1
|
Liu M, Li A, An R, Liang X. Z-DNA Formation in the Hybrid between Two Circular ssDNAs Involving Hairpin Structures. ACS Chem Biol 2025. [PMID: 40397501 DOI: 10.1021/acschembio.5c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Z-DNA, a left-handed DNA conformation, plays critical roles in transcriptional regulation, genetic recombination, genomic instability, immunity, and human diseases. In 2019, a stable LR-chimera containing Z-DNA (Lk = 0) under physiological ionic conditions was prepared by hybridizing two complementary circular ssDNAs. However, the difficulty in preparing circular ssDNA precursors and the excessively long Z-DNA segment in the chimera limit its applications. In this study, using a splint-free circularization method, we prepared two circular ssDNAs (each with a hairpin structure). Hybridization of these two circles whose loops are complementary (but not the two hairpins) yielded a Stem-LR chimera containing short Z-DNA and B-DNA and two hairpins that could not hybridize with each other. Stability analysis revealed that the 18-34 bp Z-DNA segment with only unmodified nucleotides in the Stem-LR chimera remained stable under physiological conditions (10 mM Mg2+, 37 °C). When hairpins were far apart (180°), multiple Stem-LR chimera isomers (varying in B-Z junction numbers and Z-DNA lengths) formed. Intriguingly, higher hybridization temperatures (60 °C) favored continuous B-DNA and Z-DNA segments (minimal B-Z junctions). When hairpins were adjacent (0° orientation), exclusively continuous B-DNA/Z-DNA was obtained, even for hybridization at 10 °C. As expected, Stem-LR chimeras exhibited enhanced resistance to topoisomerase I compared to chimeras without hairpins. This approach holds promise for delivery into cells or organisms to investigate the impact of Z-DNA and its biological functions under physiological conditions.
Collapse
Affiliation(s)
- Mengqin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Angda Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Ran An
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
2
|
He J, Zhu Y, Tian Z, Liu M, Gao A, Fu W, Lu F, Sun Y, Guo Y, Pan R, Ji Y, Chen J, Lu H, Lin J, Liang X, Kim C, Zhou C, Jiao H. ZBP1 senses spliceosome stress through Z-RNA:DNA hybrid recognition. Mol Cell 2025; 85:1790-1805.e7. [PMID: 40267921 DOI: 10.1016/j.molcel.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/24/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) regulates cell death and inflammation by sensing left-handed double-helical nucleic acids, including Z-RNA and Z-DNA. However, the physiological conditions that generate Z-form nucleic acids (Z-NAs) and activate ZBP1-dependent signaling pathways remain largely elusive. In this study, we developed a probe, Zα-mFc, that specifically detected both Z-DNA and Z-RNA. Utilizing this probe, we discovered that inhibiting spliceosome causes nuclear accumulation of Z-RNA:DNA hybrids, which are sensed by ZBP1 via its Zα domains, triggering apoptosis and necroptosis in mammalian cells. Furthermore, we solved crystal structures of the human or mouse Zα1 domain complexed with a 6-bp RNA:DNA hybrid, revealing that the RNA:DNA hybrid adopts a left-handed conformation. Our findings demonstrate that the spliceosome acts as a checkpoint preventing accumulation of Z-RNA:DNA hybrids, which potentially function as endogenous ligands activating ZBP1-dependent cell death pathways.
Collapse
Affiliation(s)
- Jianfeng He
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yongyi Zhu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zichao Tian
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Mengqin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Anmin Gao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wangmi Fu
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fei Lu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yutong Sun
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yajun Guo
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rongqing Pan
- Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuchen Ji
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Huasong Lu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Juan Lin
- Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China.
| | - Chun Kim
- Department of Medicinal and Life Sciences, Hanyang University (ERICA Campus), Ansan 15588, Republic of Korea.
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Huipeng Jiao
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
3
|
Klein B, Reynolds MB, Xu B, Gharaee-Kermani M, Gao Y, Berthier CC, Henning S, Tsoi LC, Loftus SN, McNeely KE, Goudsmit CM, Victory AM, Dobry C, Hile GA, Ma F, Turnier JL, Gudjonsson JE, O'Riordan MX, Kahlenberg JM. Epidermal ZBP1 stabilizes mitochondrial Z-DNA to drive UV-induced IFN signaling in autoimmune photosensitivity. Sci Immunol 2025; 10:eado1710. [PMID: 40053607 DOI: 10.1126/sciimmunol.ado1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. We show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV) B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is up-regulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. In patient-derived samples, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB exposure, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) activation compared with the more conventional B-DNA. ZBP1 knockdown abrogates UVB-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity.
