation of an array of sequence-diverse lasso peptides that include known examples as well as a new predicted lasso peptide from Thermobifida halotolerans. We further demonstrate the utility of CFB to rapidly generate and characterize multisite precursor peptide variants to evaluate the substrate tolerance of the biosynthetic pathway. By evaluating more than 1000 randomly chosen variants, we show that the lasso-forming cyclase from the fusilassin pathway is capable of producing millions of sequence-diverse lasso peptides via CFB. These data lay a firm foundation for the creation of large lasso peptide libraries using CFB to identify new variants with unique properties.
Collapse
Affiliation(s)
- Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Ashley M Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Laura M Daigh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Mark J Burk
- Lassogen, Inc., San Diego, California 92121, United States of America
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| |
Collapse
|
40
|
Wu C, van der Donk WA. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Curr Opin Biotechnol 2021; 69:221-231. [PMID: 33556835 DOI: 10.1016/j.copbio.2020.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Natural products have historically been important lead sources for drug development, particularly to combat infectious diseases. Increasingly, their structurally complex scaffolds are also envisioned as leads for applications for which they did not evolve, an approach aided by engineering of new-to-nature analogs. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are promising candidates for bioengineering because they are genetically encoded and their biosynthetic enzymes display significant substrate tolerance. This review highlights recent advances in the discovery of highly unusual new reactions by genome mining and the application of engineering approaches to generate and screen novel RiPP variants. Furthermore, through the use of synthetic biology approaches, hybrid molecules with enhanced or completely new activities have been identified, which opens the door for future advancement of RiPPs as potential next-generation therapeutics.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, United States.
| |
Collapse
|
41
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
42
|
Kloosterman AM, Medema MH, van Wezel GP. Omics-based strategies to discover novel classes of RiPP natural products. Curr Opin Biotechnol 2020; 69:60-67. [PMID: 33383297 DOI: 10.1016/j.copbio.2020.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/15/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) form a highly diverse class of natural products, with various biotechnologically and clinically relevant activities. A recent increase in discoveries of novel RiPP classes suggests that currently known RiPPs constitute just the tip of the iceberg. Genome mining has been a driving force behind these discoveries, but remains challenging due to a lack of universal genetic markers for RiPP detection. In this review, we discuss how various genome mining methodologies contribute towards the discovery of novel RiPP classes. Some methods prioritize novel biosynthetic gene clusters (BGCs) based on shared modifications between RiPP classes. Other methods identify RiPP precursors using machine-learning classifiers. The integration of such methods as well as integration with other types of omics data in more comprehensive pipelines could help these tools reach their potential, and keep pushing the boundaries of the chemical diversity of this important class of molecules.
Collapse
Affiliation(s)
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| |
Collapse
|
43
|
Kloosterman AM, Cimermancic P, Elsayed SS, Du C, Hadjithomas M, Donia MS, Fischbach MA, van Wezel GP, Medema MH. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. PLoS Biol 2020; 18:e3001026. [PMID: 33351797 PMCID: PMC7794033 DOI: 10.1371/journal.pbio.3001026] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/08/2021] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products constitute a wide variety of chemical compounds, many which can have antibiotic, antiviral, or anticancer properties that make them interesting for clinical purposes. Natural product classes include polyketides (PKs), nonribosomal peptides (NRPs), and ribosomally synthesized and post-translationally modified peptides (RiPPs). While variants of biosynthetic gene clusters (BGCs) for known classes of natural products are easy to identify in genome sequences, BGCs for new compound classes escape attention. In particular, evidence is accumulating that for RiPPs, subclasses known thus far may only represent the tip of an iceberg. Here, we present decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP genome mining algorithm aimed at the discovery of novel RiPP classes. DecRiPPter combines a Support Vector Machine (SVM) that identifies candidate RiPP precursors with pan-genomic analyses to identify which of these are encoded within operon-like structures that are part of the accessory genome of a genus. Subsequently, it prioritizes such regions based on the presence of new enzymology and based on patterns of gene cluster and precursor peptide conservation across species. We then applied decRiPPter to mine 1,295 Streptomyces genomes, which led to the identification of 42 new candidate RiPP families that could not be found by existing programs. One of these was studied further and elucidated as a representative of a novel subfamily of lanthipeptides, which we designate class V. The 2D structure of the new RiPP, which we name pristinin A3 (1), was solved using nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS) data, and chemical labeling. Two previously unidentified modifying enzymes are proposed to create the hallmark lanthionine bridges. Taken together, our work highlights how novel natural product families can be discovered by methods going beyond sequence similarity searches to integrate multiple pathway discovery criteria. This study shows that decRiPPter, an innovative algorithmic approach using pan-genomics and machine learning, can discover novel types of ribosomally synthesized peptide (RIPP) natural products, including a new class of lanthipeptides.
