1
|
Anghileri L, Baunis H, Bena AR, Giannoudis C, Burke JH, Reischauer S, Merschjann C, Wallick RF, Al Said T, Adams CE, Simionato G, Kovalenko S, Dell’Amico L, van der Veen RM, Pieber B. Evidence for a Unifying Ni I/Ni III Mechanism in Light-Mediated Cross-Coupling Catalysis. J Am Chem Soc 2025; 147:13169-13179. [PMID: 40211781 PMCID: PMC12022987 DOI: 10.1021/jacs.4c16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Advances in nickel catalysis have significantly broadened the synthetic chemists' toolbox, particularly through methodologies leveraging paramagnetic nickel species via photoredox catalysis or electrochemistry. Key to these reactions is the oxidation state modulation of nickel via single-electron transfer events. Recent mechanistic studies indicate that C(sp2)-heteroatom bond formations proceed through NiI/NiIII cycles. Related C(sp2)-C(sp3) cross-couplings operate via the photocatalytic generation of C-centered radicals and a catalytic cycle that involves Ni0, NiI, and NiIII species. Here, we show that light-mediated nickel-catalyzed C(sp2)-C(sp3) bond formations can be carried out without using exogenous photoredox catalysts but with a photoactive ligand. In a pursuit of expanding the scope of C(sp2)-heteroatom couplings using donor-acceptor ligands, we identified a photoactive nickel complex capable of catalyzing cross-couplings between aryl halides and benzyltrifluoroborate salts. Mechanistic investigations provide evidence that transmetalation between a photochemically generated NiI species and the organoboron compound is the key catalytic step in a NiI/NiIII catalytic cycle under these conditions.
Collapse
Affiliation(s)
- Lucia Anghileri
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces (MPICI), Am Mühlenberg 1, Potsdam 14476, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Haralds Baunis
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces (MPICI), Am Mühlenberg 1, Potsdam 14476, Germany
| | - Aleksander R. Bena
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces (MPICI), Am Mühlenberg 1, Potsdam 14476, Germany
| | - Christos Giannoudis
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces (MPICI), Am Mühlenberg 1, Potsdam 14476, Germany
| | - John H. Burke
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Susanne Reischauer
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces (MPICI), Am Mühlenberg 1, Potsdam 14476, Germany
| | - Christoph Merschjann
- Helmholtz
Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Rachel F. Wallick
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tarek Al Said
- Helmholtz
Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Callum E. Adams
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Gianluca Simionato
- Department
of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, Padova 35131, Italy
| | - Sergey Kovalenko
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, Berlin 12489, Germany
| | - Luca Dell’Amico
- Department
of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, Padova 35131, Italy
| | - Renske M. van der Veen
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Helmholtz
Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
- Institute
of Optics and Atomic Physics, Technische
Universität Berlin, Hardenbergstraße 36, Berlin 10623, Germany
| | - Bartholomäus Pieber
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
- Department
of Biomolecular Systems, Max-Planck-Institute
of Colloids and Interfaces (MPICI), Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
2
|
Lagueux-Tremblay PL, Tam KM, Jiang M, Arndtsen BA. Electrifying Redox-Neutral Palladium-Catalyzed Carbonylations: Multielectron Transfer as a Catalyst Driving Force. J Am Chem Soc 2025. [PMID: 40262090 DOI: 10.1021/jacs.5c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Palladium-catalyzed bond-forming reactions such as carbonylations offer an efficient and versatile avenue to access products from often feedstock reagents. However, the use of catalysts also comes with a cost, as their need to be regenerated after each product-forming cycle requires balancing thermal operations. The latter can lead to high barriers even with catalysts as well as restrict their application to many products. We introduce herein an alternative approach to palladium catalyst design, where instead electrochemical potential can drive catalysis by continual two-electron cycling of the metal oxidation state. The power behind these redox steps offers a route to carry out carbonylation reactions, including the catalytic synthesis of high-energy aroyl halide electrophiles, at unprecedentedly mild ambient temperature and pressure. More generally, analysis suggests this catalyst functions by a distinct multi-electron exchange pathway, where two-electron reduction enables oxidative addition and two-electron oxidation drives product elimination. The combination creates a unique platform where both these reverse operations are favored in the same system and with electrochemical potential energy as the only added energy source.
Collapse
Affiliation(s)
| | - Kwan Ming Tam
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Meijing Jiang
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
3
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025:10.1007/s00204-025-03997-2. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
4
|
Liu Y, Sun Y, Deng Y, Qiu Y. Electrochemical Amination of Aryl Halides with NH 3. Angew Chem Int Ed Engl 2025:e202504459. [PMID: 40202031 DOI: 10.1002/anie.202504459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/10/2025]
Abstract
Primary arylamines are the most pivotal class of organic motifs in pharmaceuticals, agrochemicals, ligands and natural products. Ammonia (NH3) is an ideal nitrogen source in terms of reactivity, atom economy, and environmental compatibility. Despite significant progress in the synthesis of primary arylamines, the development of a general method for rapid access to diversely functionalized primary arylamines is still urgent and necessary. Herein, we developed a method for the direct synthesis of primary arylamines through electrochemical amination of aryl halides with NH3. Notably, the weak nucleophilic reagent NH3 was directly used as an ammonia surrogate, allowing for efficient conversion of carbon-halogen bonds to diverse primary arylamines with good functional group tolerance. A broad scope of functionalized primary arylamines has been achieved in moderate to excellent yields.
Collapse
Affiliation(s)
- Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanfei Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yuan Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
5
|
Wang YZ, Sun B, Guo JF, Zhu XY, Gu YC, Han YP, Ma C, Mei TS. Enantioselective reductive cross-couplings to forge C(sp 2)-C(sp 3) bonds by merging electrochemistry with nickel catalysis. Nat Commun 2025; 16:1108. [PMID: 39875390 PMCID: PMC11775263 DOI: 10.1038/s41467-025-56377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability. The combination of cyclic voltammetry analysis with electrode potential studies suggests that NiI species activate aryl halides via oxidative addition and alkyl chlorides via single electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
6
|
Ewing TEH, Kurig N, Yamaki YR, Sun J, Knowles TR, Gollapudi A, Kawamata Y, Baran PS. Pyrolytic Carbon: An Inexpensive, Robust, and Versatile Electrode for Synthetic Organic Electrochemistry. Angew Chem Int Ed Engl 2025; 64:e202417122. [PMID: 39449542 DOI: 10.1002/anie.202417122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Synthetic organic electrochemistry is recognized as one of the most sustainable forms of redox chemistry that can enable a wide variety of useful transformations. In this study, readily prepared pyrolytic carbon electrodes are explored in several powerful rAP transformations as well as C-C and C-N bond forming reactions. Pyrolytic carbon provides an alternative to classic amorphous carbon-based materials that are either expensive or ill-suited to large-scale flow reactions.
Collapse
Affiliation(s)
- Tamara El-Hayek Ewing
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nils Kurig
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Jiawei Sun
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Timothy R Knowles
- KULR Technology Corp., 4863 Shawline St., Suite B, San Diego, CA, 92111, USA
| | - Asha Gollapudi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
7
|
Düker J, Philipp M, Lentner T, Cadge JA, Lavarda JE, Gschwind RM, Sigman MS, Ghosh I, König B. Cross-Coupling Reactions with Nickel, Visible Light, and tert-Butylamine as a Bifunctional Additive. ACS Catal 2025; 15:817-827. [PMID: 39839851 PMCID: PMC11744660 DOI: 10.1021/acscatal.4c07185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing tert-butylamine as a cost-effective bifunctional additive, acting as the base and ligand. This method proves effective for C-O and C-N bond-forming reactions with a diverse array of nucleophiles, including phenols, aliphatic alcohols, anilines, sulfonamides, sulfoximines, and imines. Notably, the protocol demonstrates significant applicability in biomolecule derivatization and facilitates sequential one-pot functionalizations. Spectroscopic investigations revealed the robustness of the dynamic catalytic system, while elucidation of structure-reactivity relationships demonstrated how computed molecular properties of both the nucleophile and electrophile correlated to reaction performance, providing a foundation for effective reaction outcome prediction.
Collapse
Affiliation(s)
- Jonas Düker
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Maximilian Philipp
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Thomas Lentner
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Jamie A. Cadge
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - João E.
