1
|
Jeong G, Frisbie CD. Molecular tunnel junctions based on mixed SAMs: exponential correlation of the average metal-HOMO coupling with SAM/metal work function. NANOSCALE 2025; 17:8912-8922. [PMID: 40099713 DOI: 10.1039/d5nr00487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
We report the transport characteristics of molecular tunnel junctions based on binary mixed self-assembled monolayers (SAMs) of aromatic molecules using the conducting probe atomic force microscopy platform. The molecules include terphenyl dithiol and two derivatives, 2',3',5',6'-tetrafluoroterphenyl dithiol and 4,4'-(bicyclo[2.2.2]octane-1,4-diyl)dibenzenethiol, whose junction conductances differ from terphenyl dithiol by factors of 10 and 100, respectively. The junction conductance G varies exponentially with binary SAM composition, not linearly, as might be expected. By employing an analytical model for the off-resonant current-voltage (I-V) behavior, we extract the average electronic density of state parameters for junctions with Au tip and substrate contacts as a function of binary SAM composition. The average HOMO to Fermi level offset εh is weakly dependent on SAM composition, reflecting commonly observed HOMO level pinning. In stark contrast, and in correspondence with the conductance results, the average metal-HOMO coupling Γ depends exponentially on composition, not linearly as simple composition-based averaging predicts. On the other hand, Kelvin probe measurements of binary mixed SAM-metal work functions reveal that work function (or work function change ΔΦ) varies linearly with SAM composition; it is a simple sum of the single component SAM work functions weighted by their relative surface coverages. Thus, G and Γ are both exponentially correlated with ΔΦ; variation of ΔΦ by 360 meV (∼7%) tunes G by >100× and Γ by a factor of 10, with smaller work functions (and larger ΔΦ values) leading to larger G and Γ values. Qualitatively, a correlation between Γ and ΔΦ, which both reflect interfacial charge transfer, appears reasonable, but a fundamental understanding requires a first principles model that can also account for the simultaneous pinning of εh.
Collapse
Affiliation(s)
- Gookyeong Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
2
|
Nguyen AT, Louis-Goff T, Ortiz-Garcia JJ, Pham TKN, Quardokus RC, Lee EC, Brown JJ, Hyvl J, Lee W. Cluster Formation of Self-Assembled Triarylbismuthanes and Charge Transport Characterizations of Gold-Triarylbismuthane-Gold Junctions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38669-38678. [PMID: 38981101 DOI: 10.1021/acsami.4c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Organometallic molecules are promising for molecular electronic devices due to their potential to improve electrical conductance through access to complex orbital covalency that is not available to light-element organic molecules. However, studies of the formation of organometallic monolayers and their charge transport properties are scarce. Here, we report the cluster formation and charge transport properties of gold-triarylbismuthane-gold molecular junctions. We found that triarylbismuthane molecules with -CN anchoring groups form clusters during the creation of self-assembled submonolayers. This clustering is attributed to strong interactions between the bismuth (Bi) center and the nitrogen atom in the -CN group of adjacent molecules. Examination of the influence of -NH2 and -CN anchoring groups on junction conductance revealed that, despite a stronger binding energy between the -NH2 group and gold, the conductance per molecular unit (i.e., molecule for the -NH2 group and cluster for the -CN group) is higher with the -CN anchoring group. Further analysis showed that an increase in the number of -CN groups from one to three within the junctions leads to a decrease in conductance while increasing the size of the cluster. This demonstrates the significant effects of different anchoring groups and the impact of varying the number of -CN groups on both the charge transport and cluster formation. This study highlights the importance of selecting the appropriate anchoring group in the design of molecular junctions. Additionally, controlling the size and formation of clusters can be a strategic approach to engineering charge transport in molecular junctions.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Thomas Louis-Goff
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - José J Ortiz-Garcia
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Thi Kieu Ngan Pham
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Rebecca C Quardokus
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Eun-Cheol Lee
- Department of Nanoscience and Technology, Graduate School and Department of Physics, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Joseph J Brown
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Woochul Lee
