1
|
Samanta D, Sarkar S, Singh D, Samanta S, Manna S, Dubey KD, Dey A, Shaik S, Rath SP. Unusually Stable Synthetic Diheme Bis-Fe(IV)oxo: An Intermediate in Diheme Enzymes MauG and BthA. J Am Chem Soc 2025. [PMID: 40367526 DOI: 10.1021/jacs.5c03000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Widespread diheme enzymes MauG and BthA of the bacterial cytochrome c peroxidase (bCCP) superfamily produce an unusually stable bis-Fe(IV) intermediate upon 2e¯-oxidation. Herein, we report, for the first time, the synthesis and characterization of the unusually stable bis-Fe(IV)═O intermediate, as a synthetic mimic of the bis-Fe(IV) species generated in the catalytic cycle of the native diheme enzymes that display similar stability at room temperature. Various spectroscopic techniques, including UV-vis, ESI-MS, EPR, resonance Raman, and Mössbauer, were utilized to thoroughly characterize this fairly stable intermediate. The reaction of a diiron(III) porphyrin dimer with soluble iodosylbenzene (sPhIO) at -80 °C produces a red-colored solution of a hitherto unknown six-coordinate bis-Fe(III)porphyrin-sPhIO adduct which quickly undergoes O-I bond cleavage to yield the green bis-Fe(IV)═O intermediate. The reactivities of such a bis-Fe(IV)═O intermediate have also been demonstrated in the oxygen atom transfer (OAT) and C-H bond activation reactions. Computational studies revealed that the local electric field (LEF) of one heme exerted on the other heme unit is most likely the root cause of the unusual stability of the bis-Fe(IV)═O complex reported here. Indeed, the bis-Fe(IV)═O intermediate has been found to be stabilized significantly relative to its monomeric unit, and the stability of the dimeric system is maximized when the two porphyrin planes are relatively oriented by 20°, at which the LEF reaches its maximum value. The present work provides an excellent opportunity for the mechanistic investigation of the highly challenging and unexplored diheme enzymatic processes and will therefore have widespread practical applicability.
Collapse
Affiliation(s)
- Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dinesh Singh
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Delhi NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Santanu Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Delhi NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Jyoti Barman D, Lohmiller T, Katz S, Haumann M, Hildebrandt P, Nam W, Ray K. An Oxoiron(IV) Complex Supported by an N-Alkylated Cyclam Ligand System Containing a Pendant Alcohol Moiety. Chemistry 2025; 31:e202404468. [PMID: 40028930 DOI: 10.1002/chem.202404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
The effect of a pendant neutral alcohol moiety in the N-alkylated cyclam (1,4,8,11-tetraazacyclotetradecane) ligand backbone is examined for the non-heme mononuclear oxoiron(IV) unit in [FeIV(Osyn)(TMC-HOR)(NCCH3)]2+ (1-syn) (TMC-HOR=2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan1-yl)ethan-1-ol). Unlike in the related [FeIV(Oanti)(TMC-SR)]+ (3-anti) (TMC-SR=1-mercaptoethyl-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) complex, bearing an axial mono-anionic thiolate ligand trans to the oxo unit, the alcohol moiety in 1-syn stays protonated and does not axially coordinate to iron. The protonation of the alcohol moiety is a prerequisite for the stabilization of the oxoiron(IV) core; it presumably serves as a hydrogen bonding donor to the oxoiron(IV) unit, which is positioned syn to the three methyl groups. Comparative reactivity studies reveal 1-syn to be a stronger hydrogen atom abstraction but weaker oxygen atom transfer agent relative to the [FeIV(Osyn)(TMC)(NCCH3)]2+ (2-syn) complex, bearing the N-tetramethylated cyclam (TMC) ligand.
Collapse
Affiliation(s)
- Dibya Jyoti Barman
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Lohmiller
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Gering HE, Manley OM, Holwerda AJ, Grant JL, Ratigan SC, Makris TM. Regulation of ferryl reactivity by the cytochrome P450 decarboxylase OleT. J Inorg Biochem 2025; 270:112912. [PMID: 40222261 DOI: 10.1016/j.jinorgbio.2025.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
The cytochrome P450 OleT catalyzes the decarboxylation of long-chain fatty acid substrates to produce terminal alkenes using hydrogen peroxide as a co-substrate. The facile activation of peroxide to form Compound I in the first step of the reaction, and subsequent CC bond cleavage mediated by Compound II, provides a unique opportunity to visualize both ferryl intermediates using transient kinetic approaches. Analysis of the Arrhenius behavior yields activation barriers of ∼6 kcal/mol and ∼ 18 kcal/mol for the decay of Compound I and Compound II respectively. The influence of the secondary coordination sphere, probed through site-directed mutagenesis approaches, suggests that restriction of the donor-acceptor distance contributes to the reactivity of Compound I. The reactivity of Compound II was further probed using kinetic solvent isotope effect approaches, confirming that the large barrier owes to a proton-gated mechanism in the decarboxylation reaction coordinate. Hydrogen-bonding to an active-site histidine (H85) in the distal pocket plays a key role in this process.
Collapse
Affiliation(s)
- Hannah E Gering
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Olivia M Manley
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Alexis J Holwerda
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Job L Grant
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Steven C Ratigan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Thomas M Makris
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
4
|
Sharma S, Behera H, Ahlawat S, Paul A. Homodimerization of 3-substituted-2-oxindoles for the construction of vicinal all-carbon quaternary centers: chemical, photochemical and electrochemical approaches. Org Biomol Chem 2025; 23:3288-3306. [PMID: 40078113 DOI: 10.1039/d5ob00027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Advancements in organic synthesis are revolutionizing the synthesis of complex natural products, which are essential in biomedical research and drug discovery due to their intricate structures. Natural products such as chimonanthine, folicanthine, calycanthine, psychotriadine, etc., with vicinal all-carbon quaternary stereocenters, are particularly significant for their strong binding properties and biological activities. One common feature of these natural products is the presence of dimeric 3-substituted-2-oxindoles having vicinal all-carbon quaternary stereocenters. This review focuses on the chemical, photochemical, and electrochemical approaches for the homodimerization of 3-substituted-2-oxindoles employed by different researchers, with a strong focus on the mechanistic details of proton-coupled electron transfer (PCET). The article also demonstrates that PCET facilitates the reduction of kinetic barriers through the formation of low-energy intermediates and the expansion of synthetic possibilities. Furthermore, natural product syntheses (folicanthine and chimonanthine) from dimeric 3-substituted-2-oxindoles are discussed. Chemical syntheses are time-consuming and, even more importantly, generate significant waste due to the use of metal-based oxidants and catalysts. In this regard, electrochemical synthesis methods offer promising solutions by avoiding the use of chemical oxidants and metal catalysts, thus minimizing environmental impact. The article also outlines the advantages and disadvantages of different synthesis methods and proposes a new direction for future research in this field.
Collapse
Affiliation(s)
- Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, MP- 462 066, India.
| | - Harapriya Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, MP- 462 066, India.
| | - Shivani Ahlawat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, MP- 462 066, India.
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, MP- 462 066, India.
| |
Collapse
|
5
|
Onderko EL, Field MJ, Silakov A, Yosca TH, Green MT. Importance of the Ferryl Quintet State in Determining the Electronic Properties of P450 Compound I. J Am Chem Soc 2025; 147:9147-9158. [PMID: 40036067 DOI: 10.1021/jacs.4c11688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
We previously reported a selenolate-ligated P450 compound I intermediate (SeP450-I) to be more reactive toward C-H bonds than its thiolate-ligated counterpart. To gain insight into how the selenolate axial ligand influences the reactivity of compound I, we have investigated the electronic structure of the SeP450-I intermediate using variable temperature Mössbauer (VTM) spectroscopy. The VTM data indicate that electronic spin relaxation rates are significantly slower in SeP450-I than in P450-I. Analyses of these data provide Δ, the energy spacing between the two lowest electronic energy levels in compound I. This spacing is typically determined by the zero-field splitting of the ferryl moiety, D, and the exchange coupling, J, between the iron(IV)oxo unit and the ligand-based radical. However, the systems examined are antiferromagnetically coupled with |J/D| > 1. As a result, Δ ∼ (3/2) J, and measurements of Δ provide J (to within ∼5%). These measurements reveal that the sign and magnitude of J track with the reactivity of compound I toward C-H bonds. Efforts to analyze these and other data highlight the inadequacy of the standard ligand field model that is often used to explain the electronic properties of compound I. Additional analyses combining our data with state energies from a previous theoretical investigation support predictions of a low-lying quintet state within the iron(IV)oxo unit. We discuss these findings in light of computational studies that suggest that access to excited states, particularly those of a high-spin nature, can promote metal-oxo mediated C-H bond cleavage.
