1
|
Liu X, Zhang J. Progress in Double Dearomatization Reactions. Chemistry 2025; 31:e202404640. [PMID: 39887834 DOI: 10.1002/chem.202404640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Dearomatization reactions are among the most straightforward and efficient methods for creating sp3-rich cyclic systems from simple, readily available arenes. These reactions have been widely applied in the total synthesis of natural products, medicinal chemistry, and material sciences. The fruitful development of dearomatization strategies and methodologies targeting single aromatic substrate over the past decades has paved the way for more sophisticated multiple dearomatization processes, which offer greater advantages in constructing molecular complexity. Double dearomatization reactions have made significant pioneering strides in recent years. This review will provide an overview of the strategies and detailed examples of multiple dearomatization reactions involving various aromatic compounds, along with a discussion of the related mechanisms and the major challenges that remain in this intriguing yet formidable field.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Jiang Z, Chen Z, Yu X, Lu S, Xu W, Yu B, Stern CL, Li SY, Zhao Y, Liu X, Han Y, Chen S, Cai K, Shen D, Ma K, Li X, Chen AXY. Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels. J Am Chem Soc 2025; 147:7325-7335. [PMID: 39964363 DOI: 10.1021/jacs.4c14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenmin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bo Yu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shu-Yi Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yue Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinzhi Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yeqiang Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Shuqi Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kaikai Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Liu K, Delbianco M. A glycan foldamer that uses carbohydrate-aromatic interactions to perform catalysis. Nat Chem 2025:10.1038/s41557-025-01763-6. [PMID: 40011712 DOI: 10.1038/s41557-025-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
In nature, the ability to catalyse reactions is primarily associated with proteins and ribozymes. Inspired by these systems, peptide-based catalysts have been designed to accelerate chemical reactions and/or ensure regio- and stereoselective transformations. We wondered whether other biomolecules (such as glycans) could be designed to perform catalytic functions, expanding the portfolio of synthetic functional oligomers. Here we report a glycan foldamer inspired by the natural Sialyl Lewis X antigen that acts as catalyst in a chemical reaction. This glycan-based catalyst benefits from structural rigidity and modular adaptability, incorporating a substrate-recognition motif alongside a catalytic active site. Leveraging the inherent ability of carbohydrates to engage in CH-π interactions with aromatic substrates, we demonstrate the recruitment and functionalization of a tryptophan via a Pictet-Spengler transformation. Our modular glycan catalyst accelerates the reaction kinetics, enabling the modification of tryptophan-containing peptides in aqueous environments. Our findings pave the way for the development of glycan-based catalysts and suggest the possibility of catalytic capabilities of glycans in biological contexts.
Collapse
Affiliation(s)
- Kaimeng Liu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
4
|
Liu X, Zhu B, Chu A, Wang R. Organocatalyzed Enantioselective Double Dearomatization of Tricyclic Phenols and Alkoxybenzenes. Org Lett 2024; 26:10827-10832. [PMID: 39641758 DOI: 10.1021/acs.orglett.4c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
To advance more efficient dearomatization approaches, we present herein an organocatalyzed asymmetric double dearomatization reaction of tricyclic phenols and alkoxybenzenes by leveraging a novel steric hindrance-regulated dearomatization strategy for nonfunctionalized phenols. This protocol allows the efficient synthesis of structurally complex polycyclic diketones with four tertiary carbon centers under mild conditions while also showcasing the potential of multiple dearomatizations for building intricate molecular frameworks from simple starting materials.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Boyan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Anqi Chu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Syntrivanis L, Tiefenbacher K. Reactivity Inside Molecular Flasks: Acceleration Modes and Types of Selectivity Obtainable. Angew Chem Int Ed Engl 2024; 63:e202412622. [PMID: 39295476 PMCID: PMC11586709 DOI: 10.1002/anie.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
There is increasing interest in the discovery and application of molecular flasks-supramolecular host structures capable of catalyzing organic reactions. Reminiscent of enzymes due to possessing a host cavity akin to an active site, molecular flasks can exhibit complex catalytic mechanisms and in many cases provide selectivity not achievable in bulk solvent. In this Review, we aim to organize the increasingly diverse examples through a two-part structure. In part one, we provide an overview of the different acceleration modes that operate within molecular flasks, while in part two we showcase, through selected examples, the different types of selectivity that are obtainable through the use of molecular flasks. Particular attention is given to examples that are relevant to current challenges in synthetic organic chemistry. We believe that this structure makes the field more approachable and thus will stimulate the development of novel applications of molecular flasks.