Collapse
Affiliation(s)
- Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Yiqing Gao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Svenja Henning
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shannon N Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey E McNeely
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christine M Goudsmit
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Amanda M Victory
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica L Turnier
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Sun W, Hu K, Liu M, Luo J, An R, Liang X. Facile Splint-Free Circularization of ssDNA with T4 DNA Ligase by Redesigning the Linear Substrate to Form an Intramolecular Dynamic Nick. Biomolecules 2024; 14:1027. [PMID: 39199414 PMCID: PMC11352879 DOI: 10.3390/biom14081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The efficient preparation of single-stranded DNA (ssDNA) rings, as a macromolecular construction approach with topological features, has aroused much interest due to the ssDNA rings' numerous applications in biotechnology and DNA nanotechnology. However, an extra splint is essential for enzymatic circularization, and by-products of multimers are usually present at high concentrations. Here, we proposed a simple and robust strategy using permuted precursor (linear ssDNA) for circularization by forming an intramolecular dynamic nick using a part of the linear ssDNA substrate itself as the template. After the simulation of the secondary structure for desired circular ssDNA, the linear ssDNA substrate is designed to have its ends on the duplex part (≥5 bp). By using this permuted substrate with 5'-phosphate, the splint-free circularization is simply carried out by T4 DNA ligase. Very interestingly, formation of only several base pairs (2-4) flanking the nick is enough for ligation, although they form only instantaneously under ligation conditions. More significantly, the 5-bp intramolecular duplex part commonly exists in genomes or functional DNA, demonstrating the high generality of our approach. Our findings are also helpful for understanding the mechanism of enzymatic DNA ligation from the viewpoint of substrate binding.
Collapse
Affiliation(s)
- Wenhua Sun
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Kunling Hu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Mengqin Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Jian Luo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
| | - Ran An
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
5
|
Wang Z, Zhang D, Qiu X, Inuzuka H, Xiong Y, Liu J, Chen L, Chen H, Xie L, Kaniskan HÜ, Chen X, Jin J, Wei W. Structurally Specific Z-DNA Proteolysis Targeting Chimera Enables Targeted Degradation of Adenosine Deaminase Acting on RNA 1. J Am Chem Soc 2024; 146:7584-7593. [PMID: 38469801 PMCID: PMC10988290 DOI: 10.1021/jacs.3c13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Dingpeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Minero GA, Møllebjerg A, Thiesen C, Johansen M, Jørgensen N, Birkedal V, Otzen DE, Meyer R. Extracellular G-quadruplexes and Z-DNA protect biofilms from DNase I, and G-quadruplexes form a DNAzyme with peroxidase activity. Nucleic Acids Res 2024; 52:1575-1590. [PMID: 38296834 PMCID: PMC10939358 DOI: 10.1093/nar/gkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Many bacteria form biofilms to protect themselves from predators or stressful environmental conditions. In the biofilm, bacteria are embedded in a protective extracellular matrix composed of polysaccharides, proteins and extracellular DNA (eDNA). eDNA most often is released from lysed bacteria or host mammalian cells, and it is the only matrix component most biofilms appear to have in common. However, little is known about the form DNA takes in the extracellular space, and how different non-canonical DNA structures such as Z-DNA or G-quadruplexes might contribute to its function in the biofilm. The aim of this study was to determine if non-canonical DNA structures form in eDNA-rich staphylococcal biofilms, and if these structures protect the biofilm from degradation by nucleases. We grew Staphylococcus epidermidis biofilms in laboratory media supplemented with hemin and NaCl to stabilize secondary DNA structures and visualized their location by immunolabelling and fluorescence microscopy. We furthermore visualized the macroscopic biofilm structure by optical coherence tomography. We developed assays to quantify degradation of Z-DNA and G-quadruplex DNA oligos by different nucleases, and subsequently investigated how these enzymes affected eDNA in the biofilms. Z-DNA and G-quadruplex DNA were abundant in the biofilm matrix, and were often present in a web-like structures. In vitro, the structures did not form in the absence of NaCl or mechanical shaking during biofilm growth, or in bacterial strains deficient in eDNA or exopolysaccharide production. We thus infer that eDNA and polysaccharides interact, leading to non-canonical DNA structures under mechanical stress when stabilized by salt. We also confirmed that G-quadruplex DNA and Z-DNA was present in biofilms from infected implants in a murine implant-associated osteomyelitis model. Mammalian DNase I lacked activity against Z-DNA and G-quadruplex DNA, while Micrococcal nuclease could degrade G-quadruplex DNA and S1 Aspergillus nuclease could degrade Z-DNA. Micrococcal nuclease, which originates from Staphylococcus aureus, may thus be key for dispersal of biofilm in staphylococci. In addition to its structural role, we show for the first time that the eDNA in biofilms forms a DNAzyme with peroxidase-like activity in the presence of hemin. While peroxidases are part of host defenses against pathogens, we now show that biofilms can possess intrinsic peroxidase activity in the extracellular matrix.