Collapse
Affiliation(s)
- Elizabeth L Onderko
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mackenzie J Field
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Alexey Silakov
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Timothy H Yosca
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
| | - Michael T Green
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Matsuo T, Sano M, Sumida Y, Ohmiya H. Organic photoredox-catalyzed unimolecular PCET of benzylic alcohols. Chem Sci 2025; 16:3150-3156. [PMID: 39829983 PMCID: PMC11740339 DOI: 10.1039/d4sc07048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Proton-coupled electron transfer (PCET) is a crucial chemical process involving the simultaneous or sequential transfer of protons and electrons, playing a vital role in biological processes and energy conversion technologies. This study investigates the use of an organic photoredox catalyst to facilitate a unimolecular PCET process for the generation of alkyl radicals from benzylic alcohols, with a particular focus on alcohols containing electron-rich arene units. By employing a benzophenone derivative as the catalyst, the reaction proceeds efficiently under photoirradiation, achieving significant yields without the need for a Brønsted base. The findings highlight the potential of this unimolecular PCET mechanism to streamline radical generation in organic synthesis, offering a more efficient and flexible alternative to conventional methods.
Collapse
Affiliation(s)
- Tomotoki Matsuo
- Institute for Chemical Research, Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| | - Masaki Sano
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yuto Sumida
- Chemical Bioscience Team, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo Tokyo 101-0062 Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University Gokasho Uji Kyoto 611-0011 Japan
| |
Collapse
|
7
|
Shen GB, Gao SH, Jia YW, Zhu XQ, Qian BC. Establishing the Thermodynamic Cards of Dipine Models' Oxidative Metabolism on 21 Potential Elementary Steps. Molecules 2024; 29:3706. [PMID: 39125109 PMCID: PMC11313972 DOI: 10.3390/molecules29153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Dipines are a type of important antihypertensive drug as L-calcium channel blockers, whose core skeleton is the 1,4-dihydropyridine structure. Since the dihydropyridine ring is a key structural factor for biological activity, the thermodynamics of the aromatization dihydropyridine ring is a significant feature parameter for understanding the mechanism and pathways of dipine metabolism in vivo. Herein, 4-substituted-phenyl-2,6-dimethyl-3,5-diethyl-formate-1,4-dihydropyridines are refined as the structurally closest dipine models to investigate the thermodynamic potential of dipine oxidative metabolism. In this work, the thermodynamic cards of dipine models' aromatization on 21 potential elementary steps in acetonitrile have been established. Based on the thermodynamic cards, the thermodynamic properties of dipine models and related intermediates acting as electrons, hydrides, hydrogen atoms, protons, and two hydrogen ions (atoms) donors are discussed. Moreover, the thermodynamic cards are applied to evaluate the redox properties, and judge or reveal the possible oxidative mechanism of dipine models.
Collapse
Affiliation(s)
- Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| | - Shun-Hang Gao
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| | - Yan-Wei Jia
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| |
Collapse
|
8
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Keshari K, Santra A, Velasco L, Sauvan M, Kaur S, Ugale AD, Munshi S, Marco JF, Moonshiram D, Paria S. Functional Model of Compound II of Cytochrome P450: Spectroscopic Characterization and Reactivity Studies of a Fe IV-OH Complex. JACS AU 2024; 4:1142-1154. [PMID: 38559734 PMCID: PMC10976569 DOI: 10.1021/jacsau.3c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Herein, we show that the reaction of a mononuclear FeIII(OH) complex (1) with N-tosyliminobenzyliodinane (PhINTs) resulted in the formation of a FeIV(OH) species (3). The obtained complex 3 was characterized by an array of spectroscopic techniques and represented a rare example of a synthetic FeIV(OH) complex. The reaction of 1 with the one-electron oxidizing agent was reported to form a ligand-oxidized FeIII(OH) complex (2). 3 revealed a one-electron reduction potential of -0.22 V vs Fc+/Fc at -15 °C, which was 150 mV anodically shifted than 2 (Ered = -0.37 V vs Fc+/Fc at -15 °C), inferring 3 to be more oxidizing than 2. 3 reacted spontaneously with (4-OMe-C6H4)3C• to form (4-OMe-C6H4)3C(OH) through rebound of the OH group and displayed significantly faster reactivity than 2. Further, activation of the hydrocarbon C-H and the phenolic O-H bond by 2 and 3 was compared and showed that 3 is a stronger oxidant than 2. A detailed kinetic study established the occurrence of a concerted proton-electron transfer/hydrogen atom transfer reaction of 3. Studying one-electron reduction of 2 and 3 using decamethylferrocene (Fc*) revealed a higher ket of 3 than 2. The study established that the primary coordination sphere around Fe and the redox state of the metal center is very crucial in controlling the reactivity of high-valent Fe-OH complexes. Further, a FeIII(OMe) complex (4) was synthesized and thoroughly characterized, including X-ray structure determination. The reaction of 4 with PhINTs resulted in the formation of a FeIV(OMe) species (5), revealing the presence of two FeIV species with isomer shifts of -0.11 mm/s and = 0.17 mm/s in the Mössbauer spectrum and showed FeIV/FeIII potential at -0.36 V vs Fc+/Fc couple in acetonitrile at -15 °C. The reactivity studies of 5 were investigated and compared with the FeIV(OH) complex (3).
Collapse
Affiliation(s)
- Kritika Keshari
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Lucía Velasco
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Maxime Sauvan
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Simarjeet Kaur
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok D. Ugale
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sandip Munshi
- School
of Chemical Science, Indian Association
for the Cultivation of Science, Raja S C Mulliick Road, Kolkata 700032, India
| | - J. F. Marco
- Instituto
de Quimica Fisica Blas Cabrera, Consejo
Superior de Investigaciones Científicas, C. de Serrano, 119, Serrano, Madrid 28006, Spain
| | - Dooshaye Moonshiram
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Sarai NS, Fulton TJ, O'Meara RL, Johnston KE, Brinkmann-Chen S, Maar RR, Tecklenburg RE, Roberts JM, Reddel JCT, Katsoulis DE, Arnold FH. Directed evolution of enzymatic silicon-carbon bond cleavage in siloxanes. Science 2024; 383:438-443. [PMID: 38271505 DOI: 10.1126/science.adi5554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Volatile methylsiloxanes (VMS) are man-made, nonbiodegradable chemicals produced at a megaton-per-year scale, which leads to concern over their potential for environmental persistence, long-range transport, and bioaccumulation. We used directed evolution to engineer a variant of bacterial cytochrome P450BM3 to break silicon-carbon bonds in linear and cyclic VMS. To accomplish silicon-carbon bond cleavage, the enzyme catalyzes two tandem oxidations of a siloxane methyl group, which is followed by putative [1,2]-Brook rearrangement and hydrolysis. Discovery of this so-called siloxane oxidase opens possibilities for the eventual biodegradation of VMS.
Collapse
Affiliation(s)
- Nicholas S Sarai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tyler J Fulton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ryen L O'Meara
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Lučić M, Wilson MT, Pullin J, Hough MA, Svistunenko DA, Worrall JAR. New insights into controlling radical migration pathways in heme enzymes gained from the study of a dye-decolorising peroxidase. Chem Sci 2023; 14:12518-12534. [PMID: 38020392 PMCID: PMC10646903 DOI: 10.1039/d3sc04453j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
In heme enzymes, such as members of the dye-decolorising peroxidase (DyP) family, the formation of the highly oxidising catalytic Fe(iv)-oxo intermediates following reaction with hydrogen peroxide can lead to free radical migration (hole hopping) from the heme to form cationic tyrosine and/or tryptophan radicals. These species are highly oxidising (∼1 V vs. NHE) and under certain circumstances can catalyse the oxidation of organic substrates. Factors that govern which specific tyrosine or tryptophan the free radical migrates to in heme enzymes are not well understood, although in the case of tyrosyl radical formation the nearby proximity of a proton acceptor is a recognised facilitating factor. By using an A-type member of the DyP family (DtpAa) as an exemplar, we combine protein engineering, X-ray crystallography, hole-hopping calculations, EPR spectroscopy and kinetic modelling to provide compelling new insights into the control of radical migration pathways following reaction of the heme with hydrogen peroxide. We demonstrate that the presence of a tryptophan/tyrosine dyad motif displaying a T-shaped orientation of aromatic rings on the proximal side of the heme dominates the radical migration landscape in wild-type DtpAa and continues to do so following the rational engineering into DtpAa of a previously identified radical migration pathway in an A-type homolog on the distal side of the heme. Only on disrupting the proximal dyad, through removal of an oxygen atom, does the radical migration pathway then switch to the engineered distal pathway to form the desired tyrosyl radical. Implications for protein design and biocatalysis are discussed.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Jacob Pullin
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Michael A Hough
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| |
Collapse
|
12
|
Mokkawes T, De Visser T, Cao Y, De Visser SP. Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes. Molecules 2023; 28:6961. [PMID: 37836804 PMCID: PMC10574541 DOI: 10.3390/molecules28196961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.