A. Lavarda
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Ruth M. Gschwind
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - Indrajit Ghosh
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, Ostrava-Poruba 708 00, Czech Republic
| | - Burkhard König
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| |
Collapse
|
8
|
Nakamura K, Odama K, Fukuta T, Sato Y. Nickel Photoredox/Dual-Catalyzed Transfer Semi-Hydrogenation of Alkynes via Aminoalkyl Nickel Species. J Org Chem 2025; 90:158-166. [PMID: 39690955 DOI: 10.1021/acs.joc.4c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Using amines in catalytic transfer hydrogenation (TH) is challenging, despite their potential availability as a hydrogen source. Here, we describe a photoredox/nickel-catalyzed TH of alkyne through an intermediary aminoalkyl Ni species. This reaction successfully provided functionalized (Z)-alkenes, such as (homo)allyl ethers, alcohols, and amides (Z/E = up to >99:1), and the reaction thus bypasses a limitation of substrate scope in TH using amine and a Lindlar catalyst. Mechanistic studies revealed that the aminoalkyl Ni species plausibly participates in two catalyst regeneration paths: (1) β-hydride elimination followed by reductive elimination and (2) protodemetalation from alkenyl NiI.
Collapse
Affiliation(s)
- Kento Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kokona Odama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomoya Fukuta
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
9
|
Morvan J, Kuijpers KPL, Fanfair D, Tang B, Bartkowiak K, van Eynde L, Renders E, Alcazar J, Buijnsters PJJA, Carvalho MA, Jones AX. Electrochemical C-O and C-N Arylation using Alternating Polarity in flow for Compound Libraries. Angew Chem Int Ed Engl 2025; 64:e202413383. [PMID: 39383014 DOI: 10.1002/anie.202413383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
Etherification and amination of aryl halide scaffolds are commonly used reactions in parallel medicinal chemistry to rapidly scan structure-activity relationships with abundant building blocks. Electrochemical methods for aryl etherification and amination demonstrate broad functional group tolerance and extended nucleophile scope compared to traditional methods. Nevertheless, there is a need for robust and scale-transferable workflows for electrochemical compound library synthesis. Herein we describe a platform for automated electrochemical synthesis of C-X arylation (X=NH, OH) in flow to access compound libraries. A comprehensive Design of Experiment (DoE) study identifies an optimal protocol which generates high yields across>30 aryl halide scaffolds, diverse amines (including electron-deficient sulfonamides, sulfoximines, amides, and anilines) and alcohols (including serine residues within peptides). Reaction sequences are automated on commercially available equipment to generate libraries of anilines and aryl ethers. The unprecedented application of potentiostatic alternating polarity in flow is essential to avoid accumulating electrode passivation. Moreover, it enables reactions to be performed in air, without supporting electrolyte and with high reproducibility over consecutive runs. Our method represents a powerful means to rapidly generate nucleophile independent C-X arylation compound libraries using flow electrochemistry.
Collapse
Affiliation(s)
- Jennifer Morvan
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Koen P L Kuijpers
- API SM Technology, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Dayne Fanfair
- API SM Technology, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Bingqing Tang
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Karolina Bartkowiak
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Lars van Eynde
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Evelien Renders
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jesus Alcazar
- Chemical Capabilities, Analytical & Purification, Global Discovery Chemistry, Janssen-Cilag, S.A., C/Jarama 75, 45007, Toledo, Spain
| | - Peter J J A Buijnsters
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Mary-Ambre Carvalho
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Alexander X Jones
- Global Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
10
|
Rial-Rodríguez E, Williams JD, Cantillo D, Fuchß T, Sommer A, Eggenweiler HM, Kappe CO, Laudadio G. An Automated Electrochemical Flow Platform to Accelerate Library Synthesis and Reaction Optimization. Angew Chem Int Ed Engl 2024; 63:e202412045. [PMID: 39317660 PMCID: PMC11627123 DOI: 10.1002/anie.202412045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Automated batch and flow setups are well-established for high throughput experimentation in both thermal chemistry and photochemistry. However, the development of automated electrochemical platforms is hindered by cell miniaturization challenges in batch and difficulties in designing effective single-pass flow systems. In order to address these issues, we have designed and implemented a new, slug-based automated electrochemical flow platform. This platform was successfully demonstrated for electrochemical C-N cross-couplings of E3 ligase binders with diverse amines (44 examples), which were subsequently transferred to a continuous-flow mode for confirmation and isolation, showing its applicability for medicinal chemistry purposes. To further validate the versatility of the platform, Design of Experiments (DoE) optimization was performed for an unsuccessful library target. This optimization process, fully automated by the platform, resulted in a remarkable 6-fold increase in reaction yield.
Collapse
Affiliation(s)
- Eduardo Rial-Rodríguez
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Jason D Williams
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - David Cantillo
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Fuchß
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alena Sommer
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Hans-Michael Eggenweiler
- Medicinal Chemistry and Drug Design, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - C Oliver Kappe
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| | - Gabriele Laudadio
- Institute of Chemistry, NAWI Graz,. Department, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
11
|
Williams AW, Gilmore KM. Transition-Metal Free Amination and Hydrodefluorination of Aryl Fluorides Promoted by Solvated Electrons. Chemistry 2024; 30:e202403410. [PMID: 39325980 DOI: 10.1002/chem.202403410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Cross-coupling reactions for constructing C-N bonds represent a pivotal advancement in chemical science. Traditional methodologies, including nucleophilic aromatic substitution (SNAr) and transition metal-catalyzed cross-couplings, have limitations concerning aryl scope, reliance on toxic and costly transition-metal catalysts, and issues related to atom economy and waste generation from ligands and additives. In this work, we introduce a novel method for aminating neutral, electron-rich, and electron-deficient aryl halides, eliminating the need for transition metals. Our approach involves the activation of aryl halides using solvated electrons generated from granulated lithium and sonication. This serves as a sustainable source of reducing power, facilitating the efficient formation of C-N bonds under near ambient conditions. Competitive selectivity studies between halide and ester functionalities were explored. Reaction scope and conducted mechanistic studies which supported the proposed radical-nucleophilic substitution (SRN1) mechanism for the reaction. Notably, the developed reaction has a highly competitive reductive dehalogenation pathway during the C-N coupling reaction, and this mechanistic divergency was thoroughly explored. This work not only broadens the scope of C-N coupling reactions which typically employs aryl bromides and iodides and rarely aryl fluorides which is also equally abundant, but also introduces a new way to do C-N coupling reactions using solvated electrons.
Collapse
Affiliation(s)
- Anietie W Williams
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd, Storrs, CT, 06269
| | - Kerry M Gilmore
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd, Storrs, CT, 06269
| |
Collapse
|
12
|
Fox PL, Choi J, Johnson ER, Stradiotto M. Mapping Electrophile Chemoselectivity in DalPhos/Nickel N-Arylation Catalysis: The Unusual Influence of Remote Sterics. Chemistry 2024; 30:e202402391. [PMID: 39297771 DOI: 10.1002/chem.202402391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/05/2024]
Abstract
We disclose herein our evaluation of competitive (hetero)aryl-X (X: Br>Cl>OTf) reactivity preferences in bisphosphine/Ni-catalyzed C-N cross-coupling catalysis, using furfurylamine as a prototypical nucleophile, and employing DalPhos and DPPF as representative ancillary ligands with established efficacy. Beyond this general (pseudo)halide ranking, other intriguing structure-reactivity trends were noted experimentally, including the unexpected observation that bulky alkyl (e. g., R=tBu) substitution in para-R-aryl-X electrophiles strongly discourages (pseudo)halide reactivity relative to smaller substituents (e. g., nBu, Et, Me), despite being both remote from, and having a similar electronic influence on, the reacting C-X bond; such effects on nickel oxidative addition have not been documented previously and were not observed in our comparator reactions presented herein involving palladium. Density functional theory modeling of such PhPAd-DalPhos/Ni-catalyzed C-N cross-couplings revealed the origins of competitive turnover of C-Br over C-Cl, and possible ways in which bulky para-alkyl substitution might discourage net electrophile uptake/turnover, leading to inversion of halide selectivity.