Collapse
Affiliation(s)
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Celine Thiesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Mikkel Illemann Johansen
- Department Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus N, Denmark
| | - Nis Pedersen Jørgensen
- Department Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus N, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Yan T, Hou Y, Zuo Q, Jiang D, Zhao H, Xia T, Zhu X, Han X, An R, Liang X. Ultralow background one-pot detection of Lead(II) using a non-enzymatic double-cycle system mediated by a hairpin-involved DNAzyme. Biosens Bioelectron 2023; 237:115534. [PMID: 37527624 DOI: 10.1016/j.bios.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
A double-cycle system has been developed for specifically detecting trace amounts of Pb2+ by significantly decreasing the background signal. The detection involves two types of RNA cleavage reactions: one using a Pb2+-specific GR5 DNAzyme (PbDz) and the other utilizing a newly constructed 10-23 DNAzyme with two hairpins embedded in its catalytic center (hpDz). The ring-structured hpDz (c-hpDz) exhibits significantly lower activity compared to the circular 10-23 DNAzyme without hairpin structures, which plays a crucial role in reducing the background signal. When Pb2+ is present, PbDz cleaves c-hpDz to its active form, which then disconnects the molecular beacon to emit the fluorescent signal. The method allows for rapid and sensitive Pb2+ detection within 40 min for 10 fM of Pb2+ and even as short as 10 min for 100 nM of Pb2+. Additionally, visual detection is possible through the non-crosslinking assembly of Au nanoparticles. The entire process can be performed in one pot and even one step, making it highly versatile and suitable for a wide range of applications, including food safety testing and environmental monitoring.
Collapse
Affiliation(s)
- Ting Yan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuying Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qianqian Zuo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Difei Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huijie Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tongyue Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoqian Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xutiange Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
8
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Lei Y, VanPortfliet JJ, Chen YF, Bryant JD, Li Y, Fails D, Torres-Odio S, Ragan KB, Deng J, Mohan A, Wang B, Brahms ON, Yates SD, Spencer M, Tong CW, Bosenberg MW, West LC, Shadel GS, Shutt TE, Upton JW, Li P, West AP. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell 2023; 186:3013-3032.e22. [PMID: 37352855 PMCID: PMC10330843 DOI: 10.1016/j.cell.2023.05.039] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.
Collapse
Affiliation(s)
- Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Jordyn J VanPortfliet
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Yi-Fan Chen
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joshua D Bryant
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Ying Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Katherine B Ragan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jingti Deng
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Armaan Mohan
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bing Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Olivia N Brahms
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shawn D Yates
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Carl W Tong
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Marcus W Bosenberg
- Departments of Pathology, Dermatology, and Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Laura Ciaccia West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jason W Upton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA.
| |
Collapse
|
10
|
Duan M, Li Y, Zhang F, Huang Q. Assessing B-Z DNA Transitions in Solutions via Infrared Spectroscopy. Biomolecules 2023; 13:964. [PMID: 37371544 DOI: 10.3390/biom13060964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Z-DNA refers to the left-handed double-helix DNA that has attracted much attention because of its association with some specific biological functions. However, because of its low content and unstable conformation, Z-DNA is normally difficult to observe or identify. Up to now, there has been a lack of unified or standard analytical methods among diverse techniques for probing Z-DNA and its transformation conveniently. In this work, NaCl, MgCl2, and ethanol were utilized to induce d(GC)8 from B-DNA to Z-DNA in vitro, and Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of Z-DNA under different induction conditions. The structural changes during the transformation process were carefully examined, and the DNA chirality alterations were validated by the circular dichroism (CD) measurements. The Z-DNA characteristic signals in the 1450 cm-1-900 cm-1 region of the d(GC)8 infrared (IR) spectrum were observed, which include the peaks at 1320 cm-1, 1125 cm-1 and 925 cm-1, respectively. The intensity ratios of A1320/A970, A1125/A970, and A925/A970 increased with Z-DNA content in the transition process. Furthermore, compared with the CD spectra, the IR spectra showed higher sensitivity to Z-DNA, providing more information about the molecular structure change of DNA. Therefore, this study has established a more reliable FTIR analytical approach to assess BZ DNA conformational changes in solutions, which may help the understanding of the Z-DNA transition mechanism and promote the study of Z-DNA functions in biological systems.
Collapse
Affiliation(s)
- Mengmeng Duan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yalin Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450047, China
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology, Hefei 230026, China
| |
Collapse
|
11
|
Kumagai T, Kinoshita B, Hirashima S, Sugiyama H, Park S. Thiophene-Extended Fluorescent Nucleosides as Molecular Rotor-Type Fluorogenic Sensors for Biomolecular Interactions. ACS Sens 2023; 8:923-932. [PMID: 36740828 DOI: 10.1021/acssensors.2c02617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent molecular rotors are versatile tools for the investigation of biomolecular interactions and the monitoring of microenvironmental changes in biological systems. They can transform invisible information into a fluorescence signal as a straightforward response. Their utility is synergistically amplified when they are merged with biomolecules. Despite the tremendous significance and superior programmability of nucleic acids, there are very few reports on the development of molecular rotor-type isomorphic nucleosides. Here, we report the synthesis and characterization of a highly emissive molecular rotor-containing thymine nucleoside (ThexT) and its 2'-O-methyluridine analogue (2'-OMe-ThexU) as fluorogenic microenvironment-sensitive sensors that emit vivid fluorescence via an interaction with the target proteins. ThexT and 2'-OMe-ThexU may potentially serve as robust probes for a broad range of applications, such as fluorescence mapping, to monitor viscosity changes and specific protein-binding interactions in biological systems.