Collapse
Affiliation(s)
| | | | | | - Sam P. De Visser
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
13
|
Follmer AH, Borovik AS. The role of basicity in selective C-H bond activation by transition metal-oxidos. Dalton Trans 2023; 52:11005-11016. [PMID: 37497779 PMCID: PMC10619463 DOI: 10.1039/d3dt01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of (bio)catalysts capable of selectively activating strong C-H bonds is a continuing challenge in modern chemistry. In both metalloenzymes and synthetic systems capable of activating C-H bonds, transition metal-oxido intermediates serve as the active species for reactivity whose thermodynamic properties influence the bond strengths they are capable of activating. In this Frontier article, we present current ideas of how the basicity of transition metal-oxidos impacts their reactivity with C-H bonds and present new opportunities within this field. We highlight recent insights into the role basicity plays in the activation process and its influence on mechanism, as well as the important role that secondary coordination sphere effects, such as hydrogen bonds, in tuning the basicity of the metal-oxido species is discussed.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
14
|
Heuer A, Coste SC, Singh G, Mercado BQ, Mayer JM. A Guide to Tris(4-Substituted)-triphenylmethyl Radicals. J Org Chem 2023; 88:9893-9901. [PMID: 37403939 PMCID: PMC10367072 DOI: 10.1021/acs.joc.3c00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/06/2023]
Abstract
Triphenylmethyl (trityl, Ph3C•) radicals have been considered the prototypical carbon-centered radical since their discovery in 1900. Tris(4-substituted)-trityls [(4-R-Ph)3C•] have since been used in many ways due to their stability, persistence, and spectroscopic activity. Despite their widespread use, existing synthetic routes toward tris(4-substituted)-trityl radicals are not reproducible and often lead to impure materials. We report here robust syntheses of six electronically varied (4-RPh)3C•, where R = NMe2, OCH3, tBu, Ph, Cl, and CF3. The characterization reported for the radicals and related compounds includes five X-ray crystal structures, electrochemical potentials, and optical spectra. Each radical is best accessed using a stepwise approach from the trityl halide, (RPh)3CCl or (RPh)3CBr, by controllably removing the halide with subsequent 1e- reduction of the trityl cation, (RPh)3C+. These syntheses afford consistently crystalline trityl radicals of high purity for further studies.
Collapse
Affiliation(s)
| | | | - Gurjot Singh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
15
|
Denisov IG, Sligar SG. Solvent isotope effects in the catalytic cycle of P450 CYP17A1: Computational modeling of the hydroxylation and lyase reactions. J Inorg Biochem 2023; 243:112202. [PMID: 37004494 PMCID: PMC10128154 DOI: 10.1016/j.jinorgbio.2023.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
The catalytic cycle of the cytochromes P450 (CYP) requires two electrons from a protein redox partner and two protons from water to generate the main catalytic intermediate, a ferryl-oxo complex with π-cation on the heme porphyrin ring, termed Compound 1. The protonation steps are at least partially rate-limiting, therefore the steady-state rates of P450 catalysis are usually slower in deuterated solvent (D2O) by a factor of 1.5-3. However, in several P450 systems a pronounced inverse kinetic solvent isotope effect (KSIE ∼0.4-0.7) is observed, where the reaction is faster in D2O. This raises an important mechanistic question: Is this inverse solvent isotope effect compatible with Compound 1 catalyzed reactions, or is it indicative of another catalytic intermediate being involved? In this communication we use exhaustive numerical modeling of the P450 steady-state kinetics to demonstrate that a significant inverse KSIE cannot be obtained for a pure Compound 1 driven catalytic cycle of P450. Rather, an alternative, protonation independent, catalytic intermediate needs to be introduced. This result is applicable to the broad spectrum of P450s in nature, but as an example we use the extensively documented inverse isotope effect in the human steroid biosynthetic P450 CYP17A1 where the involvement of a heme peroxo anion intermediate has been characterized. Based on this analysis, we show that the observation of an inverse KSIE can be used as a general mechanistic probe for reaction cycle intermediates in the cytochromes P450.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America.
| |
Collapse
|
16
|
Nolan K, Wang Y. Combined spectroscopic and structural approaches to explore the mechanism of histidine-ligated heme-dependent aromatic oxygenases. Methods Enzymol 2023; 685:405-432. [PMID: 37245909 PMCID: PMC11057917 DOI: 10.1016/bs.mie.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The emergence of histidine-ligated heme-dependent aromatic oxygenases (HDAOs) has greatly enriched heme chemistry, and more studies are required to appreciate the diversity found in His-ligated heme proteins. This chapter describes recent methods in probing the HDAO mechanisms in detail, along with the discussion on how they can benefit structure-function studies of other heme systems. The experimental details are centered on studies of TyrHs, followed by explanation of how the results obtained would advance the understanding of the specific enzyme and also HDAOs. Spectroscopic methods, namely, electronic absorption and EPR spectroscopies, and X-ray crystallography are valuable techniques commonly used to characterize the properties of the heme center and the nature of heme-based intermediate. Herein, we show that the combination of these tools are extremely powerful, not only because one can acquire electronic, magnetic, and conformational information from different phases, but also because of the advantages brought by spectroscopic characterization on crystal samples.
Collapse
Affiliation(s)
- Katie Nolan
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, GA, United States.
| |
Collapse
|
17
|
Zhao N, Goetz MK, Schneider JE, Anderson JS. Testing the Limits of Imbalanced CPET Reactivity: Mechanistic Crossover in H-Atom Abstraction by Co(III)-Oxo Complexes. J Am Chem Soc 2023; 145:5664-5673. [PMID: 36867838 PMCID: PMC10023487 DOI: 10.1021/jacs.2c10553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Transition metal-oxo complexes are key intermediates in a variety of oxidative transformations, notably C-H bond activation. The relative rate of C-H bond activation mediated by transition metal-oxo complexes is typically predicated on substrate bond dissociation free energy in cases with a concerted proton-electron transfer (CPET). However, recent work has demonstrated that alternative stepwise thermodynamic contributions such as acidity/basicity or redox potentials of the substrate/metal-oxo may dominate in some cases. In this context, we have found basicity-governed concerted activation of C-H bonds with the terminal CoIII-oxo complex PhB(tBuIm)3CoIIIO. We have been interested in testing the limits of such basicity-dependent reactivity and have synthesized an analogous, more basic complex, PhB(AdIm)3CoIIIO, and studied its reactivity with H-atom donors. This complex displays a higher degree of imbalanced CPET reactivity than PhB(tBuIm)3CoIIIO with C-H substrates, and O-H activation of phenol substrates displays mechanistic crossover to stepwise proton transfer-electron transfer (PTET) reactivity. Analysis of the thermodynamics of proton transfer (PT) and electron transfer (ET) reveals a distinct thermodynamic crossing point between concerted and stepwise reactivity. Furthermore, the relative rates of stepwise and concerted reactivity suggest that maximally imbalanced systems provide the fastest CPET rates up to the point of mechanistic crossover, which results in slower product formation.
Collapse
Affiliation(s)
- Norman Zhao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Joseph E. Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Rančić A, Babić N, Orio M, Peyrot F. Structural Features Governing the Metabolic Stability of Tetraethyl-Substituted Nitroxides in Rat Liver Microsomes. Antioxidants (Basel) 2023; 12:antiox12020402. [PMID: 36829960 PMCID: PMC9952648 DOI: 10.3390/antiox12020402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Nitroxides are potent tools for studying biological systems by electron paramagnetic resonance (EPR). Whatever the application, a certain stability is necessary for successful detection. Since conventional tetramethyl-substituted cyclic nitroxides have insufficient in vivo stability, efforts have recently been made to synthesize more stable, tetraethyl-substituted nitroxides. In our previous study on piperidine nitroxides, the introduction of steric hindrance around the nitroxide moiety successfully increased the resistance to reduction into hydroxylamine. However, it also rendered the carbon backbone susceptible to modifications by xenobiotic metabolism due to increased lipophilicity. Here, we focus on a new series of three nitroxide candidates with tetraethyl substitution, namely with pyrrolidine, pyrroline, and isoindoline cores, to identify which structural features afford increased stability for future probe design and application in in vivo EPR imaging. In the presence of rat liver microsomes, pyrrolidine and pyrroline tetraethyl nitroxides exhibited a higher stability than isoindoline nitroxide, which was studied in detail by HPLC-HRMS. Multiple metabolites suggest that the aerobic transformation of tetraethyl isoindoline nitroxide is initiated by hydrogen abstraction by P450-FeV = O from one of the ethyl groups, followed by rearrangement and further modifications by cytochrome P450, as supported by DFT calculations. Under anaerobic conditions, only reduction by rat liver microsomes was observed with involvement of P450-FeII.