Collapse
Affiliation(s)
- Peter L Fox
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jeongin Choi
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
13
|
McManus BD, Hung LC, Taylor OR, Nguyen PQ, Cedeño AL, Arriola K, Bradley RD, Saucedo PJ, Hannan RJ, Luna YA, Farias P, Bahamonde A. Mechanistic Interrogation of Photochemical Nickel-Catalyzed Tetrahydrofuran Arylation Leveraging Enantioinduction Data. J Am Chem Soc 2024; 146:32135-32146. [PMID: 39528417 DOI: 10.1021/jacs.4c13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This manuscript details the development of an asymmetric variant for the Ni-photoredox α-arylation of tetrahydrofuran (THF), which was originally reported in a racemic fashion by Doyle and Molander. Leveraging the enantioselectivity data that we obtained, a complex mechanistic scenario different from those originally proposed is uncovered. Specifically, an unexpected dependence of the product enantiomeric ratio was observed on both the halide identity (aryl chloride vs bromide substrates) and the Ni source. Stoichiometric experiments and time course analyses of the evolution of product enantioselectivity with time revealed a different initial behavior for reactions carried out with Ni(II) and Ni(0) precatalysts that later converge into a common mechanism. For studying the predominant pathway, this paper describes a rare example of the syntheses of chiral bisoxazoline Ni(II) aryl halide complexes, which proved essential for probing enantioselectivity via stochiometric experiments. These experiments identify the Ni(II) aryl halide complex as the primary species involved in the key THF radical trapping event. A multivariate linear regression model is presented that further validates the dominant mechanism and delineates structure-selectivity relationships between ligand properties and enantioselectivity. EPR analysis of Ni(0)/aryl halide mixtures highlights the fast access to a variety of Ni complexes in 0, +1, and +2 oxidation states that are proposed to be responsible for the initial divergence in mechanism observed when using Ni(0) precatalysts. More broadly, beyond advancing the mechanistic understanding of this THF arylation protocol, this work underscores the potential of leveraging enantioselectivity data to unravel intricate mechanistic manifolds within Ni-photoredox catalysis.
Collapse
Affiliation(s)
- Brennan D McManus
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Lang Cheng Hung
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Olivia R Taylor
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paul Q Nguyen
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Alfredo L Cedeño
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Kyle Arriola
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Robert D Bradley
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Robert J Hannan
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Yvette A Luna
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Phillip Farias
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
14
|
Taylor OR, Saucedo PJ, Bahamonde A. Leveraging the Redox Promiscuity of Nickel To Catalyze C-N Coupling Reactions. J Org Chem 2024; 89:16093-16105. [PMID: 38231475 DOI: 10.1021/acs.joc.3c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This perspective details advances made in the field of Ni-catalyzed C-N bond formation. The use of this Earth abundant metal to decorate amines, amides, lactams, and heterocycles enables direct access to a variety of biologically active and industrially relevant compounds in a sustainable manner. Herein, different strategies that leverage the propensity of Ni to facilitate both one- and two-electron processes will be surveyed. The first part of this Perspective focuses on strategies that facilitate C-N couplings at room temperature by accessing oxidized Ni(III) intermediates. In this context, advances in photochemical, electrochemical, and chemically mediated processes will be analyzed. A special emphasis has been put on providing a comprehensive explanation of the different mechanistic avenues that have been proposed to facilitate these chemistries; either Ni(I/III) self-sustained cycles or Ni(0/II/III) photochemically mediated pathways. The second part of this Perspective details the ligand designs that also enable access to this reactivity via a two-electron Ni(0/II) mechanism. Finally, we discuss our thoughts on possible future directions of the field.
Collapse
Affiliation(s)
- Olivia R Taylor
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
15
|
Regnier M, Vega C, Ioannou DI, Noël T. Enhancing electrochemical reactions in organic synthesis: the impact of flow chemistry. Chem Soc Rev 2024; 53:10741-10760. [PMID: 39297689 DOI: 10.1039/d4cs00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Utilizing electrons directly offers significant potential for advancing organic synthesis by facilitating novel reactivity and enhancing selectivity under mild conditions. As a result, an increasing number of organic chemists are exploring electrosynthesis. However, the efficacy of electrochemical transformations depends critically on the design of the electrochemical cell. Batch cells often suffer from limitations such as large inter-electrode distances and poor mass transfer, making flow cells a promising alternative. Implementing flow cells, however, requires a foundational understanding of microreactor technology. In this review, we briefly outline the applications of flow electrosynthesis before providing a comprehensive examination of existing flow reactor technologies. Our goal is to equip organic chemists with the insights needed to tailor their electrochemical flow cells to meet specific reactivity requirements effectively. We also highlight the application of reactor designs in scaling up electrochemical processes and integrating high-throughput experimentation and automation. These advancements not only enhance the potential of flow electrosynthesis for the synthetic community but also hold promise for both academia and industry.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, SciencePark 904, 1098XH, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Liu ZR, Herbert S, Schirok H, Ma C, Mei TS. Synthesis of 1,2-Benzothiazine via Nickel-Catalyzed Electrochemical Intramolecular Amination. Org Lett 2024; 26:9034-9039. [PMID: 39373662 DOI: 10.1021/acs.orglett.4c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Constructing a C-N bond by merging electrochemistry and nickel catalysis is considered a powerful strategy. Herein, we investigate highly efficient intramolecular amination at room temperature with excellent functional group tolerance. Mechanistic studies suggest that the rapid ligand exchange may lead to the NiI/NiIII catalytic cycle. This method not only provides a new perspective for intramolecular amination but also offers a novel approach for constructing the benzothiazine scaffold.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 42113 Wuppertal, Germany
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
17
|
Narobe R, Perner MN, Gálvez-Vázquez MDJ, Kuhwald C, Klein M, Broekmann P, Rösler S, Cezanne B, Waldvogel SR. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10567-10574. [PMID: 39309016 PMCID: PMC11413620 DOI: 10.1039/d4gc03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day-1 productivity of phenylethylamine at a geometric current density of 50 mA cm-2 in a flow-type electrolyser with 48 cm2 electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.
Collapse
Affiliation(s)
- Rok Narobe
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | - Marcel Nicolas Perner
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | | | | | | | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern 3012 Bern Switzerland
| | - Sina Rösler
- Sigma-Aldrich Production GmbH 9470 Buchs Switzerland
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| |
Collapse
|
18
|
Zou L, Zheng X, Yi X, Lu Q. Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp 3)-H bonds. Nat Commun 2024; 15:7826. [PMID: 39244599 PMCID: PMC11380679 DOI: 10.1038/s41467-024-52248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Enantioselective transformations of hydrocarbons to three-dimensional chiral molecules remain a significant challenge in synthetic chemistry. This study uses asymmetric paired oxidative and reductive catalysis to promote the enantioselective alkylarylation of olefins through the functionalization of C(sp3)-H bonds in alkanes. This asymmetric photoelectrocatalytic approach enables the facile construction of a wide range of enantioenriched α-aryl carbonyls with excellent enantioselectivity (up to 96% ee) from readily accessible starting materials. Notably, aryl bromides, aryl iodides, and even aryl chlorides were compatible with the developed catalytic system. Mechanistic studies reveal that alkanes and electrophiles are simultaneously activated on the electrodes.
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - XueZheng Yi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China.
| |
Collapse
|
19
|
Wang J, Li S, Yang C, Gao H, Zuo L, Guo Z, Yang P, Jiang Y, Li J, Wu LZ, Tang Z. Photoelectrochemical Ni-catalyzed cross-coupling of aryl bromides with amine at ultra-low potential. Nat Commun 2024; 15:6907. [PMID: 39134536 PMCID: PMC11319468 DOI: 10.1038/s41467-024-51333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Photoelectrochemical (PEC) cell is an ideal platform for organic transformation because of its green benefits and minimal energy consumption. As an emerging methodology, the reaction types of photoelectrocatalytic organic synthesis (PECOS) are limited to simple oxidation and C-H activation at current stage. Metal catalysis for the construction of C(sp2)-N bonds has not been touched yet in PECOS. We introduce here a PEC method that successfully engages Ni catalysis for the mild production of aniline derivatives. Experimental and computational investigations elucidate that the addition of photoanode-generated amine radical to Ni catalyst avoids the sluggish nucleophilic attack, enabling the reaction to proceed at an ultra-low potential (-0.4 V vs. Ag/AgNO3) and preventing the overoxidation of products in conventional electrochemical synthesis. This synergistic catalysis strategy exhibits good functional group tolerance and wide substrate scope on both aryl halides and amines, by which some important natural products and pharmaceutical chemicals have been successfully modified.