- Department of Mechanical Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Colin-Molina A, Nematiaram T, Cheung AMH, Troisi A, Frisbie CD. The Conductance Isotope Effect in Oligophenylene Imine Molecular Wires Depends on the Number and Spacing of 13C-Labeled Phenylene Rings. ACS NANO 2024; 18:7444-7454. [PMID: 38411123 DOI: 10.1021/acsnano.3c11327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We report a strong and structurally sensitive 13C intramolecular conductance isotope effect (CIE) for oligophenyleneimine (OPI) molecular wires connected to Au electrodes. Wires were built from Au surfaces beginning with the formation of 4-aminothiophenol self-assembled monolayers (SAMs) followed by subsequent condensation reactions with 13C-labeled terephthalaldehyde and phenylenediamine; in these monomers the phenylene rings were either completely 13C-labeled or the naturally abundant 12C isotopologues. Alternatively, perdeuterated versions of terephthalaldehyde and phenylenediamine were employed to make 2H(D)-labeled OPI wires. For 13C-isotopologues of short OPI wires (<4 nm) in length where the charge transport mechanism is tunneling, there was no measurable effect, i.e., 13C CIE ≈ 1, where CIE is defined as the ratio of labeled and unlabeled wire resistances, i.e., CIE = Rheavy/Rlight. However, for long OPI wires >4 nm, in which the transport mechanism is polaron hopping, a strong 13C CIE = 4-5 was observed. A much weaker inverse CIE < 1 was evident for the longest D-labeled wires. Importantly, the magnitude of the 13C CIE was sensitive to the number and spacing of 13C-labeled rings, i.e., the CIE was structurally sensitive. The structural sensitivity is intriguing because it may be employed to understand polaron hopping mechanisms and charge localization/delocalization in molecular wires. A preliminary theoretical analysis explored several possible explanations for the CIE, but so far a fully satisfactory explanation has not been identified. Nevertheless, the latest results unambiguously demonstrate structural sensitivity of the heavy atom CIE, offering directions for further utilization of this interesting effect.
Collapse
Affiliation(s)
- Abraham Colin-Molina
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tahereh Nematiaram
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G11XL, United Kingdom
| | - Andy Man Hong Cheung
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L697ZD, United Kingdom
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Bâldea I. Dichotomy between Level Broadening and Level Coupling to Electrodes in Large Area EGaIn Molecular Junctions. J Phys Chem Lett 2024:2916-2921. [PMID: 38451082 DOI: 10.1021/acs.jpclett.4c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Choosing self-assembled monolayers (SAMs) of fluorine-terminated oligophenylenes adsorbed on gold as an illustration, we show that a single-level [molecular orbital (MO)] model can excellently reproduce full I-V curves measured for large area junctions fabricated with a top EGaIn contact. In addition, this model unravels a surprising dichotomy between MO coupling to electrodes and MO broadening. Importantly for the coherence of the microscopic description, the latter is found to correlate with the SAM coverage and molecular and π* orbital tilt angles.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Chen Y, Bâldea I, Yu Y, Liang Z, Li MD, Koren E, Xie Z. CP-AFM Molecular Tunnel Junctions with Alkyl Backbones Anchored Using Alkynyl and Thiol Groups: Microscopically Different Despite Phenomenological Similarity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4410-4423. [PMID: 38348971 PMCID: PMC10906003 DOI: 10.1021/acs.langmuir.3c03759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
In this paper, we report results on the electronic structure and transport properties of molecular junctions fabricated via conducting probe atomic force microscopy (CP-AFM) using self-assembled monolayers (SAMs) of n-alkyl chains anchored with acetylene groups (CnA; n = 8, 9, 10, and 12) on Ag, Au, and Pt electrodes. We found that the current-voltage (I-V) characteristics of CnA CP-AFM junctions can be very accurately reproduced by the same off-resonant single-level model (orSLM) successfully utilized previously for many other junctions. We demonstrate that important insight into the energy-level alignment can be gained from experimental data of transport (processed via the orSLM) and ultraviolet photoelectron spectroscopy combined with ab initio quantum chemical information based on the many-body outer valence Green's function method. Measured conductance GAg < GAu < GPt is found to follow the same ordering as the metal work function ΦAu < ΦAu < ΦPt, a fact that points toward a transport mediated by an occupied molecular orbital (MO). Still, careful data analysis surprisingly revealed that transport is not dominated by the ubiquitous HOMO but rather by the HOMO-1. This is an important difference from other molecular tunnel junctions with p-type HOMO-mediated conduction investigated in the past, including the alkyl thiols (CnT) to which we refer in view of some similarities. Furthermore, unlike in CnT and other junctions anchored with thiol groups investigated in the past, the AFM tip causes in CnA an additional MO shift, whose independence of size (n) rules out significant image charge effects. Along with the prevalence of the HOMO-1 over the HOMO, the impact of the "second" (tip) electrode on the energy level alignment is another important finding that makes the CnA and CnT junctions different. What ultimately makes CnA unique at the microscopic level is a salient difference never reported previously, namely, that CnA's alkyne functional group gives rise to two energetically close (HOMO and HOMO-1) orbitals. This distinguishes the present CnA from the CnT, whose HOMO stemming from its thiol group is well separated energetically from the other MOs.