Collapse
Affiliation(s)
- Aleksandra Rančić
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Nikola Babić
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
| | - Maylis Orio
- iSm2, Aix-Marseille University, CNRS, Centrale Marseille, F-13397 Marseille, France
| | - Fabienne Peyrot
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006 Paris, France
- Institut National Supérieur du Professorat et de l’Education (INSPE) de l’Académie de Paris, Sorbonne Université, F-75016 Paris, France
- Correspondence:
| |
Collapse
|
19
|
Ansari M, Rajaraman G. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity? Dalton Trans 2023; 52:308-325. [PMID: 36504243 DOI: 10.1039/d2dt02559k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the years, mononuclear FeIVO species have been extensively studied, but the presence of dinuclear FeIVO species in soluble methane monooxygenase (sMMO) has inspired the development of biomimic models that could activate inert substrates such as methane. There are some successful attempts; particularly the [(Por)(m-CBA) FeIV(μ-N)FeIV(O)(Por˙+)]- species has been reported to activate methane and yield decent catalytic turnover numbers and therefore regarded as the closest to the sMMO enzyme functional model, as no mononuclear FeIVO analogues could achieve this feat. In this work, we have studied a series of mono and dinuclear models using DFT and ab initio DLPNO-CCSD(T) calculations to probe the importance of nuclearity in enhancing the reactivity. We have probed the catalytic activities of four complexes: [(HO)FeIV(O)(Por)]- (1), [(HO)FeIV(O)(Por˙+)] (2), μ-oxo dinuclear iron species [(Por)(m-CBA)FeIV(μ-O)FeIV(O) (Por˙+)]- (3) and N-bridged dinuclear iron species [(Por)(m-CBA)FeIV(μ-N)FeIV(O)(Por˙+)]- (4) towards the activation of methane. Additionally, calculations were performed on the mononuclear models [(X)FeIV(O)(Por˙+)]n {X = N 4a (n = -2), NH 4b (n = -1) and NH24c (n = 0)} to understand the role of nuclearity in the reactivity. DFT calculations performed on species 1-4 suggest an interesting variation among them, with species 1-3 possessing an intermediate spin (S = 1) as a ground state and species 4 possessing a high-spin (S = 2) as a ground state. Furthermore, the two FeIV centres in species 3 and 4 are antiferromagnetically coupled, yielding a singlet state with a distinct difference in their electronic structure. On the other hand, species 2 exhibits a ferromagnetic coupling between the FeIV and the Por˙+ moiety. Our calculations suggest that the higher barriers for the C-H bond activation of methane and the rebound step for species 1 and 3 are very high in energy, rendering them unreactive towards methane, while species 2 and 4 have lower barriers, suggesting their reactivity towards methane. Studies on the system reveal that model 4a has multiple FeN bonds facilitating greater reactivity, whereas the other two models have longer Fe-N bonds and less radical character with steeper barriers. Strong electronic cooperativity is found to be facilitated by the bridging nitride atom, and this cooperativity is suppressed by substituents such as oxygen, rendering them inactive. Thus, our study unravels that apart from enhancing the nuclearity, bridging atoms that facilitate strong cooperation between the metals are required to activate very inert substrates such as methane, and our results are broadly in agreement with earlier experimental findings.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
20
|
Paul A, Sengupta A, Yadav S. Organophotoredox-Catalyzed Cross-Dehydrogenative Sulfonamidation of Indoles and Other Heterocycles. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aditya Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Somnath Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| |
Collapse
|
21
|
Field MJ, Oyala PH, Green MT. 17O Electron Nuclear Double Resonance Analysis of Compound I: Inverse Correlation between Oxygen Spin Population and Electron Donation. J Am Chem Soc 2022; 144:19272-19283. [PMID: 36240444 PMCID: PMC11891864 DOI: 10.1021/jacs.2c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the activation of inert C-H bonds by metal-oxo complexes has been widely studied, important questions remain, particularly regarding the role of oxygen spin population (i.e., unpaired electrons on the oxo ligand) in facilitating C-H bond cleavage. In order to shed light on this issue, we have utilized 17O electron nuclear double resonance spectroscopy to measure the oxygen spin populations of three compound I intermediates in heme enzymes with different reactivities toward C-H bonds: chloroperoxidase, cytochrome P450, and a selenolate (selenocysteinyl)-ligated cytochrome P450. The experimental data suggest an inverse correlation between oxygen spin population and electron donation from the axial ligand. We have explored the implications of this result using a Hückel-type molecular orbital model and constrained density functional theory calculations. These investigations have allowed us to examine the relationship between oxygen spin population, oxygen charge, electron donation from the axial ligand, and reactivity.
Collapse
Affiliation(s)
- Mackenzie J Field
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| |
Collapse
|
22
|
Jenner LP, Crack JC, Kurth JM, Soldánová Z, Brandt L, Sokol KP, Reisner E, Bradley JM, Dahl C, Cheesman MR, Butt JN. Reaction of Thiosulfate Dehydrogenase with a Substrate Mimic Induces Dissociation of the Cysteine Heme Ligand Giving Insights into the Mechanism of Oxidative Catalysis. J Am Chem Soc 2022; 144:18296-18304. [PMID: 36173876 PMCID: PMC9562282 DOI: 10.1021/jacs.2c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.
Collapse
Affiliation(s)
- Leon P. Jenner
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julia M. Kurth
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Zuzana Soldánová
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Linda Brandt
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Katarzyna P. Sokol
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Justin M. Bradley
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Christiane Dahl
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Myles R. Cheesman
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| |
Collapse
|
23
|
Effect of Brшnsted Acid on the Reactivity and Selectivity of the Oxoiron(V) Intermediates in C-H and C=C Oxidation Reactions. Catalysts 2022. [DOI: 10.3390/catal12090949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of HClO4 on the reactivity and selectivity of the catalyst systems 1,2/H2O2/AcOH, based on nonheme iron complexes of the PDP families, [(Me2OMePDP)FeIII(μ-OH)2FeIII(MeOMe2PDP)](OTf)4 (1) and [(NMe2PDP)FeIII(μ-OH)2FeIII(NMe2PDP](OTf)4 (2), toward oxidation of benzylideneacetone (bna), adamantane (ada), and (3aR)-(+)-sclareolide (S) has been studied. Adding HClO4 (2–10 equiv. vs. Fe) has been found to result in the simultaneous improvement of the observed catalytic efficiency (i.e., product yields) and the oxidation regio- or enantioselectivity. At the same time, HClO4 causes a threefold increase of the second-order rate constant for the reaction of the key oxygen-transferring intermediate [(Me2OMePDP)FeV=O(OAc)]2+ (1a), with cyclohexane at −70 °C. The effect of strong Brønsted acid on the catalytic reactivity is discussed in terms of the reversible protonation of the Fe=O moiety of the parent perferryl intermediates.
Collapse
|
24
|
Lee HB, Britt RD, Rittle J. N − H bond dissociation free energy of a terminal iron phosphinimine. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Heui Beom Lee
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Jonathan Rittle
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
25
|
Gupta R, Li XX, Lee Y, Seo MS, Lee YM, Yanagisawa S, Kubo M, Sarangi R, Cho KB, Fukuzumi S, Nam W. Heme compound II models in chemoselectivity and disproportionation reactions. Chem Sci 2022; 13:5707-5717. [PMID: 35694346 PMCID: PMC9116367 DOI: 10.1039/d2sc01232d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Heme compound II models bearing electron-deficient and -rich porphyrins, [FeIV(O)(TPFPP)(Cl)]- (1a) and [FeIV(O)(TMP)(Cl)]- (2a), respectively, are synthesized, spectroscopically characterized, and investigated in chemoselectivity and disproportionation reactions using cyclohexene as a mechanistic probe. Interestingly, cyclohexene oxidation by 1a occurs at the allylic C-H bonds with a high kinetic isotope effect (KIE) of 41, yielding 2-cyclohexen-1-ol product; this chemoselectivity is the same as that of nonheme iron(iv)-oxo intermediates. In contrast, as observed in heme compound I models, 2a yields cyclohexene oxide product with a KIE of 1, demonstrating a preference for C[double bond, length as m-dash]C epoxidation. The latter result is interpreted as 2a disproportionating to form [FeIV(O)(TMP+˙)]+ (2b) and FeIII(OH)(TMP), and 2b becoming the active oxidant to conduct the cyclohexene epoxidation. In contrast to 2a, 1a does not disproportionate under the present reaction conditions. DFT calculations confirm that compound II models prefer C-H bond hydroxylation and that disproportionation of compound II models is controlled thermodynamically by the porphyrin ligands. Other aspects, such as acid and base effects on the disproportionation of compound II models, have been discussed as well.