Collapse
Affiliation(s)
- Jinghao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Siyang Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Huiwen Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhiyu Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Pengqi Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Jian Li
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing, PR China.
| | - Li-Zhu Wu
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing, PR China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
20
|
Díaz-Ruiz M, Nieto-Rodríguez M, Maseras F. Revealing the Mechanistic Features of an Electrosynthetic Catalytic Reaction and the Role of Redox Mediators through DFT Calculations and Microkinetic Modeling. Chemphyschem 2024; 25:e202400402. [PMID: 38739104 DOI: 10.1002/cphc.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Organic electrosynthesis is an emerging field that provides original selectivity while adding features of atom economy, sustainability, and selectivity. Electrosynthesis is often enhanced by redox mediators or electroauxiliaries. The mechanistic understanding of organic electrosynthesis is however often limited by the low lifetime of intermediates and its difficult detection. In this work, we report a computational analysis of the mechanism of an appealing reaction previously reported by Mei and co-workers which is catalyzed by copper and employs iodide as redox mediator. Our scheme combines DFT calculations with microkinetic modeling and covers both the reaction in solution and the electrodic steps. A detailed mechanistic scheme is obtained which reproduces well experimental data and opens perspectives for the general treatment of these processes.
Collapse
Affiliation(s)
- Marina Díaz-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Marc Nieto-Rodríguez
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
21
|
Liang KJ, Taylor OR, López AL, Woo RJ, Bahamonde A. Indole Nucleophile Triggers Mechanistic Divergence in Ni-Photoredox N-Arylation. Chemistry 2024:e202402524. [PMID: 39060220 DOI: 10.1002/chem.202402524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
This study presents a Ni-photoredox method for indole N-arylation, broadening the range of substrates to include indoles with unprotected C3-positions and base-sensitive groups. Through detailed mechanistic inquiries, a Ni(I/III) mechanism was uncovered, distinct from those commonly proposed for Ni-catalyzed amine, thiol, and alcohol arylation, as well as from the Ni(0/II/III) cycle identified for amide arylation under almost identical conditions. The key finding is the formation of a Ni(I) intermediate bearing the indole nucleophile as a ligand prior to oxidative addition, which is rare for Ni-photoredox carbon-heteroatom coupling and has a profound impact on the reaction kinetics and scope. The pre-coordination of indole renders a more electron-rich Ni(I) intermediate, which broadens the scope by enabling fast reactivity even with challenging electron-rich aryl bromide substrates. Thus, this work highlights the often-overlooked influence of X-type ligands on Ni oxidative addition rates and illustrates yet another mechanistic divergence in Ni-photoredox C-heteroatom couplings.
Collapse
Affiliation(s)
- Kevin J Liang
- Chemistry Department, University of California, 501 Big Springs Rd., Riverside, CA, 92521, USA
| | - Olivia R Taylor
- Chemistry Department, University of California, 501 Big Springs Rd., Riverside, CA, 92521, USA
| | - Angie L López
- Chemistry Department, University of California, 501 Big Springs Rd., Riverside, CA, 92521, USA
| | - Russell J Woo
- Chemistry Department, University of California, 501 Big Springs Rd., Riverside, CA, 92521, USA
| | - Ana Bahamonde
- Chemistry Department, University of California, 501 Big Springs Rd., Riverside, CA, 92521, USA
| |
Collapse
|
22
|
Saeb R, Boulenger B, Cornella J. "Naked Nickel"-Catalyzed Amination of Heteroaryl Bromides. Org Lett 2024; 26:5928-5933. [PMID: 38967981 PMCID: PMC11267598 DOI: 10.1021/acs.orglett.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
In this Letter, we report that the air-stable "naked nickel" [Ni(4-tBustb)3] is a competent catalyst in thermal C-N bond formation between (hetero)aryl bromides and N-based nucleophiles. The catalytic system is characterized by a "naked nickel" complex and Zn and by the absence of external light sources, photocatalysts, exogenous ligands, and electrical setups. Upon application of this method, various heteroaryls bearing Lewis-basic heteroatoms can be accommodated and directly aminated with a set of primary and secondary amines.
Collapse
Affiliation(s)
- Rakan Saeb
- Max-Planck-Institut für
Kohlenforschung, Department of Organometallic
Chemistry, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, North Rhine-Westphalia, Germany
| | - Bryan Boulenger
- Max-Planck-Institut für
Kohlenforschung, Department of Organometallic
Chemistry, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, North Rhine-Westphalia, Germany
| | - Josep Cornella
- Max-Planck-Institut für
Kohlenforschung, Department of Organometallic
Chemistry, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, North Rhine-Westphalia, Germany
| |
Collapse
|
23
|
Samayoa-Oviedo HY, Knorke H, Warneke J, Laskin J. Spontaneous ligand loss by soft landed [Ni(bpy) 3] 2+ ions on perfluorinated self-assembled monolayer surfaces. Chem Sci 2024; 15:10770-10783. [PMID: 39027285 PMCID: PMC11253159 DOI: 10.1039/d4sc02527j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Transition metal (TM) complexes are widely used in catalysis, photochemical energy conversion, and sensing. Understanding factors that affect ligand loss from TM complexes at interfaces is important both for generating catalytically-active undercoordinated TM complexes and for controlling the degradation pathways of photosensitizers and photoredox catalysts. Herein, we demonstrate that well-defined TM complexes prepared on surfaces using ion soft landing undergo substantial structural rearrangements resulting in ligand loss and formation of both stable and reactive undercoordinated species. We employ nickel bipyridine (Ni-bpy) cations as a model system and explore their structural reorganization on surfaces using a combination of experimental and computational approaches. The controlled preparation of surface layers by mass-selected deposition of [Ni(bpy)3]2+ cations provides insights into the chemical reactivity of these species on surfaces. Both surface characterization using mass spectrometry and electronic structure calculations using density functional theory (DFT) indicate that [Ni(bpy)3]2+ undergoes a substantial geometry distortion on surfaces in comparison with its gas-phase structure. This distortion reduces the ligand binding energy and facilitates the formation of the undercoordinated [Ni(bpy)2]2+. Additionally, charge reduction by the soft landed [Ni(bpy)3]2+ facilitates ligand loss. We observe that ligand loss is inhibited by co-depositing [Ni(bpy)3]2+ with a stable anion such as closo-dodecaborate dianion, [B12F12]2-. The strong electrostatic interaction between [Ni(bpy)3]2+ and [B12F12]2- diminishes the distortion of the cation due to interactions with the surface. This interaction stabilizes the soft landed cation by reducing the extent of charge reduction and its structural reorganization. Overall, this study shows the intricate interplay of charge state, ion surface interactions, and stabilization by counterions on the structure and reactivity of metal complexes on surfaces. The combined experimental and computational approach used in this study offers detailed insights into factors that affect the integrity and stability of active species relevant to energy production and catalysis.
Collapse
Affiliation(s)
- Hugo Y Samayoa-Oviedo
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA +1-765-494-5434
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 04103 Leipzig Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 04103 Leipzig Germany
- Leibniz Institut für Oberflächenmodifizierung (IOM) Permoserstraße 15 04318 Leipzig Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA +1-765-494-5434
| |
Collapse
|
24
|
Liu ZR, Zhu XY, Guo JF, Ma C, Zuo Z, Mei TS. Synergistic use of photocatalysis and convergent paired electrolysis for nickel-catalyzed arylation of cyclic alcohols. Sci Bull (Beijing) 2024; 69:1866-1874. [PMID: 38670850 DOI: 10.1016/j.scib.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The merging of transition metal catalysis with electrochemistry has become a powerful tool for organic synthesis because catalysts can govern the reactivity and selectivity. However, coupling catalysts with alkyl radical species generated by anodic oxidation remains challenging because of electrode passivation, dimerization, and overoxidation. In this study, we developed convergent paired electrolysis for the coupling of nickel catalysts with alkyl radicals derived from photoinduced ligand-to-metal charge-transfer of cyclic alcohols and iron catalysts, providing a practical method for site-specific and remote arylation of ketones. The synergistic use of photocatalysis with convergent paired electrolysis can provide alternative avenues for metal-catalyzed radical coupling reactions.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
25
|
Zou L, Sun R, Tao Y, Wang X, Zheng X, Lu Q. Photoelectrochemical Fe/Ni cocatalyzed C-C functionalization of alcohols. Nat Commun 2024; 15:5245. [PMID: 38898017 PMCID: PMC11187109 DOI: 10.1038/s41467-024-49557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
The simultaneous activation of reactants on the anode and cathode via paired electrocatalysis has not been extensively demonstrated. This report presents a paired oxidative and reductive catalysis based on earth-abundant iron/nickel cocatalyzed C-C functionalization of ubiquitous alcohols. A variety of alcohols (i.e., primary, secondary, tertiary, or unstrained cyclic alcohols) can be activated at very low oxidation potential of (~0.30 V vs. Ag/AgCl) via photoelectrocatalysis coupled with versatile electrophiles. This reactivity yields a wide range of structurally diverse molecules with broad functional group compatibility (more than 50 examples).