Collapse
Affiliation(s)
- Yuhong Chen
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ioan Bâldea
- Theoretical
Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Yongxin Yu
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zining Liang
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ming-De Li
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Elad Koren
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Zuoti Xie
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Quantum
Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen-Hong Kong International Science and Technology
Park, No. 3 Binglang
Road, Futian District, Shenzhen, Guangdong 518048, China
| |
Collapse
|
6
|
Mang A, Rotthowe N, Beltako K, Linseis M, Pauly F, Winter RF. Single-molecule conductance studies on quasi- and metallaaromatic dibenzoylmethane coordination compounds and their aromatic analogs. NANOSCALE 2023; 15:5305-5316. [PMID: 36811332 DOI: 10.1039/d2nr05670d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to predict the conductive behaviour of molecules, connected to macroscopic electrodes, represents a crucial prerequisite for the design of nanoscale electronic devices. In this work, we investigate whether the notion of a negative relation between conductance and aromaticity (the so-called NRCA rule) also pertains to quasi-aromatic and metallaaromatic chelates derived from dibenzoylmethane (DBM) and Lewis acids (LAs) that either do or do not contribute two extra dπ electrons to the central resonance-stabilised β-ketoenolate binding pocket. We therefore synthesised a family of methylthio-functionalised DBM coordination compounds and subjected them, along with their truly aromatic terphenyl and 4,6-diphenylpyrimidine congeners, to scanning tunneling microscope break-junction (STM-BJ) experiments on gold nanoelectrodes. All molecules share the common motif of three π-conjugated, six-membered, planar rings with a meta-configuration at the central ring. According to our results, their molecular conductances fall within a factor of ca. 9 in an ordering aromatic < metallaaromatic < quasi-aromatic. The experimental trends are rationalised by quantum transport calculations based on density functional theory (DFT).
Collapse
Affiliation(s)
- André Mang
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Nils Rotthowe
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Katawoura Beltako
- Physics Department, University of Lomé, 1515 Lomé, Togo
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Michael Linseis
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| | - Fabian Pauly
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| | - Rainer F Winter
- Chemistry Department, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
7
|
Bâldea I. Exact Analytic Formula for Conductance Predicting a Tunable Sommerfeld–Arrhenius Thermal Transition within a Single‐Step Tunneling Mechanism in Molecular Junctions Subject to Mechanical Stretching. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry Heidelberg University Im Neuenheimer Feld 229 D‐69120 Heidelberg Germany
| |
Collapse
|
8
|
Bâldea I. HC nH - Anion Chains with n ≤ 8 Are Nonlinear and Their Permanent Dipole Makes Them Potential Candidates for Astronomical Observation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103100. [PMID: 35630577 PMCID: PMC9144574 DOI: 10.3390/molecules27103100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
Abstract
To be detectable in space via radio astronomy, molecules should have a permanent dipole moment. This is the plausible reason why HCnH chains are underproportionally represented in the interstellar medium in comparison with the isoelectronically equivalent HCnN chain family, which is the most numerous homologous series astronomically observed so far. In this communication, we present results of quantum chemical calculations for the HCnH family at several levels of theory: density functional theory (DFT/B3LYP), coupled-cluster expansions (ROCCSD(T)), and G4 composite model. Contradicting previous studies, we report here that linear HCnH− anion chains with sizes of astrochemical interest are unstable (i.e., not all calculated frequencies are real). Nonlinear cis and trans HCnH− anion chains turn out to be stable both against molecular vibrations (i.e., all vibrational frequencies are real) and against electron detachment (i.e., positive electroaffinity). The fact that the cis anion conformers possess permanent dipole is the main encouraging message that this study is aiming at conveying to the astrochemical community, as this makes them observable by means of radio astronomy.