Collapse
Affiliation(s)
| | - Peter Cimermancic
- Verily Life Sciences, South San Francisco, CA, United States of America
| | | | - Chao Du
- Institute of Biology, Leiden University, the Netherlands
| | | | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, NJ, United States of America
| | | | - Gilles P. van Wezel
- Institute of Biology, Leiden University, the Netherlands
- Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, the Netherlands
- * E-mail: (GPvW); (MHM)
| | - Marnix H. Medema
- Bioinformatics group, Wageningen University, the Netherlands
- * E-mail: (GPvW); (MHM)
| |
Collapse
|
44
|
Harris LA, Saint-Vincent PMB, Guo X, Hudson GA, DiCaprio AJ, Zhu L, Mitchell DA. Reactivity-Based Screening for Citrulline-Containing Natural Products Reveals a Family of Bacterial Peptidyl Arginine Deiminases. ACS Chem Biol 2020; 15:3167-3175. [PMID: 33249828 DOI: 10.1021/acschembio.0c00685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products defined by a genetically encoded precursor peptide that is processed by associated biosynthetic enzymes to form the mature product. Lasso peptides are a class of RiPP defined by an isopeptide linkage between the N-terminal amine and an internal Asp/Glu residue with the C-terminal sequence threaded through the macrocycle. This unique lariat topology, which typically provides considerable stability toward heat and proteases, has stimulated interest in lasso peptides as potential therapeutics. Post-translational modifications beyond the class-defining, threaded macrolactam have been reported, including one example of Arg deimination to yield citrulline (Cit). Although a Cit-containing lasso peptide (i.e., citrulassin) was serendipitously discovered during a genome-guided campaign, the gene(s) responsible for Arg deimination has remained unknown. Herein, we describe the use of reactivity-based screening to discriminate bacterial strains that produce Arg- versus Cit-bearing citrulassins, yielding 13 new lasso peptide variants. Partial phylogenetic profiling identified a distally encoded peptidyl arginine deiminase (PAD) gene ubiquitous to the Cit-containing variants. Absence of this gene correlated strongly with lasso peptide variants only containing Arg (i.e., des-citrulassin). Heterologous expression of the PAD gene in a des-citrulassin producer resulted in the production of the deiminated analog, confirming PAD involvement in Arg deimination. The PADs were then bioinformatically surveyed to provide a deeper understanding of their taxonomic distribution and genomic contexts and to facilitate future studies that will evaluate any additional biochemical roles for the superfamily.
Collapse
|
45
|
Georgiou MA, Dommaraju SR, Guo X, Mast DH, Mitchell DA. Bioinformatic and Reactivity-Based Discovery of Linaridins. ACS Chem Biol 2020; 15:2976-2985. [PMID: 33170617 PMCID: PMC7680433 DOI: 10.1021/acschembio.0c00620] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Linaridins are members of the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Five linaridins have been reported, which are defined by the presence of dehydrobutyrine, a dehydrated, alkene-containing amino acid derived from threonine. This work describes the development of a linaridin-specific scoring module for Rapid ORF Description and Evaluation Online (RODEO), a genome-mining tool tailored toward RiPP discovery. Upon mining publicly accessible genomes available in the NCBI database, RODEO identified 561 (382 nonredundant) linaridin biosynthetic gene clusters. Linaridin BGCs with unique gene architectures and precursor sequences markedly different from previous predictions were uncovered during these efforts. To aid in data set validation, two new linaridins, pegvadin A and B, were detected through reactivity-based screening and isolated from Streptomyces noursei and Streptomyces auratus, respectively. Reactivity-based screening involves the use of a probe that chemoselectively modifies an organic functional group present in the natural product. The dehydrated amino acids present in linaridins as α/β-unsaturated carbonyls were appropriate electrophiles for nucleophilic 1,4-addition using a thiol-functionalized probe. The data presented within significantly expand the number of predicted linaridin biosynthetic gene clusters and serve as a roadmap for future work in the area. The combination of bioinformatics and reactivity-based screening is a powerful approach to accelerate natural product discovery.