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaofan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
26
|
Chen K, Ma Y, Lin Y, Li JY, Shi H. Ruthenium/η 5-Phenoxo-Catalyzed Amination of Phenols with Amines. J Am Chem Soc 2024; 146:15833-15842. [PMID: 38819396 DOI: 10.1021/jacs.4c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ruthenium(II) complexes are known to form η6-arene complexes with benzene-containing compounds through π-coordination, a property extensively utilized to initiate reactions not typically observed with free arenes. A prime example is nucleophilic aromatic substitution, where ruthenium-complexed aryl halides undergo nucleophilic attack, allowing the direct synthesis of diverse aromatic compounds by displacing halides with nucleophiles. However, this activation relies on the electron-withdrawing effect of the Ru(II) species, as well as is hindered by the resistance of η6-arenes to arene exchange. In the previous pursuit of catalysis, the emphasis of ligand design has centered on promoting arene exchange. In this study, we extended the ruthenium activation strategy to umpolung substitution reactions of phenols. The amination proceeds through a direct condensation between phenols and amines, with a key intermediate identified as [bis(η5-phenoxo)Ru], which is in situ generated from a commercially available ruthenium catalyst. In comparison with the well-studied cyclopentadienyl (Cp) type ligands, we demonstrated that an η5-phenoxo motif, as a superior alternative to Cp, contributes to the amination of phenols in two crucial ways: its less electron-donating nature enhances the withdrawing effect of the ruthenium unit, facilitating substitution on the phenol complex; its distinctive behavior in arene exchange allows for conducting the amination with a catalytic amount of metal. Additionally, hydrogen bonding, wherein the phenoxo serves as the acceptor, was found to be important for the substitution. The versatility of this ruthenium-catalyzed amination was validated by performing reactions with a diverse array of phenols exhibiting various electronic properties, in combination with a wide range of primary amines. This work exemplifies the expansion of the scope of π-coordination activation in catalysis through innovative ligand development.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry, Zhejiang University, Hangzhou ,Zhejiang Province 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yixuan Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Jia-Yue Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences,Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou ,Zhejiang Province 310024, China
| |
Collapse
|
27
|
Cagan D, Bím D, Kazmierczak NP, Hadt RG. Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes. ACS Catal 2024; 14:9055-9076. [PMID: 38868098 PMCID: PMC11165457 DOI: 10.1021/acscatal.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.
Collapse
Affiliation(s)
- David
A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, The
Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
29
|
Pierson CN, Hartwig JF. Mapping the mechanisms of oxidative addition in cross-coupling reactions catalysed by phosphine-ligated Ni(0). Nat Chem 2024; 16:930-937. [PMID: 38355826 PMCID: PMC11620730 DOI: 10.1038/s41557-024-01451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
The complexes of first-row transition metals can undergo elementary reactions by multiple pathways due to their propensity to undergo both one- and two-electron redox steps. Classic and recent studies of the oxidative addition of aryl halides to Ni(0)-a common step in widely practised cross-coupling processes-have yielded contradictory conclusions about stepwise, radical versus concerted mechanisms, but such information is crucial to the design of catalysts based on earth-abundant metals. Here we show that the oxidative addition of aryl halides to Ni(0) ligated by monophosphines occurs by both mechanisms and delineate how the branching of radical and non-radical pathways depends on the electronic properties of both the ligand and reactant arene as well as the identity of the halide. The one-electron pathway occurs by outer-sphere electron transfer to form an aryl radical rather than the often-proposed halogen atom transfer.
Collapse
|
30
|
Nishino S, Sudo K, Kurahashi T. Nickel-Photoredox-Catalyzed Stereoconvergent Coupling of Alkenyl Halides and Nitrogen-Containing Heterocycles. Org Lett 2024; 26:4049-4054. [PMID: 38717164 DOI: 10.1021/acs.orglett.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Nitrogen-containing heterocycles possessing N-alkenyl substituents are an important structural motif. However, the synthetic methods reported thus far cannot selectively synthesize the Z stereoisomer on the basis of the stereochemistry of the substituted alkenes. Herein, we report the stereoconvergent coupling of heterocycles and alkenyl halides consisting of a mixture of E/Z stereoisomers, which selectively afforded the thermodynamically less stable Z-coupling product. Mechanistic studies suggest that a nickel photoredox catalyst facilitates the formation of N-centered heteroarene radicals.
Collapse
Affiliation(s)
- Sodai Nishino
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Kô Sudo
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Takuya Kurahashi
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
31
|
Huang H, Alvarez-Hernandez JL, Hazari N, Mercado BQ, Uehling MR. Effect of 6,6'-Substituents on Bipyridine-Ligated Ni Catalysts for Cross-Electrophile Coupling. ACS Catal 2024; 14:6897-6914. [PMID: 38737398 PMCID: PMC11087080 DOI: 10.1021/acscatal.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A family of 4,4'-tBu2-2,2'-bipyridine (tBubpy) ligands with substituents in either the 6-position, 4,4'-tBu2-6-Me-bpy (tBubpyMe), or 6 and 6'-positions, 4,4'-tBu2-6,6'-R2-bpy (tBubpyR2; R = Me, iPr, sBu, Ph, or Mes), was synthesized. These ligands were used to prepare Ni complexes in the 0, I, and II oxidation states. We observed that the substituents in the 6 and 6'-positions of the tBubpy ligand impact the properties of the Ni complexes. For example, bulkier substituents in the 6,6'-positions of tBubpy better stabilized (tBubpyR2)NiICl species and resulted in cleaner reduction from (tBubpyR2)NiIICl2. However, bulkier substituents hindered or prevented coordination of tBubpyR2 ligands to Ni0(cod)2. In addition, by using complexes of the type (tBubpyMe)NiCl2 and (tBubpyR2)NiCl2 as precatalysts for different XEC reactions, we demonstrated that the 6 or 6,6' substituents lead to major differences in catalytic performance. Specifically, while (tBubpyMe)NiIICl2 is one of the most active catalysts reported to date for XEC and can facilitate XEC reactions at room temperature, lower turnover frequencies were observed for catalysts containing tBubpyR2 ligands. A detailed study on the catalytic intermediates (tBubpy)Ni(Ar)I and (tBubpyMe2)Ni(Ar)I revealed several factors that likely contributed to the differences in catalytic activity. For example, whereas complexes of the type (tBubpy)Ni(Ar)I are low spin and relatively stable, complexes of the type (tBubpyMe2)Ni(Ar)I are high-spin and less stable. Further, (tBubpyMe2)Ni(Ar)I captures primary and benzylic alkyl radicals more slowly than (tBubpy)Ni(Ar)I, consistent with the lower activity of the former in catalysis. Our findings will assist in the design of tailor-made ligands for Ni-catalyzed transformations.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | | | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Mycah R Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Rahway, New Jersey, 07065, USA
| |
Collapse
|
32
|
Mdluli V, Lehnherr D, Lam YH, Chaudhry MT, Newman JA, DaSilva JO, Regalado EL. Electrosynthesis of iminophosphoranes and applications in nickel catalysis. Chem Sci 2024; 15:5980-5992. [PMID: 38665537 PMCID: PMC11041257 DOI: 10.1039/d3sc05357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
P(v) iminophosphorane compounds are accessed via electrochemical oxidation of commercially available P(iii) phosphines, including mono-, di- and tri-dentate phosphines, as well as chiral phosphines. The reaction uses inexpensive bis(trimethylsilyl)carbodiimide as an efficient and safe aminating reagent. DFT calculations, cyclic voltammetry, and NMR studies provide insight into the reaction mechanism. The proposed mechanism reveals a special case of sequential paired electrolysis. DFT calculations of the frontier orbitals of an iminophosphorane are compared with those of the analogous phosphines and phosphine oxides. X-ray crystallographic studies of the ligands as well as a Ni-coordination complex provide structural insight for these ligands. The utility of these iminophosphoranes as ligands is demonstrated in nickel-catalyzed cross-electrophile couplings including C(sp2)-C(sp3) and C(sp2)-C(sp2) couplings, an electrochemically driven C-N cross-coupling, and a photochemical arylative C(sp3)-H functionalization. In some cases, these new ligands provide improved performance over commonly used sp2-N-based ligands (e.g. 4,4'-di-tert-butyl-2,2'-bipyridine).