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Ruidas S, Mohanty B, Bhanja P, Erakulan ES, Thapa R, Das P, Chowdhury A, Mandal SK, Jena BK, Bhaumik A. Metal-Free Triazine-Based 2D Covalent Organic Framework for Efficient H 2 Evolution by Electrochemical Water Splitting. CHEMSUSCHEM 2021; 14:5057-5064. [PMID: 34532998 DOI: 10.1002/cssc.202101663] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Indexed: 05/27/2023]
Abstract
Hydrogen evolution reaction (HER) by electrochemical water splitting is one of the most active areas of energy research, yet the benchmark electrocatalysts used for this reaction are based on expensive noble metals. This is a major bottleneck for their large-scale operation. Thus, development of efficient metal-free electrocatalysts is of paramount importance for sustainable and economical production of the renewable fuel hydrogen by water splitting. Covalent organic frameworks (COFs) show much promise for this application by virtue of their architectural stability, nanoporosity, abundant active sites located periodically throughout the framework, and high electronic conductivity due to extended π-delocalization. This study concerns a new COF material, C6 -TRZ-TFP, which is synthesized by solvothermal polycondensation of 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tris[(1,1'-biphenyl)-4-amine]. C6 -TRZ-TFP displayed excellent HER activity in electrochemical water splitting, with a very low overpotential of 200 mV and specific activity of 0.2831 mA cm-2 together with high retention of catalytic activity after a long duration of electrocatalysis in 0.5 m aqueous H2 SO4 . Density functional theory calculations suggest that the electron-deficient carbon sites near the π electron-donating nitrogen atoms are more active towards HER than those near the electron-withdrawing nitrogen and oxygen atoms.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Bishnupad Mohanty
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Piyali Bhanja
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - E S Erakulan
- Department of Physics, SRM University, Amaravati, 522 502, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University, Amaravati, 522 502, Andhra Pradesh, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manuali PO, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manuali PO, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Bikash Kumar Jena
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
10
|
Tian L, Martine E, Yu X, Hu W. Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12223-12233. [PMID: 34606290 DOI: 10.1021/acs.langmuir.1c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We studied the structure and transport properties of aromatic amine self-assembled monolayers (NH2-SAMs) on an Au surface. The oligophenylene and oligoacene amines with variable lengths can form a densely packed and uniform monolayer under proper assembly conditions. Molecular junctions incorporating an eutectic Ga-In (EGaIn) top electrode were used to characterize the charge transport properties of the amine monolayer. The current density J of the junction decreases exponentially with the molecular length (d), as J = J0 exp(-βd), which is a sign of tunneling transport, with indistinguishable values of J0 and β for NH2-SAMs of oligophenylene and oligoacene, indicating a similar molecule-electrode contact and tunneling barrier for two groups of molecules. Compared with the oligophenylene and oligoacene molecules with thiol (SH) as the anchor group, a similar β value (∼0.35 Å-1) of the aromatic NH2-SAM suggests a similar tunneling barrier, while a lower (by 2 orders of magnitude) injection current J0 is attributed to lower electronic coupling Γ of the amine group with the electrode. These observations are further supported by single-level tunneling model fitting. Our study here demonstrates the NH2-SAMs can work as an effective active layer for molecular junctions, and provide key physical parameters for the charge transport, paving the road for their applications in functional devices.