Collapse
Affiliation(s)
- Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ban Kinoshita
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023; 2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A quote attributed to Yogi Berra makes the observation that "It's tough to make predictions, especially about the future," highlighting the difficulties posed to an author writing a manuscript like the present. The history of Z-DNA shows that earlier postulates about its biology have failed the test of time, both those from proponents who were wildly enthusiastic in enunciating roles that till this day still remain elusive to experimental validation and those from skeptics within the larger community who considered the field a folly, presumably because of the limitations in the methods available at that time. If anything, the biological roles we now know for Z-DNA and Z-RNA were not anticipated by anyone, even when those early predictions are interpreted in the most favorable way possible. The breakthroughs in the field were made using a combination of methods, especially those based on human and mouse genetic approaches informed by the biochemical and biophysical characterization of the Zα family of proteins. The first success was with the p150 Zα isoform of ADAR1 (adenosine deaminase RNA specific), with insights into the functions of ZBP1 (Z-DNA-binding protein 1) following soon after from the cell death community. Just as the replacement of mechanical clocks by more accurate designs changed expectations about navigation, the discovery of the roles assigned by nature to alternative conformations like Z-DNA has forever altered our view of how the genome operates. These recent advances have been driven by better methodology and by better analytical approaches. This article will briefly describe the methods that were key to these discoveries and highlight areas where new method development is likely to further advance our knowledge.
Collapse
|
13
|
Bao HL, Xu Y. Oligonucleotide Containing 8-Trifluoromethyl-2'-Deoxyguanosine as a Z-DNA Probe. Methods Mol Biol 2023; 2651:115-130. [PMID: 36892763 DOI: 10.1007/978-1-0716-3084-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Z-DNA structure is a noncanonical left-handed alternative form of DNA, which has been suggested to be biologically important and is related to several genetic diseases and cancer. Therefore, investigation of Z-DNA structure associated with biological events is of great importance to understanding the functions of these molecules. Here, we described the development of a trifluoromethyl labeled deoxyguanosine derivative and employed it as a 19F NMR probe to study Z-form DNA structure in vitro and in living cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| |
Collapse
|
14
|
Shi YJ, Duan M, Ding JM, Wang FQ, Bi LL, Zhang CX, Zhang YZ, Duan JY, Huang AH, Lei XL, Yin H, Zhang Y. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Mol Cell 2022; 82:4160-4175.e6. [DOI: 10.1016/j.molcel.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
15
|
Xu Q, Yang M, Chang Y, Peng S, Wang D, Zhou X, Shao Y. Switching G-quadruplex to parallel duplex by molecular rotor clustering. Nucleic Acids Res 2022; 50:10249-10263. [PMID: 36130267 PMCID: PMC9561263 DOI: 10.1093/nar/gkac811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022] Open
Abstract
Switching of G-quadruplex (G4) structures between variant types of folding has been proved to be a versatile tool for regulation of genomic expression and development of nucleic acid-based constructs. Various specific ligands have been developed to target G4s in K+ solution with therapeutic prospects. Although G4 structures have been reported to be converted by sequence modification or a unimolecular ligand binding event in K+-deficient conditions, switching G4s towards non-G4 folding continues to be a great challenge due to the stability of G4 in physiological K+ conditions. Herein, we first observed the G4 switching towards parallel-stranded duplex (psDNA) by multimolecular ligand binding (namely ligand clustering) to overcome the switching barrier in K+. Purine-rich sequences (e.g. those from the KRAS promoter region) can be converted from G4 structures to dimeric psDNAs using molecular rotors (e.g. thioflavin T and thiazole orange) as initiators. The formed psDNAs provided multiple binding sites for molecular rotor clustering to favor subsequent structures with stability higher than the corresponding G4 folding. Our finding provides a clue to designing ligands with the competency of molecular rotor clustering to implement an efficient G4 switching.
Collapse
Affiliation(s)
- Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
16
|
Yi J, Yeou S, Lee NK. DNA Bending Force Facilitates Z-DNA Formation under Physiological Salt Conditions. J Am Chem Soc 2022; 144:13137-13145. [PMID: 35839423 PMCID: PMC9335521 DOI: 10.1021/jacs.2c02466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Z-DNA, a noncanonical helical structure of double-stranded DNA (dsDNA), plays pivotal roles in various biological processes, including transcription regulation. Mechanical stresses on dsDNA, such as twisting and stretching, help to form Z-DNA. However, the effect of DNA bending, one of the most common dsDNA deformations, on Z-DNA formation is utterly unknown. Here, we show that DNA bending induces the formation of Z-DNA, that is, more Z-DNA is formed as the bending force becomes stronger. We regulated the bending force on dsDNA by using D-shaped DNA nanostructures. The B-Z transition was observed by single-molecule fluorescence resonance energy transfer. We found that as the bending force became stronger, Z-DNA was formed at lower Mg2+ concentrations. When dsDNA contained cytosine methylations, the B-Z transition occurred at 78 mM Mg2+ (midpoint) in the absence of the bending force. However, the B-Z transition occurred at a 28-fold lower Mg2+ concentration (2.8 mM) in the presence of the bending force. Monte Carlo simulation suggested that the B-Z transition stabilizes the bent form via the formation of the B-Z junction with base extrusion, which effectively releases the bending stress on DNA. Our results clearly show that the bending force facilitates the B-Z transition under physiological salt conditions.