Collapse
Affiliation(s)
- Velabo Mdluli
- Process Research and Development, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | - Yu-Hong Lam
- Modeling and Informatics, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | - Mohammad T Chaudhry
- Analytical Research and Development, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | - Jimmy O DaSilva
- Analytical Research and Development, Merck & Co., Inc. Rahway New Jersey 07065 USA
| | - Erik L Regalado
- Analytical Research and Development, Merck & Co., Inc. Rahway New Jersey 07065 USA
| |
Collapse
|
33
|
Czaikowski ME, Anferov SW, Anderson JS. Metal-ligand cooperativity in chemical electrosynthesis. CHEM CATALYSIS 2024; 4:100922. [PMID: 38799408 PMCID: PMC11115383 DOI: 10.1016/j.checat.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Electrochemistry has been an increasingly useful tool for organic synthesis, as it can selectively generate reactive intermediates under mild conditions using an applied potential. Concurrently, synergistic activity of a metal and a ligand has been used in thermal catalysis and electrocatalytic renewable fuel generation for substrate selectivity and improved catalyst activity. Combining these synthetic strategies is an attractive approach for mild, selective, and sustainable electrosynthesis. This perspective discusses examples of metal-ligand synergistic catalysis in electrochemical applications in organic and organometallic synthesis. The range of reactions and ligand design principles illustrates many opportunities for further discovery in this area and the potential for far-reaching synthetic benefits.
Collapse
Affiliation(s)
- Maia E. Czaikowski
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
- These authors contributed equally
| | - Sophie W. Anferov
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
- These authors contributed equally
| | - John S. Anderson
- Department of Chemistry, The University of Chicago, Chicago, IL 60627, USA
| |
Collapse
|
34
|
Borsley S, Gallagher JM, Leigh DA, Roberts BMW. Ratcheting synthesis. Nat Rev Chem 2024; 8:8-29. [PMID: 38102412 DOI: 10.1038/s41570-023-00558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
35
|
Shukla G, Singh M, Kumar Yadav A, Shankar Singh M. Aromatic C(sp 2 )-H Functionalization by Consecutive Paired Electrolysis: Dibromination of Aryl Amines with Dibromoethane at Room Temperature. Chemistry 2023:e202303179. [PMID: 38078727 DOI: 10.1002/chem.202303179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 12/23/2023]
Abstract
Herein, we disclose a facile and efficient electrochemical method for the dibromination of aryl amines by double functionalization of aromatic C(sp2 )-H (both para and ortho) under metal- and external oxidant-free conditions at room temperature for the first time. The reaction is demonstrated using 1,2-dibromoethane to dibrominate a wide range of N-substituted aryl amines in a simple setup with C(+)/Pt(-) electrodes under mild reaction conditions. This transformation proceeds smoothly with a broad substrate scope affording the valuable and versatile N-substituted 2,4-dibromoanilines in moderate to excellent yields with high regioselectivity. In this paired electrolysis, cathodic reduction of 1,2-DBE followed by anodic oxidation generates bromonium intermediates, which then couple with anilines to furnish the dibrominated products. It represents a distinctive approach to challenging redox-neutral reactions. The versatility of the electrochemical ortho-, para-dibromination was reflected by unique regioselectivities for challenging aryl amines and gram-scale electrosynthesis without the use of a stoichiometric oxidant or an activating agent.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Malkeet Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anup Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
36
|
Lu J, Yao Y, Li L, Fu N. Dual Transition Metal Electrocatalysis: Direct Decarboxylative Alkenylation of Aliphatic Carboxylic Acids. J Am Chem Soc 2023. [PMID: 38029443 DOI: 10.1021/jacs.3c08839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Direct decarboxylative alkenylation of widely available aliphatic carboxylic acids with vinyl halides for the synthesis of alkenes with all substitution patterns has been accomplished by means of Ce/Ni dual transition metal electrocatalysis. The reactions employ alkyl acids as the limiting reagents and exhibit a broad scope with respect to both coupling partners. Notably, simple primary alkyl carboxylic acids could be readily engaged as carbon-centered radical precursors in the reaction. This new alkenylation protocol has been successfully demonstrated in direct modification of naturally occurring complex acids and is amenable to the enantioselective decarboxylative alkenylation of arylacetic acid. Mechanistic studies, including a series of controlled experiments and cyclic voltammetry data, allow us to probe the key intermediates and the pathway of the reaction.
Collapse
Affiliation(s)
- Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
38
|
Luo J, Davenport MT, Carter A, Ess DH, Liu TL. Mechanistic studies of Ni-catalyzed electrochemical homo-coupling reactions of aryl halides. Faraday Discuss 2023; 247:136-146. [PMID: 37492890 PMCID: PMC10630096 DOI: 10.1039/d3fd00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ni-catalyzed electrochemical arylation is an attractive, emerging approach for molecular construction as it uses air-stable Ni catalysts and efficiently proceeds at room temperature. However, the homo-coupling of aryl halide substrates is one of the major side reactions. Herein, extensive experimental and computational studies were conducted to examine the mechanism of Ni-catalyzed electrochemical homo-coupling of aryl halides. The results indicate that an unstable NiII(Ar)Br intermediate formed through oxidative addition of the cathodically generated NiI species with aryl bromide and a consecutive chemical reduction step. For electron-rich aryl halides, homo-coupling reaction efficiency is limited by the oxidative addition step, which can be improved by negatively shifting the redox potential of the Ni-catalyst. DFT computational studies suggest a NiIII(Ar)Br2/NiII(Ar)Br ligand exchange pathway for the formation of a high-valent NiIII(Ar)2Br intermediate for reductive elimination and production of the biaryl product. This work reveals the reaction mechanism of Ni-catalyzed electrochemical homo-coupling of aryl halides, which may provide valuable information for developing cross-coupling reactions with high selectivity.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA.
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| | - Arianna Carter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA.
| |
Collapse
|
39
|
Jaouadi K, Abdellaoui M, Levernier E, Payard PA, Derat E, Le Saux T, Ollivier C, Torelli S, Jullien L, Plasson R, Fensterbank L, Grimaud L. Regime Switch in the Dual-Catalyzed Coupling of Alkyl Silicates with Aryl Bromides. Chemistry 2023; 29:e202301780. [PMID: 37494564 DOI: 10.1002/chem.202301780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Metallaphotoredox catalyzed cross-coupling of an arylbromide (Ar-Br) with an alkyl bis(catecholato)silicate (R-Si⊖ ) has been analyzed in depth using a continuum of analytical techniques (EPR, fluorine NMR, electrochemistry, photophysics) and modeling (micro-kinetics and DFT calculations). These studies converged on the impact of four control parameters consisting in the initial concentrations of the iridium photocatalyst ([Ir]0 ), nickel precatalyst ([Ni]0 ) and silicate ([R-Si⊖ ]0 ) as well as light intensity I0 for an efficient reaction between Ar-Br and R-Si⊖ . More precisely, two regimes were found to be possibly at play. The first one relies on an equimolar consumption of Ar-Br with R-Si⊖ smoothly leading to Ar-R, with no side-product from R-Si⊖ and a second one in which R-Si⊖ is simultaneously coupled to Ar-Br and degraded to R-H. This integrative approach could serve as a case study for the investigation of other metallaphotoredox catalysis manifolds of synthetic significance.