Collapse
Affiliation(s)
- Ranjana Gupta
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Youngseob Lee
- Department of Chemistry, Jeonbuk National University Jeonju 54896 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo Hyogo 678-1297 Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo Hyogo 678-1297 Japan
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University California 94023 USA
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University Jeonju 54896 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
26
|
Dutra M, Amaya JA, McElhenney S, Manley OM, Makris TM, Rassolov V, Garashchuk S. Experimental and Theoretical Examination of the Kinetic Isotope Effect in Cytochrome P450 Decarboxylase OleT. J Phys Chem B 2022; 126:3493-3504. [PMID: 35508080 DOI: 10.1021/acs.jpcb.1c10280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a combination of experimental studies, theory, simulation, and modeling, we investigate the hydrogen atom transfer (HAT) reaction by the high-valent ferryl cytochrome P450 (CYP) intermediate known as Compound I, a species that is central to innumerable and important detoxification and biosynthetic reactions. The P450 decarboxylase known as OleT converts fatty acids, a sustainable biological feedstock, into terminal alkenes and thus is of high interest as a potential means to produce fungible biofuels. Previous experimental work has established the intermediacy of Compound I in the C─C scission reaction catalyzed by OleT and an unprecedented ability to monitor the HAT process in the presence of bound fatty acid substrates. Here, we leverage the kinetic simplicity of the OleT system to measure the activation barriers for CYP HAT and the temperature dependence of the substrate 2H kinetic isotope effect. Notably, neither measurement has been previously accessible for a CYP to date. Theoretical analysis alludes to the significance of substrate fatty acid coordination for generating the hydrogen donor/acceptor configurations that are most conducive for HAT to occur. The analysis of the two-dimensional potential energy surface, based on multireference electronic wave functions, illustrates the uncoupled character of the hydrogen motion. Quantum dynamics calculations along the hydrogen reaction path demonstrate that hydrogen tunneling is essential to qualitatively capture the experimental isotope effect, its temperature dependence, and appropriate activation energies. Overall, a more fundamental understanding of the OleT reaction coordinate contributes to the development of biomimetic catalysts for controlled C─H bond activation, an outstanding current challenge for (bio)synthetic chemistry.
Collapse
Affiliation(s)
- Matthew Dutra
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jose A Amaya
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shannon McElhenney
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Olivia M Manley
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
27
|
Chai L, Zhang H, Guo F, Song R, Yu H, Ji L. Computational Investigation of the Bisphenolic Drug Metabolism by Cytochrome P450: What Factors Favor Intramolecular Phenol Coupling. Chem Res Toxicol 2022; 35:440-449. [PMID: 35230092 DOI: 10.1021/acs.chemrestox.1c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intramolecular phenol coupling reactions of alkaloids can lead to active metabolites catalyzed by the mammalian cytochrome P450 enzyme (P450); however, the mechanistic knowledge of such an "unusual" process is lacking. This work performs density functional theory computations to reveal the P450-mediated metabolic pathway leading from R-reticuline to the morphine precursor salutaridine by exploring possible intramolecular phenol coupling mechanisms involving diradical coupling, radical addition, and electron transfer. The computed results show that the outer-sphere electron transfer with a high barrier (>20.0 kcal/mol) is unlikely to happen. However, for inter-sphere intramolecular phenol coupling, it reveals that intramolecular phenol coupling of R-reticuline proceeds via the diradical mechanism consecutively by compound I and protonated compound II of P450 rather than the radical addition mechanism. The existence of a much higher radical rebound barrier than that of H-abstraction in the quartet high-spin state can endow the R-reticuline phenoxy radical with a sufficient lifetime to enable intramolecular phenol coupling, while the H-abstraction/radical rebound mode with a negligible rebound barrier leading to phenol hydroxylation can only happen in the doublet low-spin state. Therefore, the ratio [coupling]/[hydroxylation] can be approximately reflected by the relative yield of the high-spin and low-spin H-abstraction by P450, which thus can provide a theoretical ratio of 16:1 for R-reticuline, which is in accordance with previous experimental results. Especially, the high rebound barrier of the phenoxy radical derived from the weak electron-donating ability of the phenoxy radical is revealed as an intrinsic nature. Therefore, the revealed intramolecular phenol coupling mechanism can be potentially extended to several other bisphenolic drugs to infer groups of unexpected metabolites in organisms.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Munich 81377, Germany
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fangjie Guo
- School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.,College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.,Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
28
|
Comba P, Nunn G, Scherz F, Walton PH. Intermediate-spin iron(IV)-oxido species with record reactivity. Faraday Discuss 2022; 234:232-244. [PMID: 35156976 DOI: 10.1039/d1fd00073j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIVO(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, has an S = 1 electronic ground state and is the most reactive nonheme iron model system known so far, of a similar order of reactivity as nonheme iron enzymes (C-H abstraction of cyclohexane, -90 °C (propionitrile), t1/2 = 3.5 s). The reaction with cyclohexane selectively leads to chlorocyclohexane, but "cage escape" at the [(L1)FeIII(OH)(Cl)]+/cyclohexyl radical intermediate lowers the productivity. Ligand field theory is used herein to analyze the d-d transitions of [(L1)FeIVO(X)]n+ (X = Cl-, Br-, MeCN) in comparison with the thoroughly characterized ferryl complex of tetramethylcyclam (TMC = L2; [(L2)FeIVO(MeCN)]2+). The ligand field parameters and d-d transition energies are shown to provide important information on the triplet-quintet gap and its correlation with oxidation reactivity.
Collapse
Affiliation(s)
- Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany. .,Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Germany
| | - George Nunn
- Department of Chemistry, University of York, Heslington, YORK, YO10 5DD, UK
| | - Frederik Scherz
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany.
| | - Paul H Walton
- Department of Chemistry, University of York, Heslington, YORK, YO10 5DD, UK
| |
Collapse
|
29
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
Zhang J, Lee YM, Seo MS, Kim Y, Lee E, Fukuzumi S, Nam W. Oxidative versus basic asynchronous hydrogen atom transfer reactions of Mn(III)-hydroxo and Mn(III)-aqua complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen atom transfer (HAT) of metal-oxygen intermediates such as metal-oxo, -hydroxo and -superoxo species have so far been studied extensively. However, HAT reactions of metal-aqua complexes have yet to be...
Collapse
|
31
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
32
|
Goetz MK, Schneider JE, Filatov AS, Jesse KA, Anderson JS. Enzyme-Like Hydroxylation of Aliphatic C-H Bonds From an Isolable Co-Oxo Complex. J Am Chem Soc 2021; 143:20849-20862. [PMID: 34856101 DOI: 10.1021/jacs.1c09280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The selective hydroxylation of aliphatic C-H bonds remains a challenging but broadly useful transformation. Nature has evolved systems that excel at this reaction, exemplified by cytochrome P450 enzymes, which use an iron-oxo intermediate to activate aliphatic C-H bonds with k1 > 1400 s-1 at 4 °C. Many synthetic catalysts have been inspired by these enzymes and are similarly proposed to use transition metal-oxo intermediates. However, most examples of well-characterized transition metal-oxo species are not capable of reacting with strong, aliphatic C-H bonds, resulting in a lack of understanding of what factors facilitate this reactivity. Here, we report the isolation and characterization of a new terminal CoIII-oxo complex, PhB(AdIm)3CoIIIO. Upon oxidation, a transient CoIV-oxo intermediate is generated that is capable of hydroxylating aliphatic C-H bonds with an extrapolated k1 for C-H activation >130 s-1 at 4 °C, comparable to values observed in cytochrome P450 enzymes. Experimental thermodynamic values and DFT analysis demonstrate that, although the initial C-H activation step in this reaction is endergonic, the overall reaction is driven by an extremely exergonic radical rebound step, similar to what has been proposed in cytochrome P450 enzymes. The rapid C-H hydroxylation reactivity displayed in this well-defined system provides insight into how hydroxylation is accomplished by biological systems and similarly potent synthetic oxidants.
Collapse
Affiliation(s)
- McKenna K Goetz
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
33
|
A new regime of heme-dependent aromatic oxygenase superfamily. Proc Natl Acad Sci U S A 2021; 118:2106561118. [PMID: 34667125 DOI: 10.1073/pnas.2106561118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.