Collapse
Affiliation(s)
- Jaehun Yi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghun Yeou
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Meng Y, Wang G, He H, Lau KH, Hurt A, Bixler BJ, Parham A, Jin SG, Xu X, Vasquez KM, Pfeifer GP, Szabó PE. Z-DNA is remodelled by ZBTB43 in prospermatogonia to safeguard the germline genome and epigenome. Nat Cell Biol 2022; 24:1141-1153. [PMID: 35787683 PMCID: PMC9276527 DOI: 10.1038/s41556-022-00941-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
Abstract
Mutagenic purine–pyrimidine repeats can adopt the left-handed Z-DNA conformation. DNA breaks at potential Z-DNA sites can lead to somatic mutations in cancer or to germline mutations that are transmitted to the next generation. It is not known whether any mechanism exists in the germ line to control Z-DNA structure and DNA breaks at purine–pyrimidine repeats. Here we provide genetic, epigenomic and biochemical evidence for the existence of a biological process that erases Z-DNA specifically in germ cells of the mouse male foetus. We show that a previously uncharacterized zinc finger protein, ZBTB43, binds to and removes Z-DNA, preventing the formation of DNA double-strand breaks. By removing Z-DNA, ZBTB43 also promotes de novo DNA methylation at CG-containing purine–pyrimidine repeats in prospermatogonia. Therefore, the genomic and epigenomic integrity of the species is safeguarded by remodelling DNA structure in the mammalian germ line during a critical window of germline epigenome reprogramming. Meng et al. show that ZBTB43 alters Z-DNA structures to prevent deleterious double-strand breaks and promote DNA methylation at purine–pyrimidine repeats in the mouse germ line.
Collapse
Affiliation(s)
- Yingying Meng
- Capital Normal University College of Life Science, Beijing, China.,Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Hongjuan He
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Hurt
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Brianna J Bixler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Andrea Parham
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.,Van Andel Institute Graduate School, Grand Rapids, MI, USA
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xingzhi Xu
- Capital Normal University College of Life Science, Beijing, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, China
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Piroska E Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
18
|
Construction of ssDNA-Attached LR-Chimera Involving Z-DNA for ZBP1 Binding Analysis. Molecules 2022; 27:molecules27123706. [PMID: 35744832 PMCID: PMC9230395 DOI: 10.3390/molecules27123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
The binding of proteins to Z-DNA is hard to analyze, especially for short non-modified DNA, because it is easily transferred to B-DNA. Here, by the hybridization of a larger circular single-stranded DNA (ssDNA) with a smaller one, an LR-chimera (involving a left-handed part and a right-handed one) with an ssDNA loop is produced. The circular ssDNAs are prepared by the hybridization of two ssDNA fragments to form two nicks, followed by nick sealing with T4 DNA ligase. No splint (a scaffold DNA for circularizing ssDNA) is required, and no polymeric byproducts are produced. The ssDNA loop on the LR-chimera can be used to attach it with other molecules by hybridization with another ssDNA. The gel shift binding assay with Z-DNA specific binding antibody (Z22) or Z-DNA binding protein 1 (ZBP1) shows that stable Z-DNA can form under physiological ionic conditions even when the extra ssDNA part is present. Concretely, a 5'-terminal biotin-modified DNA oligonucleotide complementary to the ssDNA loop on the LR-chimera is used to attach it on the surface of a biosensor inlaid with streptavidin molecules, and the binding constant of ZBP1 with Z-DNA is analyzed by BLI (bio-layer interferometry). This approach is convenient for quantitatively analyzing the binding dynamics of Z-DNA with other molecules.