Collapse
Affiliation(s)
- Khaoula Jaouadi
- LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Mehdi Abdellaoui
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Etienne Levernier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Pierre-Adrien Payard
- LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Stéphane Torelli
- Univ. Grenoble Alpes, CNRS, CEA, IRIG Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054, Grenoble Cedex, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Raphaël Plasson
- UMR408 SQPOV Avignon Université/INRAE Campus Jean-Henri Fabre, 301 rue Baruch de Spinoza BP, 21239, 84916, Avignon Cedex 9, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Laurence Grimaud
- LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
40
|
Bradley RD, McManus BD, Yam JG, Carta V, Bahamonde A. Mechanistic Evidence of a Ni(0/II/III) Cycle for Nickel Photoredox Amide Arylation. Angew Chem Int Ed Engl 2023; 62:e202310753. [PMID: 37684220 DOI: 10.1002/anie.202310753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
This work demonstrates the dominance of a Ni(0/II/III) cycle for Ni-photoredox amide arylation, which contrasts with other Ni-photoredox C-heteroatom couplings that operate via Ni(I/III) self-sustained cycles. The kinetic data gathered when using different Ni precatalysts supports an initial Ni(0)-mediated oxidative addition into the aryl bromide. Using NiCl2 as the precatalyst resulted in an observable induction period, which was found to arise from a photochemical activation event to generate Ni(0) and to be prolonged by unproductive comproportionation between the Ni(II) precatalyst and the in situ generated Ni(0) active species. Ligand exchange after oxidative addition yields a Ni(II) aryl amido complex, which was identified as the catalyst resting state for the reaction. Stoichiometric experiments showed that oxidation of this Ni(II) aryl amido intermediate was required to yield functionalized amide products. The kinetic data presented supports a rate-limiting photochemically-mediated Ni(II/III) oxidation to enable C-N reductive elimination. An alternative Ni(I/III) self-sustained manifold was discarded based on EPR and kinetic measurements. The mechanistic insights uncovered herein will inform the community on how subtle changes in Ni-photoredox reaction conditions may impact the reaction pathway, and have enabled us to include aryl chlorides as coupling partners and to reduce the Ni loading by 20-fold without any reactivity loss.
Collapse
Affiliation(s)
- Robert D Bradley
- Chemistry Department, University of California, Riverside, 501 Big Springs Rd., Riverside, CA 92521, USA
| | - Brennan D McManus
- Chemistry Department, University of California, Riverside, 501 Big Springs Rd., Riverside, CA 92521, USA
| | - Jessalyn G Yam
- Chemistry Department, University of California, Riverside, 501 Big Springs Rd., Riverside, CA 92521, USA
| | - Veronica Carta
- Chemistry Department, University of California, Riverside, 501 Big Springs Rd., Riverside, CA 92521, USA
| | - Ana Bahamonde
- Chemistry Department, University of California, Riverside, 501 Big Springs Rd., Riverside, CA 92521, USA
| |
Collapse
|
41
|
Palkowitz MD, Emmanuel MA, Oderinde MS. A Paradigm Shift in Catalysis: Electro- and Photomediated Nickel-Catalyzed Cross-Coupling Reactions. Acc Chem Res 2023; 56:2851-2865. [PMID: 37772915 DOI: 10.1021/acs.accounts.3c00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ConspectusTransition-metal catalyzed cross-coupling reactions are fundamental reactions in organic chemistry, facilitating strategic bond formations for accessing natural products, organic materials, agrochemicals, and pharmaceuticals. Redox chemistry enables access to elusive cross-coupling mechanisms through single-electron processes as an alternative to classical two-electron strategies predominated by palladium catalysis. The seminal reports of Baran, MacMillan, Doyle, Molander, Weix, Lin, Fu, Reisman, and others in merging redox perturbation (photochemical, electrochemical, and purely chemical) with catalysis are pivotal to the current resurgence and mechanistic understanding of first-row transition metal-based catalysis. The hallmark of this redox platform is the systematic modulation of transition-metal oxidation states by a photoredox catalyst or at a heterogeneous electrode surface. Electrocatalysis and photocatalysis enhance transition metal catalysis' capacity for bond formation through electron- or energy-transfer processes that promote otherwise challenging elementary steps or elusive mechanisms. Cross-coupling conditions promoted by electrocatalysis and photocatalysis are mild, and bond formation proceeds with exceptionally high chemoselectivity and wide functional group tolerance. The interfacing of abundant first-row transition-metal catalysis with electrocatalysis and photocatalysis has brought about a paradigm shift in cross-coupling technology as practitioners are quickly applying these tools in synthesizing fine chemicals and pharmaceutically relevant motifs. In particular, the merger of Ni catalysis with electro- and photochemistry ushered in a new era for carbon-carbon and carbon-heteroatom cross-couplings with expanded generality compared to their thermally driven counterparts. Over the past decade, we have developed enabling photo- and electrochemical methods throughout our combined research experience in industry (BMS, AstraZeneca) and academia (Professor Baran, Scripps Research) in cross-disciplinary collaborative environments. In this Account, we will outline recent progress from our past and present laboratories in photo- and electrochemically mediated Ni-catalyzed cross-couplings. By highlighting these cross-coupling methodologies, we will also compare mechanistic features of both electro- and photochemical strategies for forging C(sp2)-C(sp3), C(sp3)-C(sp3), C-O, C-N, and C-S bonds. Through these side-by-side comparisons, we hope to demystify the subtle differences between the two complementary tools to enact redox control over transition metal catalysis. Finally, building off the collective experience of ourselves and the rest of the community, we propose a tactical user guide to photo- and electrochemically driven cross-coupling reactions to aid the practitioner in rapidly applying such tools in their synthetic designs.
Collapse
Affiliation(s)
- Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Martins S Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
42
|
Seo T, Kubota K, Ito H. Dual Nickel(II)/Mechanoredox Catalysis: Mechanical-Force-Driven Aryl-Amination Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2023; 62:e202311531. [PMID: 37638843 DOI: 10.1002/anie.202311531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The combination of a nickel(II) catalyst and a mechanoredox catalyst under ball-milling conditions promotes mechanical-force-driven C-N cross-coupling reactions. In this nickel(II)/mechanoredox cocatalyst system, the modulation of the oxidation state of the nickel center, induced by piezoelectricity, is used to facilitate a highly efficient aryl-amination reaction, which is characterized by a broad substrate scope, an inexpensive combination of catalysts (NiBr2 and BaTiO3 ), short reaction times, and an almost negligible quantity of solvents. Moreover, this reaction can be readily up-scaled to the multi-gram scale, and all synthetic operations can be carried out under atmospheric conditions without the need for complicated reaction setups. Furthermore, this force-induced system is suitable for excitation-energy-accepting molecules and poorly soluble polyaromatic substrates that are incompatible with solution-based nickel(II)/photoredox cocatalysts.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| |
Collapse
|
43
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
44
|
Stebletsova IA, Larin AA, Ananyev IV, Fershtat LL. Regioselective Synthesis of NO-Donor (4-Nitro-1,2,3-triazolyl)furoxans via Eliminative Azide-Olefin Cycloaddition. Molecules 2023; 28:6969. [PMID: 37836813 PMCID: PMC10574565 DOI: 10.3390/molecules28196969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A facile and efficient method for the regioselective [3 + 2] cycloaddition of 4-azidofuroxans to 1-dimethylamino-2-nitroethylene under p-TSA catalysis affording (4-nitro-1,2,3-triazolyl)furoxans was developed. This transformation is believed to proceed via eliminative azide-olefin cycloaddition resulting in its complete regioselectivity. The developed protocol has a broad substrate scope and enables a straightforward assembly of the 4-nitro-1,2,3-triazole motif. Moreover, synthesized (4-nitro-1,2,3-triazolyl)furoxans were found to be capable of NO release in a broad range of concentrations, thus providing a novel platform for future drug design and related biomedical applications of heterocyclic NO donors.