Collapse
Affiliation(s)
- Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Esther Martine
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
11
|
Xie Z, Bâldea I, Nguyen QV, Frisbie CD. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols versus alkane thiols. NANOSCALE 2021; 13:16755-16768. [PMID: 34604892 DOI: 10.1039/d1nr04410a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-molecule-metal junctions based on alkane thiol (CnT) and oligophenylene thiol (OPTn) self-assembled monolayers (SAMs) and Au electrodes are expected to exhibit similar electrical asymmetry, as both junctions have one chemisorbed Au-S contact and one physisorbed, van der Waals contact. Asymmetry is quantified by the current rectification ratio RR apparent in the current-voltage (I-V) characteristics. Here we show that RR < 1 for CnT and RR > 1 for OPTn junctions, in contrast to expectation, and further, that RR behaves very differently for CnT and OPTn junctions under mechanical extension using the conducting probe atomic force microscopy (CP-AFM) testbed. The analysis presented in this paper, which leverages results from the previously validated single level model and ab initio quantum chemical calculations, allows us to explain the puzzling experimental findings for CnT and OPTn in terms of different current rectification mechanisms. Specifically, in CnT-based junctions the Stark effect creates the HOMO level shifting necessary for rectification, while for OPTn junctions the level shift arises from position-dependent coupling of the HOMO wavefunction with the junction electrostatic potential profile. On the basis of these mechanisms, our quantum chemical calculations allow quantitative description of the impact of mechanical deformation on the measured current rectification. Additionally, our analysis, matched to experiment, facilitates direct estimation of the impact of intramolecular electrostatic screening on the junction potential profile. Overall, our examination of current rectification in benchmark molecular tunnel junctions illuminates key physical mechanisms at play in single step tunneling through molecules, and demonstrates the quantitative agreement that can be obtained between experiment and theory in these systems.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Quyen Van Nguyen
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
12
|
Han B, Li Y, Ji X, Song X, Ding S, Li B, Khalid H, Zhang Y, Xu X, Tian L, Dong H, Yu X, Hu W. Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule-Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. J Am Chem Soc 2020; 142:9708-9717. [PMID: 32362123 DOI: 10.1021/jacs.0c02215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a novel solid-state molecular device structure based on double self-assembled monolayers (D-SAM) incorporated into the suspended nanowire architecture to form a "Au|SAM-1||SAM-2|Au" junction. Using commercially available thiol molecules that are devoid of synthetic difficulty, we constructed a "Au|S-(CH2)6-ferrocene||SAM-2|Au" junction with various lengths and chemical structures of SAM-2 to tune the coupling between the ferrocene conductive molecular orbital and electrode of the junction. Combining low noise and a wide temperature range measurement, we demonstrated systematically modulated conduction depending on the length and chemical nature of SAM-2. Meanwhile, the transport mechanism transition from tunneling to hopping and the intermediate state accompanied by the current fluctuation due to the coexistence of the hopping and tunneling transport channels were observed. Considering the versatility of this solid-state D-SAM in modulating the electrode-molecule interface and electroactive groups, this strategy thus provides a novel facile strategy for tailorable nanoscale charge transport studies and functional molecular devices.
Collapse
Affiliation(s)
- Bin Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yao Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xuan Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xianneng Song
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shuaishuai Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Baili Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hira Khalid
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yaogang Zhang
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiaona Xu
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
13
|
Bâldea I. Evidence That Molecules in Molecular Junctions May Not Be Subject to the Entire External Perturbation Applied to Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1329-1337. [PMID: 31957453 DOI: 10.1021/acs.langmuir.9b03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Whether molecules forming molecular junctions are really subject to the entire external perturbation applied to electrodes is an important issue, but so far, it has not received adequate consideration in the literature. In this paper, we demonstrate that, out of the temperature difference ΔTelectr between electrodes applied in thermopower measurements, molecules only feel a significantly smaller temperature difference (ΔTmolec < ΔTelectr). Rephrasing, temperature drops at metal-molecule interfaces are substantial. Our theoretical analysis to address this problem of fundamental importance for surface science is based on experimental data collected via ultraviolet photoelectron spectroscopy, transition voltage spectroscopy, and Seebeck coefficient measurements. An important practical consequence of the presently reported finding is that the energetic alignment of the frontier molecular orbital (HOMO or LUMO) of the embedded molecules with respect to the metallic Fermi level position deduced from thermopower data-and this is frequently the case in current studies of molecular electronics-is substantially overestimated. Another important result presented here is that, unlike the exponential length dependence characterizing electric conduction (which is a fingerprint for quantum tunneling), thermal conduction through the molecules considered (oligophenylene thiols and alkane thiols) exhibits a length dependence compatible with classical physics.