Collapse
|
19
|
Herbert A, Fedorov A, Poptsova M. Mono a Mano: ZBP1's Love-Hate Relationship with the Kissing Virus. Int J Mol Sci 2022; 23:3079. [PMID: 35328502 PMCID: PMC8955656 DOI: 10.3390/ijms23063079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Z-DNA binding protein (ZBP1) very much represents the nuclear option. By initiating inflammatory cell death (ICD), ZBP1 activates host defenses to destroy infectious threats. ZBP1 is also able to induce noninflammatory regulated cell death via apoptosis (RCD). ZBP1 senses the presence of left-handed Z-DNA and Z-RNA (ZNA), including that formed by expression of endogenous retroelements. Viruses such as the Epstein-Barr "kissing virus" inhibit ICD, RCD and other cell death signaling pathways to produce persistent infection. EBV undergoes lytic replication in plasma cells, which maintain detectable levels of basal ZBP1 expression, leading us to suggest a new role for ZBP1 in maintaining EBV latency, one of benefit for both host and virus. We provide an overview of the pathways that are involved in establishing latent infection, including those regulated by MYC and NF-κB. We describe and provide a synthesis of the evidence supporting a role for ZNA in these pathways, highlighting the positive and negative selection of ZNA forming sequences in the EBV genome that underscores the coadaptation of host and virus. Instead of a fight to the death, a state of détente now exists where persistent infection by the virus is tolerated by the host, while disease outcomes such as death, autoimmunity and cancer are minimized. Based on these new insights, we propose actionable therapeutic approaches to unhost EBV.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| |
Collapse
|
20
|
Liu M, Cui Y, Zhang Y, An R, Li L, Park S, Sugiyama H, Liang X. Single base-modification reports and locates Z-DNA conformation on a Z-B-chimera formed by topological constraint. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Yixiao Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Soyoung Park
- Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| |
Collapse
|
21
|
Searching for New Z-DNA/Z-RNA Binding Proteins Based on Structural Similarity to Experimentally Validated Zα Domain. Int J Mol Sci 2022; 23:ijms23020768. [PMID: 35054954 PMCID: PMC8775963 DOI: 10.3390/ijms23020768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Z-DNA and Z-RNA are functionally important left-handed structures of nucleic acids, which play a significant role in several molecular and biological processes including DNA replication, gene expression regulation and viral nucleic acid sensing. Most proteins that have been proven to interact with Z-DNA/Z-RNA contain the so-called Zα domain, which is structurally well conserved. To date, only eight proteins with Zα domain have been described within a few organisms (including human, mouse, Danio rerio, Trypanosoma brucei and some viruses). Therefore, this paper aimed to search for new Z-DNA/Z-RNA binding proteins in the complete PDB structures database and from the AlphaFold2 protein models. A structure-based similarity search found 14 proteins with highly similar Zα domain structure in experimentally-defined proteins and 185 proteins with a putative Zα domain using the AlphaFold2 models. Structure-based alignment and molecular docking confirmed high functional conservation of amino acids involved in Z-DNA/Z-RNA, suggesting that Z-DNA/Z-RNA recognition may play an important role in a variety of cellular processes.
Collapse
|
22
|
Li L, Zhang Y, Ma W, Chen H, Liu M, An R, Cheng B, Liang X. Nonalternating purine pyrimidine sequences can form stable left-handed DNA duplex by strong topological constraint. Nucleic Acids Res 2021; 50:684-696. [PMID: 34967416 PMCID: PMC8789069 DOI: 10.1093/nar/gkab1283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
In vivo, left-handed DNA duplex (usually refers to Z-DNA) is mainly formed in the region of DNA with alternating purine pyrimidine (APP) sequence and plays significant biological roles. It is well known that d(CG)n sequence can form Z-DNA most easily under negative supercoil conditions, but its essence has not been well clarified. The study on sequence dependence of Z-DNA stability is very difficult without modification or inducers. Here, by the strong topological constraint caused by hybridization of two complementary short circular ssDNAs, left-handed duplex part was generated for various sequences, and their characteristics were investigated by using gel-shift after binding to specific proteins, CD and Tm analysis, and restriction enzyme cleavage. Under the strong topological constraint, non-APP sequences can also form left-handed DNA duplex as stable as that of APP sequences. As compared with non-APP sequences, the thermal stability difference for APP sequences between Z-form and B-form is smaller, which may be the reason that Z-DNA forms preferentially for APP ones. This result can help us to understand why nature selected APP sequences to regulate gene expression by transient Z-DNA formation, as well as why polymer with chirality can usually form both duplexes with left- or right-handed helix.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wanzhi Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Bingxiao Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
23
|
Buzzo JR, Devaraj A, Gloag ES, Jurcisek JA, Robledo-Avila F, Kesler T, Wilbanks K, Mashburn-Warren L, Balu S, Wickham J, Novotny LA, Stoodley P, Bakaletz LO, Goodman SD. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 2021; 184:5740-5758.e17. [PMID: 34735796 DOI: 10.1016/j.cell.2021.10.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.
Collapse
Affiliation(s)
- John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Erin S Gloag
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Theresa Kesler
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathryn Wilbanks
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lauren Mashburn-Warren
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sabarathnam Balu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Paul Stoodley
- Department of Orthopedics, Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA; National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton S017 1BJ, UK
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Abstract
Double-stranded RNA (dsRNA) is produced both by virus and host. Its recognition by the melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon responses. How can a host distinguish self-transcripts from nonself to ensure that responses are targeted correctly? Here, I discuss a role for MDA5 helicase in inducing Z-RNA formation by Alu inverted repeat (AIR) elements. These retroelements have highly conserved sequences that favor Z-formation, creating a site for the dsRNA-specific deaminase enzyme ADAR1 to dock. The subsequent editing destabilizes the dsRNA, ending further interaction with MDA5 and terminating innate immune responses directed against self. By enabling self-recognition, Alu retrotransposons, once invaders, now are genetic elements that keep immune responses in check. I also discuss the possible but less characterized roles of the other helicases in modulating innate immune responses, focusing on DExH-box helicase 9 (DHX9) and Mov10 RISC complex RNA helicase (MOV10). DHX9 and MOV10 function differently from MDA5, but still use nucleic acid structure, rather than nucleotide sequence, to define self. Those genetic elements encoding the alternative conformations involved, referred to as flipons, enable helicases to dynamically shape a cell's repertoire of responses. In the case of MDA5, Alu flipons switch off the dsRNA-dependent responses against self. I suggest a number of genetic systems in which to study interactions between flipons and helicases further.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, Massachusetts, United States of America
| |
Collapse
|
25
|
Chiang DC, Li Y, Ng SK. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front Immunol 2021; 11:625504. [PMID: 33613567 PMCID: PMC7886975 DOI: 10.3389/fimmu.2020.625504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Both DNA and RNA can maintain left-handed double helical Z-conformation under physiological condition, but only when stabilized by Z-DNA binding domain (ZDBD). After initial discovery in RNA editing enzyme ADAR1, ZDBD has also been described in pathogen-sensing proteins ZBP1 and PKZ in host, as well as virulence proteins E3L and ORF112 in viruses. The host-virus antagonism immediately highlights the importance of ZDBD in antiviral innate immunity. Furthermore, Z-RNA binding has been shown to be responsible for the localization of these ZDBD-containing proteins to cytoplasmic stress granules that play central role in coordinating cellular response to stresses. This review sought to consolidate current understanding of Z-RNA sensing in innate immunity and implore possible roles of Z-RNA binding within cytoplasmic stress granules.