Collapse
Affiliation(s)
| | - Konrad Tiefenbacher
- Department of ChemistryUniversity of BaselBaselSwitzerland
- Department of Biosystems Science and EngineeringETHZurichBaselSwitzerland
| |
Collapse
|
6
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
7
|
Ferrino G, De Rosa M, Della Sala P, Gaeta C, Talotta C, Soriente A, Cao Z, Maity B, Cavallo L, Neri P. The Resorcinarene Hexameric Capsule as a Supramolecular Photoacid to Trigger Olefin Hydroarylation in Confined Space. Chemistry 2024; 30:e202303678. [PMID: 38373184 DOI: 10.1002/chem.202303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The self-assembled resorcinarene capsule C6 shows remarkable photoacidity upon light irradiation, which is here exploited to catalyze olefin hydroarylation reactions in confined space. An experimental pKa* value range of -3.3--2.8 was estimated for the photo-excited hexameric capsule C6*, and consequently an increase in acidity of 8.8 log units was observed with respect to its ground state (pKa=5.5-6.0). This makes the hexameric capsule the first example of a self-assembled supramolecular photoacid. The photoacid C6* can catalyze hydroarylation reaction of olefins with aromatic substrates inside its cavity, while no reaction occurred between them in the absence of irradiation and/or capsule. DFT calculations corroborated a mechanism in which the photoacidity of C6* plays a crucial role in the protonation step of the aromatic substrate. A further proton transfer to olefin with a concomitant C-C bond formation and a final deprotonation step lead to product releasing.
Collapse
Affiliation(s)
- Giuseppina Ferrino
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, (KCC), Physical Sciences and Engineering Division, Tuwal, 23955-6900, Saudi Arabia
| | - Placido Neri
- Laboratory of Supramolecular Chemistry Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano (Salerno), Italy
| |
Collapse
|
8
|
Wang H, Wang Y, Xu W, Zhang H, Lv J, Wang X, Zheng Z, Zhao Y, Yu L, Yuan Q, Yu L, Zheng B, Gao L. Host-Guest-Interaction Enhanced Nitric Oxide Photo-Generation within a Pillar[5]arene Cavity for Antibacterial Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54266-54279. [PMID: 37969079 DOI: 10.1021/acsami.3c10862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Supramolecular macrocycles with intrinsic cavities have been widely explored as containers to fabricate versatile functional materials via specific host-guest recognitions. However, relatively few studies have focused on the modulation of guest reactivity within a macrocyclic cavity. Here, we demonstrate the confinement effect of pillar[5]arene with an electron-rich and precise cavity that can dramatically enhance guest photoactivity and nitric oxide (NO) generation upon visible light irradiation. Mechanism studies reveal that it is achieved through increasing the ground state nitro-aromatic torsion angle, suppressing the intersystem crossing relaxation path of the S1 state, and accelerating the isomerization reaction path of guest molecules. This NO-generating system displays broad-spectrum antibacterial, biofilm inhibition, and dispersal activities. Moreover, it can accelerate the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in vivo.
Collapse
Affiliation(s)
- Haojie Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Haixin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jinmeng Lv
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Xue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zhi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
9
|
Li C, Liu J, Qiu X, Yang X, Huang X, Zhang X. Photoswitchable and Reversible Fluorescent Eutectogels for Conformal Information Encryption. Angew Chem Int Ed Engl 2023; 62:e202313971. [PMID: 37792427 DOI: 10.1002/anie.202313971] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023]
Abstract
Smart fluorescent materials that can respond to environmental stimuli are of great importance in the fields of information encryption and anti-counterfeiting. However, traditional fluorescent materials usually face problems such as lack of tunable fluorescence and insufficient surface-adaptive adhesion, hindering their practical applications. Herein, inspired by the glowing sucker octopus, we present a novel strategy to fabricate a reversible fluorescent eutectogel with high transparency, adhesive and self-healing performance for conformal information encryption and anti-counterfeiting. Using anthracene as luminescent unit, the eutectogel exhibits photoswitchable fluorescence and can therefore be reversibly written/erased with patterns by non-contact stimulation. Additionally, different from mechanically irreversible adhesion via glue, the eutectogel can adhere to various irregular substrates over a wide temperature range (-20 to 65 °C) and conformally deform more than 1000 times without peeling off. Furthermore, by exploiting surface-adaptive adhesion, high transparency and good stretchability of the eutectogel, dual encryption can be achieved under UV and stretching conditions to further improve the security level. This study should provide a promising strategy for the future development of advanced intelligent anti-counterfeiting materials.