Collapse
|
34
|
Barman SK, Yang MY, Parsell TH, Green MT, Borovik AS. Semiempirical method for examining asynchronicity in metal-oxido-mediated C-H bond activation. Proc Natl Acad Sci U S A 2021; 118:e2108648118. [PMID: 34465626 PMCID: PMC8433561 DOI: 10.1073/pnas.2108648118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The oxidation of substrates via the cleavage of thermodynamically strong C-H bonds is an essential part of mammalian metabolism. These reactions are predominantly carried out by enzymes that produce high-valent metal-oxido species, which are directly responsible for cleaving the C-H bonds. While much is known about the identity of these transient intermediates, the mechanistic factors that enable metal-oxido species to accomplish such difficult reactions are still incomplete. For synthetic metal-oxido species, C-H bond cleavage is often mechanistically described as synchronous, proton-coupled electron transfer (PCET). However, data have emerged that suggest that the basicity of the M-oxido unit is the key determinant in achieving enzymatic function, thus requiring alternative mechanisms whereby proton transfer (PT) has a more dominant role than electron transfer (ET). To bridge this knowledge gap, the reactivity of a monomeric MnIV-oxido complex with a series of external substrates was studied, resulting in a spread of over 104 in their second-order rate constants that tracked with the acidity of the C-H bonds. Mechanisms that included either synchronous PCET or rate-limiting PT, followed by ET, did not explain our results, which led to a proposed PCET mechanism with asynchronous transition states that are dominated by PT. To support this premise, we report a semiempirical free energy analysis that can predict the relative contributions of PT and ET for a given set of substrates. These findings underscore why the basicity of M-oxido units needs to be considered in C-H functionalization.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry, University of California Irvine, CA 92697;
| | - Meng-Yin Yang
- Department of Chemistry, University of California Irvine, CA 92697
| | | | - Michael T Green
- Department of Chemistry, University of California Irvine, CA 92697;
- Department of Molecular Biosciences and Biochemistry, University of California Irvine, CA 92697
| | - A S Borovik
- Department of Chemistry, University of California Irvine, CA 92697;
| |
Collapse
|
35
|
Bím D, Alexandrova AN. Local Electric Fields as a Natural Switch of Heme-Iron Protein Reactivity. ACS Catal 2021; 11:6534-6546. [PMID: 34413991 DOI: 10.1021/acscatal.1c00687] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heme-iron oxidoreductases operating through the high-valent FeIVO intermediates perform crucial and complicated transformations, such as oxidations of unreactive saturated hydrocarbons. These enzymes share the same Fe coordination, only differing by the axial ligation, e.g., Cys in P450 oxygenases, Tyr in catalases, and His in peroxidases. By examining ~200 heme-iron proteins, we show that the protein hosts exert highly specific intramolecular electric fields on the active sites, and there is a strong correlation between the direction and magnitude of this field and the protein function. In all heme proteins, the field is preferentially aligned with the Fe-O bond ( Fz ). The Cys-ligated P450 oxygenases have the highest average Fz of 28.5 MV cm-1, i.e., most enhancing the oxyl-radical character of the oxo group, and consistent with the ability of these proteins to activate strong C-H bonds. In contrast, in Tyr-ligated proteins, the average Fz is only 3.0 MV cm-1, apparently suppressing single-electron off-pathway oxidations, and in His-ligated proteins, Fz is -8.7 MV cm-1. The operational field range is given by the trade-off between the low reactivity of the FeIVO Compound I at the more negative Fz , and the low selectivity at the more positive Fz . Consequently, a heme-iron site placed in the field characteristic of another heme-iron protein class loses its canonical function, and gains an adverse one. Thus, electric fields produced by the protein scaffolds, together with the nature of the axial ligand, control all heme-iron chemistry.
Collapse
Affiliation(s)
- Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
36
|
Burris-Hiday SD, Scott EE. Steroidogenic cytochrome P450 17A1 structure and function. Mol Cell Endocrinol 2021; 528:111261. [PMID: 33781841 PMCID: PMC8087655 DOI: 10.1016/j.mce.2021.111261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 17A1 (CYP17A1) is a critical steroidogenic enzyme, essential for producing glucocorticoids and sex hormones. This review discusses the complex activity of CYP17A1, looking at its role in both the classical and backdoor steroidogenic pathways and the complex chemistry it carries out to perform both a hydroxylation reaction and a carbon-carbon cleavage, or lyase reaction. Functional and structural investigations have informed our knowledge of these two reactions. This review focuses on a few specific aspects of this discussion: the identities of reaction intermediates, the coordination of hydroxylation and lyase reactions, the effects of cytochrome b5, and conformational selection. These discussions improve understanding of CYP17A1 in a physiological setting, where CYP17A1 is implicated in a variety of steroidogenic diseases. This information can be used to improve ways in which CYP17A1 can be effectively modulated to treat diseases such as prostate and breast cancer, Cushing's syndrome, and glioblastoma.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Hong YH, Jang Y, Ezhov R, Seo MS, Lee YM, Pandey B, Hong S, Pushkar Y, Fukuzumi S, Nam W. A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yuri Jang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bhawana Pandey
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
38
|
Wang Z, Shaik S, Wang B. Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450 TT. J Am Chem Soc 2021; 143:1005-1016. [PMID: 33426875 DOI: 10.1021/jacs.0c11279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts used in natural products biosynthesis, xenobiotic metabolisms, and biotechnologies. In P450s, the electrons required for O2 activation are supplied by NAD(P)H through stepwise electron transfers (ETs) mediated by redox partners. While much is known about the machinery of the catalytic cycle of P450s, the mechanisms of long-range ET are largely unknown. Very recently, the first crystal structure of full-length P450TT was solved. This enables us to decipher the interdomain ET mechanism between the [2Fe-2S]-containing ferredoxin and the heme, by use of molecular dynamics simulations. In contrast to the "distal" conformation characterized in the crystal structure where the [2Fe-2S] cluster is ∼28 Å away from heme-Fe, our simulations demonstrated a "proximal" conformation of [2Fe-2S] that is ∼17 Å [and 13.7 Å edge-to-edge] away from heme-Fe, which may enable the interdomain ET. Key residues involved in ET pathways and interdomain complexation were identified, some of which have already been verified by recent mutation studies. The conformational transit of ferredoxin between "distal" and "proximal" was found to be controlled mostly by the long-range electrostatic interactions between the ferredoxin domain and the other two domains. Furthermore, our simulations show that the full-length P450TT utilizes a flexible ET pathway that resembles either P450Scc or P450cam. Thus, this study provides a uniform picture of the ET process between reductase domains and heme domain.
Collapse
Affiliation(s)
- Zhanfeng Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
39
|
Comba P, Faltermeier D, Martin B. Computational Approaches for Redox Potentials of Iron(IV)‐oxido Complexes. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peter Comba
- Anorganisch‐Chemisches Institut, INF 270und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Universität Heidelberg 69120 Heidelberg Germany
| | - Dieter Faltermeier
- Anorganisch‐Chemisches Institut, INF 270und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Universität Heidelberg 69120 Heidelberg Germany
| | - Bodo Martin
- Anorganisch‐Chemisches Institut, INF 270und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Universität Heidelberg 69120 Heidelberg Germany
| |
Collapse
|
40
|
Ansari M, Senthilnathan D, Rajaraman G. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe III-O-Fe IV[double bond, length as m-dash]O] 2+ species towards C-H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chem Sci 2020; 11:10669-10687. [PMID: 33209248 PMCID: PMC7654192 DOI: 10.1039/d0sc02624g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
High-valent metal-oxo species have been characterised as key intermediates in both heme and non-heme enzymes that are found to perform efficient aliphatic hydroxylation, epoxidation, halogenation, and dehydrogenation reactions. Several biomimetic model complexes have been synthesised over the years to mimic both the structure and function of metalloenzymes. The diamond-core [Fe2(μ-O)2] is one of the celebrated models in this context as this has been proposed as the catalytically active species in soluble methane monooxygenase enzymes (sMMO), which perform the challenging chemical conversion of methane to methanol at ease. In this context, a report of open core [HO(L)FeIII-O-FeIV(O)(L)]2+ (1) gains attention as this activates C-H bonds a million-fold faster compared to the diamond-core structure and has the dual catalytic ability to perform hydroxylation as well as desaturation with organic substrates. In this study, we have employed density functional methods to probe the origin of the very high reactivity observed for this complex and also to shed light on how this complex performs efficient hydroxylation and desaturation of alkanes. By modelling fifteen possible spin-states for 1 that could potentially participate in the reaction mechanism, our calculations reveal a doublet ground state for 1 arising from antiferromagnetic coupling between the quartet FeIV centre and the sextet FeIII centre, which regulates the reactivity of this species. The unusual stabilisation of the high-spin ground state for FeIV[double bond, length as m-dash]O is due to the strong overlap of with the orbital, reducing the antibonding interactions via spin-cooperation. The electronic structure features computed for 1 are consistent with experiments offering confidence in the methodology chosen. Further, we have probed various mechanistic pathways for the C-H bond activation as well as -OH rebound/desaturation of alkanes. An extremely small barrier height computed for the first hydrogen atom abstraction by the terminal FeIV[double bond, length as m-dash]O unit was found to be responsible for the million-fold activation observed in the experiments. The barrier height computed for -OH rebound by the FeIII-OH unit is also smaller suggesting a facile hydroxylation of organic substrates by 1. A strong spin-cooperation between the two iron centres also reduces the barrier for second hydrogen atom abstraction, thus making the desaturation pathway competitive. Both the spin-state as well as spin-coupling between the two metal centres play a crucial role in dictating the reactivity for species 1. By exploring various mechanistic pathways, our study unveils the fact that the bridged μ-oxo group is a poor electrophile for both C-H activation as well for -OH rebound. As more and more evidence is gathered in recent years for the open core geometry of sMMO enzymes, the idea of enhancing the reactivity via an open-core motif has far-reaching consequences.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| | - Dhurairajan Senthilnathan
- Center for Computational Chemistry , CRD , PRIST University , Vallam , Thanjavur , Tamilnadu 613403 , India
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India .