Collapse
Affiliation(s)
- De Chen Chiang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Siew Kit Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
26
|
Liang X, Chen H, Li L, An R, Komiyama M. Ring-Structured DNA and RNA as Key Players In Vivoand In Vitro. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
27
|
Sui Z, An R, Komiyama M, Liang X. Stepwise Strategy for One-Pot Synthesis of Single-Stranded DNA Rings from Multiple Short Fragments. Chembiochem 2020; 22:1005-1011. [PMID: 33124728 DOI: 10.1002/cbic.202000738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Cyclic rings of single-stranded (ss) DNA have various unique properties, but wider applications have been hampered by their poor availability. This paper reports a convenient one-pot method in which these rings are efficiently synthesized by using T4 DNA ligase through convergent cyclization of easily available short DNA fragments. The key to the present method is to separate all the splint oligonucleotides into several sets, and add each set sequentially at an appropriate interval to the solutions containing all the short DNA fragments. Compared with simple one-pot strategies involving simultaneous addition of all the splints at the beginning of the reaction, both the selectivity and the yields of target ssDNA rings are greatly improved. This convergent method is especially useful for preparing large-sized rings that are otherwise hard to obtain. By starting from six short DNA fragments (71-82 nt), prepared by a DNA synthesizer, a ssDNA ring of 452-nt size was synthesized in 35 mol % yield and in high selectivity. Satisfactorily pure DNA rings were obtainable simply by treating the crude products with exonuclease.
Collapse
Affiliation(s)
- Zhe Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
28
|
Li Y, Huang Q, Yao G, Wang X, Zhang F, Wang T, Shao C, Zheng X, Jing X, Zhou H. Remodeling Chromatin Induces Z-DNA Conformation Detected through Fourier Transform Infrared Spectroscopy. Anal Chem 2020; 92:14452-14458. [PMID: 33085464 DOI: 10.1021/acs.analchem.0c02432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The SWI/SNF complex is a highly conserved chromatin remodeling complex and can hydrolyze ATP by its catalytic subunit BRG1 or BRM to reconstruct the chromatin. To investigate whether this ATP-dependent chromatin remodeling could affect the DNA conformation, we therefore regulated (knocked down or overexpressed) BRG1/BRM in the cells and applied Fourier transform infrared (FTIR) spectroscopy to probe DNA conformational changes. As a result, we found that BRG1/BRM was indeed associated with the DNA conformational changes, in which knockdown of BRG1/BRM reduced Z-DNA conformation, while overexpression of BRG1/BRM enhanced Z-DNA conformation. This Z-DNA conformational transformation was also verified using the Z-DNA-binding proteins. Therefore, this work has provided a direct analytical tool to probe Z-DNA transformation upon ATP-dependent chromatin remodeling.