Collapse
Affiliation(s)
- Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
10
|
Gu P, Luo X, Zhou S, Wang D, Li Z, Chai Y, Zhang Y, Shi S, Russell TP. Stabilizing Liquids Using Interfacial Supramolecular Assemblies. Angew Chem Int Ed Engl 2023; 62:e202303789. [PMID: 37198522 DOI: 10.1002/anie.202303789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023]
Abstract
Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices where the shape of the liquid is far from the equilibrium spherical shape. The components comprising these interfacial assemblies must have sufficient binding energies to the interface to prevent their ejection from the interface when the assemblies are compressed. Here, we highlight recent advances in structuring liquids based on non-covalent intermolecular interactions. We describe some of the progress made that reveals structure-property relationships. In addition to treating advances, we discuss some of the limitations and provide a perspective on future directions to inspire further studies on structured liquids based on supramolecular assembly.
Collapse
Affiliation(s)
- Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Kowloon, P. R. China
| | - Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
11
|
Zhang K, Zhang X, Rong Y, Niu Q, Jin P, Ma X, Yang C, Liang W. Supramolecular recognition enhanced electrochemical sensing: β-cyclodextrin and Pd nanoparticle co-decorated 3D reduced graphene oxide nanocomposite-modified glassy carbon electrode for the quantification of ractopamine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37475678 DOI: 10.1039/d3ay00872j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Ractopamine (RAC) is universally known for improving lean meat percentage in livestock and thus is widely introduced as a feed additive. However, it is difficult to eliminate the RAC residue in animal tissues from the biological system and will inevitably harm human health. Hence, detecting RAC molecules in biological samples is extremely significant. Herein, a novel strategy of supramolecular recognition-enhanced electrochemical sensing is presented. This platform was constructed by coupling β-cyclodextrin (β-CD) with palladium nanoparticles (Pd NPs)-functionalized three-dimensional reduced graphene oxide (3D-rGO) to form a nanocomposite (3D-rGO/Pd/β-CD), which was further used to modify a glassy carbon electrode (GCE) for RAC detection. Benefiting from the attractive electrical conductivity and catalytic activity of 3D-rGO/Pd, as well as the unique small-molecule-recognition ability of β-CD demonstrated by 1H NMR spectrum, which revealed the 1 : 2 binding mode of RAC with β-CD, increased peak current signals of RAC were observed in the cyclic voltammetry (CV) test. Under optimized conditions, the wide linear concentration range spanned 1-95 μM, along with a relatively low detection limit of 0.12 μM (S/N = 3), as evidenced by the differential pulse voltammetry (DPV) approach. The platform also exhibited satisfactory stability and fine reproducibility, as well as high selectivity and good anti-interference capability. Moreover, this as-obtained sensor was efficiently applied in pork samples with a high recovery rate (96.44-103.99%), which provides a promising view of its electrochemical biosensing ability in practical applications.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Xiaoyuan Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Yanqin Rong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Qingfang Niu
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Pengyue Jin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Xuewen Ma
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Wenting Liang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
12
|
Aree T. Atomic-level understanding on conformational flexibility of neochlorogenic and chlorogenic acids and their inclusion complexation with β-cyclodextrin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Wei L, Fan C, Rao M, Gao F, He C, Sun Y, Zhu S, He Q, Yang C, Wu W. Triplet-triplet annihilation upconversion in LAPONITE®/PVP nanocomposites: absolute quantum yields of up to 23.8% in the solid state and application to anti-counterfeiting. MATERIALS HORIZONS 2022; 9:3048-3056. [PMID: 36213984 DOI: 10.1039/d2mh00887d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low quantum efficiency in the solid phase and the highly efficient quenching by oxygen are two major weaknesses limiting the practical applications of triplet-triplet annihilation (TTA) upconversion (UC). Herein, we report an organic-inorganic hybrid nanocomposites fabricated by self-assembly of LAPONITE® clay and poly(N-vinyl-2-pyrrolidone) (PVP), which serves as excellent matrix for solid-state TTA-UC even in air. In the hybrid hydrogel doped by TTA-UC components, the anionic acceptors are arranged in an ordered manner at the nano-disk edge through electrostatic attraction, which avoids haphazard accumulation of the acceptors and allows for highly efficient inter-acceptor triplet energy migration. Moreover, the entangled PVP could not only protect the triplet excitons from oxygen quenching but even proactively eliminate oxygen by photoirradiation. Significantly, the dried gel prepared by completely removing water from the hydrogel gave absolute UC quantum efficiencies of up to 23.8% (out of a 50% maximum), which is the highest TTA-UC efficiency obtained in the solid state. The dried gels are readily made into powder by grinding with maintained UC emissions, making them convenient for application to information encryption and anti-counterfeiting security by virtue of the high UC quantum efficiency and insensitivity to oxygen.