Collapse
Affiliation(s)
- Irina A. Stebletsova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
- D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A. Larin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| | - Ivan V. Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky Prospect, 31, 119991 Moscow, Russia;
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| |
Collapse
|
45
|
Chen J, Mo Y. Wireless Electrochemical Reactor for Accelerated Exploratory Study of Electroorganic Synthesis. ACS CENTRAL SCIENCE 2023; 9:1820-1826. [PMID: 37780362 PMCID: PMC10540286 DOI: 10.1021/acscentsci.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 10/03/2023]
Abstract
Electrosynthesis is an emerging tool to construct value-added fine chemicals under mild and sustainable conditions. However, the complex apparatus required impedes the facile development of new electrochemistry in the laboratory. Herein, we proposed and demonstrated the concept of wireless electrochemistry (Wi-eChem) based on wireless power transfer technology. The core of this concept is the dual-function wireless electrochemical magnetic stirrer that provides an electrolysis driving force and mixing simultaneously in a miniaturized form factor. This Wi-eChem system allowed electrochemists to execute electrochemical reactions in a manner similar to traditional organic chemistry without handling wire connections. The controllability, reusability, and versatility were validated with a series of modern electrosynthesis reactions, including electrodecarboxylative etherification, electroreductive olefin-ketone coupling, and electrochemical nickel-catalyzed oxygen atom transfer reaction. Its remarkably simplified operation enabled its facile integration into a fully automated robotic synthesis platform to achieve autonomous parallel electrosynthesis screening.
Collapse
Affiliation(s)
- Jie Chen
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Yiming Mo
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China
| |
Collapse
|
46
|
Newman-Stonebraker SH, Raab TJ, Roshandel H, Doyle AG. Synthesis of Nickel(I)-Bromide Complexes via Oxidation and Ligand Displacement: Evaluation of Ligand Effects on Speciation and Reactivity. J Am Chem Soc 2023; 145:19368-19377. [PMID: 37610310 PMCID: PMC10616978 DOI: 10.1021/jacs.3c06233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nickel's +1 oxidation state has received much interest due to its varied and often enigmatic behavior in increasingly popular catalytic methods. In part, the lack of understanding about NiI results from common synthetic strategies limiting the breadth of complexes that are accessible for mechanistic study and catalyst design. We report an oxidative approach using tribromide salts that allows for the generation of a well-defined precursor, [NiI(COD)Br]2, as well as several new NiI complexes. Included among them are complexes bearing bulky monophosphines, for which structure-speciation relationships are established and catalytic reactivity in a Suzuki-Miyaura coupling (SMC) is investigated. Notably, these routes also allow for the synthesis of well-defined monomeric t-Bubpy-bound NiI complexes, which has not previously been achieved. These complexes, which react with aryl halides, can enable previously challenging mechanistic investigations and present new opportunities for catalysis and synthesis.
Collapse
Affiliation(s)
- Samuel H. Newman-Stonebraker
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - T. Judah Raab
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hootan Roshandel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Abigail G. Doyle
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
47
|
Dulov DA, Magdesieva TV. N, N'-Diaryldihydrophenazines as Visible-Light Photocatalysts for Anilines' Arylation Using a Dual Photoredox/Ni(II) Cross-Coupling Strategy. J Org Chem 2023; 88:12765-12775. [PMID: 37596978 DOI: 10.1021/acs.joc.3c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
It has been shown that cheap and easily available N,N'-diaryldihydrophenazines can successfully replace Ir(III)- and Ru(II)-based photocatalysts in the dual photoredox/Ni(II) C-N coupling of aryl halides with a wide range of anilines (32 examples). The efficient, operationally simple approach to diarylamines has been elaborated, which is amenable to scaling up via a flow apparatus.
Collapse
Affiliation(s)
- Dmitry A Dulov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119234, Russia
| | - Tatiana V Magdesieva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119234, Russia
| |
Collapse
|
48
|
McNicholas BJ, Tong ZJ, Bím D, Turro RF, Kazmierczak NP, Chalupský J, Reisman SE, Hadt RG. Electronic Structures of Nickel(II)-Bis(indanyloxazoline)-dihalide Catalysts: Understanding Ligand Field Contributions That Promote C(sp 2)-C(sp 3) Cross-Coupling. Inorg Chem 2023; 62:14010-14027. [PMID: 37584501 PMCID: PMC10530056 DOI: 10.1021/acs.inorgchem.3c02048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.
Collapse
Affiliation(s)
- Brendon J. McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Z. Jaron Tong
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Raymond F. Turro
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jakub Chalupský
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Sarah E. Reisman
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
49
|
Luo J, Davenport MT, Callister C, Minteer SD, Ess DH, Liu TL. Understanding Formation and Roles of Ni II Aryl Amido and Ni III Aryl Amido Intermediates in Ni-Catalyzed Electrochemical Aryl Amination Reactions. J Am Chem Soc 2023; 145:16130-16141. [PMID: 37433081 PMCID: PMC10635587 DOI: 10.1021/jacs.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Ni-catalyzed electrochemical aryl amination (e-amination) is an attractive, emerging approach to building C-N bonds. Here, we report in-depth experimental and computational studies that examined the mechanism of Ni-catalyzed e-amination reactions. Key NiII-amine dibromide and NiII aryl amido intermediates were chemically synthesized and characterized. The combination of experiments and DFT calculations suggest (1) there is coordination of an amine to the NiII catalyst before the cathodic reduction and oxidative addition steps, (2) a stable NiII aryl amido intermediate is produced from the cathodic half-reaction, a critical step in controlling the selectivity between cross-coupling and undesired homo-coupling reaction pathways, (3) the diazabicycloundecene additive shifts the aryl halide oxidative addition mechanism from a NiI-based pathway to a Ni0-based pathway, and (4) redox-active bromide in the supporting electrolyte functions as a redox mediator to promote the oxidation of the stable NiII aryl amido intermediate to a NiIII aryl amido intermediate. Subsequently, the NiIII aryl amido intermediate undergoes facile reductive elimination to provide a C-N cross-coupling product at room temperature. Overall, our results provide new fundamental understandings about this e-amination reaction and guidance for further development of other Ni-catalyzed electrosynthetic reactions such as C-C and C-O cross-couplings.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Chad Callister
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
50
|
Schwiedernoch R, Niu X, Shu H, Steinmann SN, Wu M, Naghavi N. One-Step Electrocatalytic Approach Applied to the Synthesis of β-Propiolactones from CO 2 and Dienes. J Org Chem 2023. [PMID: 37467177 DOI: 10.1021/acs.joc.2c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
β-Lactones are common substructures in a variety of natural products and drugs, and they serve as versatile synthetic intermediates in the production of valuable chemical derivatives. Traditional β-lactone synthesis relies on laborious multi-step synthetic methods that use toxic compounds, sophisticated catalysts, expensive, and/or reactive chemicals. Based on the in situ electrochemical formation of metal-based nanoclusters, this paper describes the development of a one-step, room temperature electrocatalytic method for the formation of stable β-lactone from CO2 and dienes. This one-step "electrosynthesis" method results in the formation of a new class of β-lactone with high selectivity (up to 100%) and activity (up to 80% yields with respect to the reacted diene) by regulating the applied potential and current density. This work paves the way for more sustainable and environmentally friendly reaction pathways based on the in situ formation of nanoclusters as organic electrosynthesis catalysts.
Collapse
Affiliation(s)
- Renate Schwiedernoch
- Eco-Efficient Products and Processes Laboratory (E2P2L, IRL 3464 CNRS-Solvay), Solvay (China) Co., Ltd., 3966 Jindu Road, Xinzhuang Industrial Zone, Shanghai 201108, P. R. China
| | - Xiaofeng Niu
- Eco-Efficient Products and Processes Laboratory (E2P2L, IRL 3464 CNRS-Solvay), Solvay (China) Co., Ltd., 3966 Jindu Road, Xinzhuang Industrial Zone, Shanghai 201108, P. R. China
| | - Haosheng Shu
- Eco-Efficient Products and Processes Laboratory (E2P2L, IRL 3464 CNRS-Solvay), Solvay (China) Co., Ltd., 3966 Jindu Road, Xinzhuang Industrial Zone, Shanghai 201108, P. R. China
| | - Stephan N Steinmann
- Laboratoire de Chimie, Univ Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, 46 Allée d'Italie, F-69364 Lyon, France
| | - Mengjia Wu
- Eco-Efficient Products and Processes Laboratory (E2P2L, IRL 3464 CNRS-Solvay), Solvay (China) Co., Ltd., 3966 Jindu Road, Xinzhuang Industrial Zone, Shanghai 201108, P. R. China
| | - Negar Naghavi
- Eco-Efficient Products and Processes Laboratory (E2P2L, IRL 3464 CNRS-Solvay), Solvay (China) Co., Ltd., 3966 Jindu Road, Xinzhuang Industrial Zone, Shanghai 201108, P. R. China
| |
Collapse
|