Collapse
Affiliation(s)
- Yalin Li
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Huang
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Guohua Yao
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000 China
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Wang
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, China 450001
| | - Changsheng Shao
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xinxin Zheng
- CAS Key Laboratory of Ion-beam Bioengineering, Hefei Institutes of Physical Science, Institute of Intelligent Machines, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Huiyue Zhou
- The College of Nursing and Health, Zhengzhou University, Zhengzhou, China 450001
| |
Collapse
|
29
|
Bao HL, Masuzawa T, Oyoshi T, Xu Y. Oligonucleotides DNA containing 8-trifluoromethyl-2'-deoxyguanosine for observing Z-DNA structure. Nucleic Acids Res 2020; 48:7041-7051. [PMID: 32678885 PMCID: PMC7367190 DOI: 10.1093/nar/gkaa505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
Z-DNA is known to be a left-handed alternative form of DNA and has important biological roles as well as being related to cancer and other genetic diseases. It is therefore important to investigate Z-DNA structure and related biological events in living cells. However, the development of molecular probes for the observation of Z-DNA structures inside living cells has not yet been realized. Here, we have succeeded in developing site-specific trifluoromethyl oligonucleotide DNA by incorporation of 8-trifluoromethyl-2′-deoxyguanosine (FG). 2D NMR strongly suggested that FG adopted a syn conformation. Trifluoromethyl oligonucleotides dramatically stabilized Z-DNA, even under physiological salt concentrations. Furthermore, the trifluoromethyl DNA can be used to directly observe Z-form DNA structure and interaction of DNA with proteins in vitro, as well as in living human cells by19F NMR spectroscopy for the first time. These results provide valuable information to allow understanding of the structure and function of Z-DNA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuki Masuzawa
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
30
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
31
|
Feng XN, Cui YX, Zhang J, Tang AN, Mao HB, Kong DM. Chiral Interaction Is a Decisive Factor To Replace d-DNA with l-DNA Aptamers. Anal Chem 2020; 92:6470-6477. [PMID: 32249564 DOI: 10.1021/acs.analchem.9b05676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleic acid aptamers have been widely used in various fields such as biosensing, DNA chip, and medical diagnosis. However, the high susceptibility of nucleic acids to ubiquitous nucleases reduces the biostability of aptamers and limits their applications in biological contexts. Therefore, improving the biostability of aptamers becomes an urgent need. Herein, we present a simple strategy to resolve this problem by directly replacing the d-DNA-based aptamers with left-handed l-DNA. By testing several reported aptamers against respective targets, we found that our proposed strategy stood up well for nonchiral small molecule targets (e.g., Hemin and cationic porphyrin) and chiral targets whose interactions with aptamers are chirality-independent (e.g., ATP). We also found that the l-DNA aptamers were indeed endowed with greatly improved biostability due to the extraordinary resistance of l-DNA to nuclease digestion. With respect to other small-molecule targets whose interactions with aptamers are chirality-dependent (e.g., kanamycin) and biomacromolecules (e.g., tyrosine kinase-7), however, the proposed strategy was not entirely effective likely due to the participation of the DNA backbone chirality into the target recognition. In spite of this limitation, this strategy indeed paves an easy way to screen highly biostable aptamers important for the applications in many fields.
Collapse
Affiliation(s)
- Xue-Nan Feng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Han-Bin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
32
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
33
|
Oh KI, Kim J, Park CJ, Lee JH. Dynamics Studies of DNA with Non-canonical Structure Using NMR Spectroscopy. Int J Mol Sci 2020; 21:E2673. [PMID: 32290457 PMCID: PMC7216225 DOI: 10.3390/ijms21082673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| | - Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, Korea;
| |
Collapse
|
34
|
Gubu A, Wang J, Jin H, Tang X. Synthesis and "DNA Interlocks" Formation of Small Circular Oligodeoxynucleotides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12584-12590. [PMID: 32100989 DOI: 10.1021/acsami.0c00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circular oligodeoxynucleotides (c-ODNs) have their particular characteristics in topological properties. However, different from oligoribonucleotides, enzymatic synthesis of small c-ODNs is still challenging using conventional methods. Herein, we successfully achieved highly efficient cyclization of linear single-stranded ODNs using T4 DNA ligase simply through the frozen/lyophilization/cyclization (FLC) method. We successfully shortened the cyclization length of linear ODNs to 20 nt (l-ODN 20) with up to 63% yield, which was never achieved before through normal enzymatic methods. With the efficient FLC method, we further developed "DNA interlocks" which were intercross-linked with multiple c-ODNs using the one-pot FLC method. This FLC strategy provides a powerful, cheap, and convenient method to synthesize small c-ODNs for studying DNA nanotechnology and paves the way to achieve future deciphering of c-ODN functions.
Collapse
Affiliation(s)
- Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
35
|
|
36
|
Bhanjadeo MM, Baral B, Subudhi U. Sequence-specific B-to-Z transition in self-assembled DNA: A biophysical and thermodynamic study. Int J Biol Macromol 2019; 137:337-345. [DOI: 10.1016/j.ijbiomac.2019.06.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022]
|
37
|
Sui Z, Liu M, Wang W, Chen H, Wang G, An R, Liang X, Komiyama M. Efficient Preparation of Large-Sized Rings of Single-Stranded DNA through One-Pot Ligation of Multiple Fragments. Chem Asian J 2019; 14:3251-3254. [PMID: 31400067 DOI: 10.1002/asia.201900963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/07/2019] [Indexed: 12/26/2022]
Abstract
Circular single-stranded DNA (c-ssDNA) has significant applications in DNA detection, the development of nucleic acid medicine, and DNA nanotechnology because it shows highly unique features in mobility, dynamics, and topology. However, in most cases, the efficiency of c-ssDNA preparation is very low because polymeric byproducts are easily formed due to intermolecular reaction. Herein, we report a one-pot ligation method to efficiently prepare large c-ssDNA. By ligating several short fragments of linear single-stranded DNA (l-ssDNA) in one-pot by using T4 DNA ligase, longer l-ssDNAs intermediates are formed and then rapidly consumed by the cyclization. Since the intramolecular cyclization reaction is much faster than intermolecular polymerization, the formation of polymeric products is suppressed and the dominance of intramolecular cyclization is promoted. With this simple approach, large-sized single-stranded c-ssDNAs (e.g., 200-nt) were successfully synthesized in high selectivity and yield.
Collapse
Affiliation(s)
- Zhe Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Mengqing Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Weinan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|