| |
Collapse
|
41
|
VanNatta PE, Ramirez DA, Velarde AR, Ali G, Kieber-Emmons MT. Exceptionally High O–H Bond Dissociation Free Energy of a Dicopper(II) μ-Hydroxo Complex and Insights into the Geometric and Electronic Structure Origins Thereof. J Am Chem Soc 2020; 142:16292-16312. [DOI: 10.1021/jacs.0c06425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - David A. Ramirez
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Andres R. Velarde
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Ghazanfar Ali
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | | |
Collapse
|
42
|
Kumar R, Pandey B, Sen A, Ansari M, Sharma S, Rajaraman G. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Xue SS, Li XX, Lee YM, Seo MS, Kim Y, Yanagisawa S, Kubo M, Jeon YK, Kim WS, Sarangi R, Kim SH, Fukuzumi S, Nam W. Enhanced Redox Reactivity of a Nonheme Iron(V)-Oxo Complex Binding Proton. J Am Chem Soc 2020; 142:15305-15319. [PMID: 32786748 DOI: 10.1021/jacs.0c05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acid effects on the chemical properties of metal-oxygen intermediates have attracted much attention recently, such as the enhanced reactivity of high-valent metal(IV)-oxo species by binding proton(s) or Lewis acidic metal ion(s) in redox reactions. Herein, we report for the first time the proton effects of an iron(V)-oxo complex bearing a negatively charged tetraamido macrocyclic ligand (TAML) in oxygen atom transfer (OAT) and electron-transfer (ET) reactions. First, we synthesized and characterized a mononuclear nonheme Fe(V)-oxo TAML complex (1) and its protonated iron(V)-oxo complexes binding two and three protons, which are denoted as 2 and 3, respectively. The protons were found to bind to the TAML ligand of the Fe(V)-oxo species based on spectroscopic characterization, such as resonance Raman, extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR) measurements, along with density functional theory (DFT) calculations. The two-protons binding constant of 1 to produce 2 and the third protonation constant of 2 to produce 3 were determined to be 8.0(7) × 108 M-2 and 10(1) M-1, respectively. The reactivities of the proton-bound iron(V)-oxo complexes were investigated in OAT and ET reactions, showing a dramatic increase in the rate of sulfoxidation of thioanisole derivatives, such as 107 times increase in reactivity when the oxidation of p-CN-thioanisole by 1 was performed in the presence of HOTf (i.e., 200 mM). The one-electron reduction potential of 2 (Ered vs SCE = 0.97 V) was significantly shifted to the positive direction, compared to that of 1 (Ered vs SCE = 0.33 V). Upon further addition of a proton to a solution of 2, a more positive shift of the Ered value was observed with a slope of 47 mV/log([HOTf]). The sulfoxidation of thioanisole derivatives by 2 was shown to proceed via ET from thioanisoles to 2 or direct OAT from 2 to thioanisoles, depending on the ET driving force.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yujeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Young-Kyo Jeon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California 94025, United States
| | - Sun Hee Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
44
|
Guo F, Chai L, Zhang S, Yu H, Liu W, Kepp KP, Ji L. Computational Biotransformation Profile of Emerging Phenolic Pollutants by Cytochromes P450: Phenol-Coupling Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2902-2912. [PMID: 31967796 DOI: 10.1021/acs.est.9b06897] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenols are ubiquitous environmental pollutants, whose biotransformation involving phenol coupling catalyzed by cytochromes P450 may produce more lipophilic and toxic metabolites. Density functional theory (DFT) computations were performed to explore the debated phenol-coupling mechanisms, taking triclosan as a model substrate. We find that a diradical pathway facilitated by compound I and protonated compound II of P450 is favored vs alternative radical addition or electron-transfer mechanisms. The identified diradical coupling resembles a "two-state reactivity" from compound I characterized by significantly high rebound barriers of the phenoxy radicals, which can be formulated into three equations for calculating the ratio [coupling]/[hydroxylation]. A higher barrier for rebound than for H-abstraction in high-spin triclosan can facilitate the phenoxy radical dissociation and thus enable phenol coupling, while H-abstraction/radical rebound causing phenol hydroxylation via minor rebound barriers mostly occurs via the low-spin state. Therefore, oxidation of triclosan by P450 fits the first equation with a ratio [coupling]/[hydroxylation] of 1:4, consistent with experimental data indicating different extents of triclosan coupling (6-40%). The high rebound barrier of phenoxy radicals, as a key for the mechanistic identification of phenol coupling vs hydroxylation, originates from their weak electron donor ability due to spin aromatic delocalization. We envision that the revealed mechanism can be extended to the cross-coupling reactions between different phenolic pollutants, and the coupling reactions of several other aromatic pollutants, to infer unknown metabolites.
Collapse
Affiliation(s)
- Fangjie Guo
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Lihong Chai
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shubin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, P. R. China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Kgs. Lyngby DK-2800, Denmark
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
45
|
Su H, Wang B, Shaik S. Quantum-Mechanical/Molecular-Mechanical Studies of CYP11A1-Catalyzed Biosynthesis of Pregnenolone from Cholesterol Reveal a C-C Bond Cleavage Reaction That Occurs by a Compound I-Mediated Electron Transfer. J Am Chem Soc 2019; 141:20079-20088. [PMID: 31741382 DOI: 10.1021/jacs.9b08561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore here a long-standing mechanistic question by using quantum-mechanical/molecular-mechanical (QM/MM) methodology. The question concerns the mechanism of steroid hormone biosynthesis, whereby the P450 enzyme, CYP11A1, catalyzes the C20-C22 bond-cleavage in the 20,22-hydroxylated cholesterol, 20R,22R-DiOHCH, leading to pregnenolone, which is critical for the subsequent production of all steroid hormones. This is an unusual feat whereby the P450 enzyme breaks two O-H bonds and one C-C bond, while making two C═O bonds. How does the enzyme perform such a complex and highly energy-demanding reaction? Our computational results rule out the previously proposed Compound I (Cpd I) electrophilic attack mechanism via the formation of a peroxide intermediate as well as the H-abstraction-mediated C-C cleavage mechanism. Notably, oxygen-rebound cannot transpire, in spite of the fact that the classical active species, Cpd I, participates in the catalytic process. Our findings reveal a mechanism whereby C-C bond cleavage is mediated by an electron transfer from the C22-O--deprotonated substrate to Cpd I. As such, our QM/MM calculations demonstrate that Cpd I acts as an electron sink that facilitates the C-C bond cleavage.
Collapse
Affiliation(s)
- Hao Su
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| |
Collapse
|
46
|
Zaragoza JPT, Cummins DC, Mubarak MQE, Siegler MA, de Visser SP, Goldberg DP. Hydrogen Atom Abstraction by High-Valent Fe(OH) versus Mn(OH) Porphyrinoid Complexes: Mechanistic Insights from Experimental and Computational Studies. Inorg Chem 2019; 58:16761-16770. [PMID: 31804814 DOI: 10.1021/acs.inorgchem.9b02923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-valent metal-hydroxide species have been implicated as key intermediates in hydroxylation chemistry catalyzed by heme monooxygenases such as the cytochrome P450s. However, in some classes of P450s, a bifurcation from the typical oxygen rebound pathway is observed, wherein the FeIV(OH)(porphyrin) species carries out a net hydrogen atom transfer reaction to form alkene metabolites. In this work, we examine the hydrogen atom transfer (HAT) reactivity of FeIV(OH)(ttppc) (1), ttppc = 5,10,15-tris(2,4,6-triphenyl)-phenyl corrole, toward substituted phenol derivatives. The iron hydroxide complex 1 reacts with a series of para-substituted 2,6-di-tert-butylphenol derivatives (4-X-2,6-DTBP; X = OMe, Me, Et, H, Ac), with second-order rate constants k2 = 3.6(1)-1.21(3) × 104 M-1 s-1 and yielding linear Hammett and Marcus plot correlations. It is concluded that the rate-determining step for O-H cleavage occurs through a concerted HAT mechanism, based on mechanistic analyses that include a KIE = 2.9(1) and DFT calculations. Comparison of the HAT reactivity of 1 to the analogous Mn complex, MnIV(OH)(ttppc), where only the central metal ion is different, indicates a faster HAT reaction and a steeper Hammett slope for 1. The O-H bond dissociation energy (BDE) of the MIII(HO-H) complexes were estimated from a kinetic analysis to be 85 and 89 kcal mol-1 for Mn and Fe, respectively. These estimated BDEs are closely reproduced by DFT calculations and are discussed in the context of how they influence the overall H atom transfer reactivity.