Collapse
Affiliation(s)
- Ioan Bâldea
- Theoretische Chemie , Universität Heidelberg , Im Neuenheimer Feld 229 , D-69120 Heidelberg , Germany
| |
Collapse
|
14
|
Huang M, Dong J, Wang Z, Li Y, Yu L, Liu Y, Qian G, Chang S. Revealing the electronic structure of organic emitting semiconductors at the single-molecule level. Chem Commun (Camb) 2020; 56:14789-14792. [DOI: 10.1039/d0cc05602b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-molecule conductance measurements of OLED molecules show that the holes injected from metal electrode can be suppressed by adding electron-withdrawing arms, benefiting the electron–hole balance of OLED devices whose holes are excessive.
Collapse
Affiliation(s)
- Mingzhu Huang
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Jianqiao Dong
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Zhiye Wang
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Yunchuan Li
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Lei Yu
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Yichong Liu
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Gongming Qian
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, and Institute of Advanced Materials and Nanotechnology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| |
Collapse
|
15
|
Xie Z, Bâldea I, Frisbie CD. Energy Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Alkyl Thiols and Dithiols on Ag, Au, and Pt Electrodes. J Am Chem Soc 2019; 141:18182-18192. [PMID: 31617711 DOI: 10.1021/jacs.9b08905] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here an extensive study of transport and electronic structure of molecular junctions based on alkyl thiols (CnT; n = 7, 8, 9, 10, 12) and dithiols (CnDT; n = 8, 9, 10) with various lengths contacted with different metal electrodes (Ag, Au, Pt). The dependence of the low-bias resistance (R) on contact work function indicates that transport is HOMO-assisted (p-type transport). Analysis of the current-voltage (I-V) characteristics for CnT and CnDT tunnel junctions with the analytical single-level model (SLM) provides both the HOMO-Fermi energy offset εhtrans and the average molecule-electrode coupling (Γ) as a function of molecular length (n), electrode work function (Φ), and the number of chemical contacts (one or two). The SLM analysis reveals a strong Fermi level (EF) pinning effect in all the junctions, i.e., εhtrans changes very little with n, Φ, and the number of chemical contacts, but Γ depends strongly on these variables. Significantly, independent measurements of the HOMO-Fermi level offset (εhUPS) by ultraviolet photoelectron spectroscopy (UPS) for CnT and CnDT SAMs agree remarkably well with the transport-estimated εhtrans. This result provides strong evidence for hole transport mediated by localized HOMO states at the Au-thiol interface, and not by the delocalized σ states in the C-C backbones, clarifying a long-standing issue in molecular electronics. Our results also substantiate the application of the single-level model for quantitative, unified understanding of transport in benchmark molecular junctions.
Collapse
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ioan Bâldea
- Theoretische Chemie , Universität Heidelberg , INF 229 , D-69120 Heidelberg , Germany
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
16
|
Romero-Muñiz C, Ortega M, Vilhena JG, Diéz-Pérez I, Cuevas JC, Pérez R, Zotti LA. Mechanical Deformation and Electronic Structure of a Blue Copper Azurin in a Solid-State Junction. Biomolecules 2019; 9:biom9090506. [PMID: 31546917 PMCID: PMC6769874 DOI: 10.3390/biom9090506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
Protein-based electronics is an emerging field which has attracted considerable attention over the past decade. Here, we present a theoretical study of the formation and electronic structure of a metal-protein-metal junction based on the blue-copper azurin from pseudomonas aeruginosa. We focus on the case in which the protein is adsorbed on a gold surface and is contacted, at the opposite side, to an STM (Scanning Tunneling Microscopy) tip by spontaneous attachment. This has been simulated through a combination of molecular dynamics and density functional theory. We find that the attachment to the tip induces structural changes in the protein which, however, do not affect the overall electronic properties of the protein. Indeed, only changes in certain residues are observed, whereas the electronic structure of the Cu-centered complex remains unaltered, as does the total density of states of the whole protein.
Collapse
Affiliation(s)
- Carlos Romero-Muñiz
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - María Ortega
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - J G Vilhena
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
| | - Ismael Diéz-Pérez
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| | - Juan Carlos Cuevas
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - Linda A Zotti
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| |
Collapse
|
17
|
Xie Z, Bâldea I, Frisbie CD. Determination of Energy-Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Oligophenylene Thiols and Dithiols on Ag, Au, and Pt Electrodes. J Am Chem Soc 2019; 141:3670-3681. [DOI: 10.1021/jacs.8b13370] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zuoti Xie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ioan Bâldea
- Theoretische Chemie, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|