Collapse
Affiliation(s)
- Matthew A. Georgiou
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Shravan R. Dommaraju
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xiaorui Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - David H. Mast
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Guerrero-Garzón JF, Madland E, Zehl M, Singh M, Rezaei S, Aachmann FL, Courtade G, Urban E, Rückert C, Busche T, Kalinowski J, Cao YR, Jiang Y, Jiang CL, Selivanova G, Zotchev SB. Class IV Lasso Peptides Synergistically Induce Proliferation of Cancer Cells and Sensitize Them to Doxorubicin. iScience 2020; 23:101785. [PMID: 33294793 PMCID: PMC7689547 DOI: 10.1016/j.isci.2020.101785] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Heterologous expression of a biosynthesis gene cluster from Amycolatopsis sp. resulted in the discovery of two unique class IV lasso peptides, felipeptins A1 and A2. A mixture of felipeptins stimulated proliferation of cancer cells, while having no such effect on the normal cells. Detailed investigation revealed, that pre-treatment of cancer cells with a mixture of felipeptins resulted in downregulation of the tumor suppressor Rb, making the cancer cells to proliferate faster. Pre-treatment with felipeptins made cancer cells considerably more sensitive to the anticancer agent doxorubicin and re-sensitized doxorubicin-resistant cells to this drug. Structural characterization and binding experiments showed an interaction between felipeptins resulting in complex formation, which explains their synergistic effect. This discovery may open an alternative avenue in cancer treatment, helping to eliminate quiescent cells that often lead to cancer relapse.
Collapse
Affiliation(s)
| | - Eva Madland
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Shiva Rezaei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden.,Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Gaston Courtade
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Yan-Ru Cao
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Cheng-Lin Jiang
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
47
|
Liu Y, Wu W, Hong S, Fang J, Zhang F, Liu G, Seo J, Zhang W. Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Wen‐Hao Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Sumin Hong
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Geng‐Xin Liu
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Jongcheol Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
48
|
How to harness biosynthetic gene clusters of lasso peptides. ACTA ACUST UNITED AC 2020; 47:703-714. [DOI: 10.1007/s10295-020-02292-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Abstract
Lasso peptides produced by bacteria have a very unique cyclic structure (“lasso” structure) and are resistant to protease. To date, a number of lasso peptides have been isolated from proteobacteria and actinobacteria. Many lasso peptides exhibit various biological activities, such as antibacterial activity, and are expected to have various applications. Based on study of genome mining, large numbers of biosynthetic gene cluster of lasso peptides are revealed to distribute over genomes of proteobacteria and actinobacteria. However, the biosynthetic gene clusters are cryptic in most cases. Therefore, the combination of genome mining and heterologous production is efficient method for the production of lasso peptides. To utilize lasso peptide as fine chemical, there have been several attempts to add new function to lasso peptide by genetic engineering. Currently, a more efficient lasso peptide production system is being developed to harness cryptic biosynthetic gene clusters of lasso peptide. In this review, the overview of lasso peptide study is discussed.
Collapse
|
49
|
Cheng C, Hua ZC. Lasso Peptides: Heterologous Production and Potential Medical Application. Front Bioeng Biotechnol 2020; 8:571165. [PMID: 33117783 PMCID: PMC7549694 DOI: 10.3389/fbioe.2020.571165] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Lasso peptides are natural products found in bacteria. They belong to a specific family of ribosomally-synthesized and posttranslationally-modified peptides with an unusual lasso structure. Lasso peptides possess remarkable thermal and proteolytic stability and various biological activities, such as antimicrobial activity, enzyme inhibition, receptor blocking, anticancer properties and HIV antagonism. They have promising potential therapeutic effects on gastrointestinal diseases, tuberculosis, Alzheimer’s disease, cardiovascular disease, fungal infections and cancer. Lasso peptides with high stability have been shown to be good carriers for other bioactive peptides. These make them attractive candidates for pharmaceutical research. This review aimed to describe the strategies used for the heterologous production of lasso peptides. Also, it indicated their therapeutical potential and their capacity to use as an efficient scaffold for epitope grafting.
Collapse
Affiliation(s)
- Cheng Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China.,Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| |
Collapse
|
50
|
Liu Y, Duan Z, Fang J, Zhang F, Xiao J, Zhang WB. Cellular Synthesis and X-ray Crystal Structure of a Designed Protein Heterocatenane. Angew Chem Int Ed Engl 2020; 59:16122-16127. [PMID: 32506656 DOI: 10.1002/anie.202005490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/24/2023]
Abstract
Herein, we report the biosynthesis of protein heterocatenanes using a programmed sequence of multiple post-translational processing events including intramolecular chain entanglement, in situ backbone cleavage, and spontaneous cyclization. The approach is general, autonomous, and can obviate the need for any additional enzymes. The catenane topology was convincingly proven using a combination of SDS-PAGE, LC-MS, size exclusion chromatography, controlled proteolytic digestion, and protein crystallography. The X-ray crystal structure clearly shows two mechanically interlocked protein rings with intact folded domains. It opens new avenues in the nascent field of protein-topology engineering.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zelin Duan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|