Collapse
Affiliation(s)
- Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Chunying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Fanrui Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Cheng He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Yujiao Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Sijia Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Qiuhui He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
14
|
Kanai H, Yamada K, Salikolimi K, Kodama K, Ishida Y. Supramolecular Architecture of an Amphiphilic Amino Alcohol as a Versatile Chiral Environment for Stereocontrolled Photoreaction of Various Anthracenes. Chemistry 2022; 28:e202201940. [DOI: 10.1002/chem.202201940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Kanai
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Kuniyo Yamada
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | | | - Koichi Kodama
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
15
|
Synthesis of cyclodextrin derivatives for enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate. Nat Protoc 2022; 17:2494-2516. [PMID: 36045225 DOI: 10.1038/s41596-022-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Photochemical methods are increasingly being used in organic synthesis. They are especially useful for preparing many compounds that are not readily accessible through thermal or enzymatic reactions. The supramolecular strategy has proved highly promising in recent years for manipulating the stereochemical outcome of chiral photoreactions through relatively strong and long-lasting noncovalent interactions in both ground and excited states. Among the numerous chiral photochemical reactions, photocyclodimerization of 2-anthracenecarboxylate (AC) is the most comprehensively studied supramolecular chiral photoreaction and has essentially become a benchmark reaction for evaluating supramolecular photochirogenesis. Cyclodextrin (CD) derivatives were the earliest and are the most widely applied chiral host for mediating photoreactions. Herein, we use CD-mediated photocyclodimerization of AC as an example to introduce the operation process of supramolecular chiral photoreactions. The protocol includes the following contents: (i) the preparation, purification and characterization of β-CD derivatives; (ii) methods for investigating the host-guest inclusion behavior between AC and β-CD derivatives; (iii) the photochemical reaction operation flow under different solvent and temperature conditions; (iv) chiral high-performance liquid chromatography (HPLC) analyses of the product distribution and enantioselectivity. The protocol is introduced by using representative examples of the synthesis of β-CD derivatives and the manipulation of environmental factors that give excellent regio- and enantioselectivities in the photocyclodimerization of AC. The synthesis and purification of β-CD derivatives require 3-5 d of work. The photoirradiation of AC with β-CD derivatives can be done within 1 h. The product analysis requires 5 h.
Collapse
|
16
|
Dong X, Dai X, Li G, Zhang Y, Xu X, Liu Y. Conformationally Confined Emissive Cationic Macrocycle with Photocontrolled Organelle-Specific Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201962. [PMID: 35713271 PMCID: PMC9376817 DOI: 10.1002/advs.202201962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The optimization of molecular conformation and aggregation modes is of great significance in creation of new luminescent materials for biochemical research and medical diagnostics. Herein, a highly emissive macrocycle (1) is reported, which is constructed by the cyclization reaction of triphenylamine with benzyl bromide and exhibits very distinctive photophysical performance both in aqueous solution and the solid state. Structural analysis reveals that the 1 can form self-interpenetrated complex and emit bright yellow fluorescence in the crystal lattice. The distorted yet symmetrical structure can endow 1 with unique two-photon absorption property upon excitation by near-infrared light. Also, 1 can be utilized as an efficient photosensitizer to produce singlet oxygen (1 O2 ) both in inanimate milieu and under cellular environment. More intriguingly, due to the strong association of 1 with negatively charged biomacromolecules, organelle-specific migration is achieved from lysosome to nucleus during the 1 O2 -induced cell apoptosis process. To be envisaged, this conformationally confined cationic macrocycle with photocontrolled lysosome-to-nucleus translocation may provide a feasible approach for in situ identifying different biospecies and monitoring physiological events at subcellular level.