Collapse
Affiliation(s)
- Jan Paulo T Zaragoza
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Daniel C Cummins
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
47
|
Neves Cruz J, Santana de Oliveira M, Gomes Silva S, Pedro da Silva Souza Filho A, Santiago Pereira D, Lima E Lima AH, de Aguiar Andrade EH. Insight into the Interaction Mechanism of Nicotine, NNK, and NNN with Cytochrome P450 2A13 Based on Molecular Dynamics Simulation. J Chem Inf Model 2019; 60:766-776. [PMID: 31622091 DOI: 10.1021/acs.jcim.9b00741] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tobacco smoke contains various cancer-causing toxic substances, including nicotine and nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). The cytochrome 2A13 is involved in nicotine metabolism and in the activation of the pro-carcinogenic agents NNK and NNN, by means of α-hydroxylation reactions. Despite the significance of cytochrome 2A13 in the biotransformation of these molecules, its conformational mechanism and the molecular basis involved in the process are not fully understood. In this study, we used molecular dynamics and principal component analysis simulations for an in-depth analysis of the essential protein motions involved in the interaction of cytochrome 2A13 with its substrates. We also evaluated the interaction of these substrates with the amino acid residues in the binding pocket of cytochrome 2A13. Furthermore, we quantified the nature of these chemical interactions from free energy calculations using the Molecular Mechanics/Generalized Born Surface Area method. The ligands remained favorably oriented toward compound I (cytochrome P450 O═FeIV state), to undergo α-hydroxylation. The hydrogen bond with asparagine 297 was essential to maintaining the substrates in a favorable catalytic orientation. The plot of first principal motion vs second principal motion revealed that the enzyme's interaction with nicotine and NNK involved different conformational subgroups, whereas the conformational subgroups in the interaction with NNN are more similar. These results provide new mechanistic insights into the mode of interaction of the substrates with the active site of cytochrome 2A13, in the presence of compound I, which is essential for α-hydroxylation.
Collapse
Affiliation(s)
- Jorddy Neves Cruz
- Adolpho Ducke Laboratory , Emílio Goeldi Paraense Museum , Belém , Pará 66040-170, Brazil.,Laboratory of Agro-Industry , Embrapa Eastern Amazon , Belém , Pará 66040-170, Brazil
| | | | - Sebastião Gomes Silva
- Adolpho Ducke Laboratory , Emílio Goeldi Paraense Museum , Belém , Pará 66040-170, Brazil
| | | | | | - Anderson Henrique Lima E Lima
- Laboratory of Planning and Development of Pharmaceuticals , Federal University of Pará , Belém , Pará 70770-901, Brazil
| | | |
Collapse
|
48
|
John CW, Hausinger RP, Proshlyakov DA. Structural Origin of the Large Redox-Linked Reorganization in the 2-Oxoglutarate Dependent Oxygenase, TauD. J Am Chem Soc 2019; 141:15318-15326. [PMID: 31475523 PMCID: PMC7092798 DOI: 10.1021/jacs.9b07493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases catalyze a wide range of chemical transformations via C-H bond activation. Prior studies raised the question of whether substrate hydroxylation by these enzymes occurs via a hydroxyl rebound or alkoxide mechanism and highlighted the need to understand the thermodynamic properties of transient intermediates. A recent spectroelectrochemical investigation of the 2OG-dependent oxygenase, taurine hydroxylase (TauD), revealed a strong link between the redox potential of the Fe(II)/Fe(III) couple and conformational changes of the enzyme. In this study, we show that the redox potential of wild-type TauD varies by 468 mV between the reduction of 2OG-Fe(III)-TauD (-272 mV) and oxidation of 2OG-Fe(II)-TauD (+196 mV). We use active site variants to investigate the structural origin of the redox-linked reorganization and the contributions of the metal-bound residues to the dynamic tuning of the redox potential of TauD. Time-dependent redox titrations show that reorganization occurs as a multistep process. Transient optical absorption and infrared spectroelectrochemistry show that substitution of any metal ligand alters the kinetics and thermodynamics of the reorganization. The H99A variant shows the largest net redox change relative to the wild-type protein, suggesting that redox-coupled protonation of H99 is required for high redox potentials of the metal. The D101Q and H255Q variants also suppress the conformational change, supporting their involvement in the structural rearrangement. Similar redox-linked conformational changes are observed in another 2OG dependent oxygenase, ethylene-forming enzyme, indicating that dynamic structural flexibility and the associated thermodynamic tuning may be a common phenomenon in this family of enzymes.
Collapse
Affiliation(s)
- Christopher W. John
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Denis A. Proshlyakov
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
49
|
John CW, Swain GM, Hausinger RP, Proshlyakov DA. Strongly Coupled Redox-Linked Conformational Switching at the Active Site of the Non-Heme Iron-Dependent Dioxygenase, TauD. J Phys Chem B 2019; 123:7785-7793. [PMID: 31433947 PMCID: PMC7092797 DOI: 10.1021/acs.jpcb.9b05866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Oxoglutarate (2OG)-dependent dioxygenases catalyze C-H activation while performing a wide range of chemical transformations. In contrast to their heme analogues, non-heme iron centers afford greater structural flexibility with important implications for their diverse catalytic mechanisms. We characterize an in situ structural model of the putative transient ferric intermediate of 2OG:taurine dioxygenase (TauD) by using a combination of spectroelectrochemical and semiempirical computational methods, demonstrating that the Fe(III/II) transition involves a substantial, fully reversible, redox-linked conformational change at the active site. This rearrangement alters the apparent redox potential of the active site between -127 mV for reduction of the ferric state and +171 mV for oxidation of the ferrous state of the 2OG-Fe-TauD complex. Structural perturbations exhibit limited sensitivity to mediator concentrations and potential pulse duration. Similar changes were observed in the Fe-TauD and taurine-2OG-Fe-TauD complexes, thus attributing the reorganization to the protein moiety rather than the cosubstrates. Redox-difference infrared spectra indicate a reorganization of the protein backbone in addition to the involvement of carboxylate and histidine ligands. Quantitative modeling of the transient redox response using two alternative reaction schemes across a variety of experimental conditions strongly supports the proposal for intrinsic protein reorganization as the origin of the experimental observations.
Collapse
Affiliation(s)
- Christopher W. John
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Denis A. Proshlyakov
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
50
|
Dantignana V, Serrano-Plana J, Draksharapu A, Magallón C, Banerjee S, Fan R, Gamba I, Guo Y, Que L, Costas M, Company A. Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. J Am Chem Soc 2019; 141:15078-15091. [PMID: 31469954 DOI: 10.1021/jacs.9b05758] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work directly compares the spectroscopic and reactivity properties of an oxoiron(IV) and an oxoiron(V) complex that are supported by the same neutral tetradentate N-based PyNMe3 ligand. A complete spectroscopic characterization of the oxoiron(IV) species (2) reveals that this compound exists as a mixture of two isomers. The reactivity of the thermodynamically more stable oxoiron(IV) isomer (2b) is directly compared to that exhibited by the previously reported 1e--oxidized analogue [FeV(O)(OAc)(PyNMe3)]2+ (3). Our data indicates that 2b is 4 to 5 orders of magnitude slower than 3 in hydrogen atom transfer (HAT) from C-H bonds. The origin of this huge difference lies in the strength of the O-H bond formed after HAT by the oxoiron unit, the O-H bond derived from 3 being about 20 kcal·mol-1 stronger than that from 2b. The estimated bond strength of the FeIVO-H bond of 100 kcal·mol-1 is very close to the reported values for highly active synthetic models of compound I of cytochrome P450. In addition, this comparative study provides direct experimental evidence that the lifetime of the carbon-centered radical that forms after the initial HAT by the high valent oxoiron complex depends on the oxidation state of the nascent Fe-OH complex. Complex 2b generates long-lived carbon-centered radicals that freely diffuse in solution, while 3 generates short-lived caged radicals that rapidly form product C-OH bonds, so only 3 engages in stereoretentive hydroxylation reactions. Thus, the oxidation state of the iron center modulates not only the rate of HAT but also the rate of ligand rebound.
Collapse
Affiliation(s)
- Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Joan Serrano-Plana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Carla Magallón
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Saikat Banerjee
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ruixi Fan
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Ilaria Gamba
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| |
Collapse
|