Collapse
Affiliation(s)
- Xiaoyun Dong
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xianyin Dai
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Guorong Li
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Ying‐Ming Zhang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xiufang Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| |
Collapse
|
17
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host-Guest Complexation-Induced Aggregation Based on Pyrene-Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202203541. [PMID: 35499863 DOI: 10.1002/anie.202203541] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/03/2023]
Abstract
Several γ-cyclodextrin (CD) derivatives mono- or di-substituted by pyrenes at the primary rim of the CD were demonstrated to aggregate into nano-strips in aqueous solutions, with the pyrene moieties interpenetrating into γ-CD cavities. The hydrophobic complexation-induced aggregation provides a rigid chiral environment for the pyrenes and leads to significant electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) activities, giving unprecedently high gabs and glum values up to 4.3×10-2 and 5.3×10-2 , respectively. The aggregates lead to excimer emission with high quantum yields and show BCPL and Bi CPL up to 338. 6 M-1 cm-1 and 169.3 M-1 cm-1 , respectively.
Collapse
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wenting Liang
- Department of Chemistry, Institute of Environmental Science Shanxi University, Taiyuan, 030006, China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Shigang Wan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
18
|
Xu C, Lin Q, Shan C, Han X, Wang H, Wang H, Zhang W, Chen Z, Guo C, Xie Y, Yu X, Song B, Song H, Wojtas L, Li X. Metallo‐Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution. Angew Chem Int Ed Engl 2022; 61:e202203099. [DOI: 10.1002/anie.202203099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Chen Xu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Quanjie Lin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xin Han
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Hao Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Yinghao Xie
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Heng Song
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| |
Collapse
|
19
|
Bierschenk SM, Pan JY, Settineri NS, Warzok U, Bergman RG, Raymond KN, Toste FD. Impact of Host Flexibility on Selectivity in a Supramolecular Host-Catalyzed Enantioselective aza-Darzens Reaction. J Am Chem Soc 2022; 144:11425-11433. [PMID: 35700232 DOI: 10.1021/jacs.2c04182] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly enantioselective aza-Darzens reaction (up to 99% ee) catalyzed by an enantiopure supramolecular host has been discovered. To understand the role of host structure on reaction outcome, nine new gallium(III)-based enantiopure supramolecular assemblies were prepared via substitution of the external chiral amide. Despite the distal nature of the substitution in these catalysts, changes in enantioselectivity (61 to 90% ee) in the aziridine product were observed. The enantioselectivities were correlated to the flexibility of the supramolecular host scaffold as measured by the kinetics of exchange of a model cationic guest. This correlation led to the development of a best-in-class catalyst by substituting the gallium(III)-based host with one based on indium(III), which generated the most flexible and selective catalyst.
Collapse
Affiliation(s)
- Stephen M Bierschenk
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Judy Y Pan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ulrike Warzok
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Yu X, Gao F, Zhao W, Lai H, Wei L, Yang C, Wu W. BODIPY-conjugated bis-terpyridine Ru(II) complexes showing ultra-long luminescence lifetimes and applications to triplet-triplet annihilation upconversion. Dalton Trans 2022; 51:9314-9322. [PMID: 35670531 DOI: 10.1039/d2dt01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The poor excited-state properties of bis-terpyridine Ru(II) complexes have significantly limited the applications of these complexes as sensitizers in photocatalysis and triplet-triplet annihilation upconversion. In the present work, two novel ruthenium bis-terpyridine complexes (Ru-1 and Ru-2) conjugated with visible-light-harvesting bodipy chromophores were synthesized. These complexes showed strong absorption of visible light, the bodipy-localized intraligand triplet state (3IL) was efficiently populated, and the phosphorescence of bodipy at room temperature in both complexes was observed. The luminescence lifetimes of these complexes were significantly prolonged, with that of the heteroleptic complex Ru-2 prolonged to 37.9 μs and that of the homoleptic bis-terpyridine complex Ru-1 unprecedentedly prolonged to 356 μs, which was hundreds of times longer than the current longest emissive state achieved in ruthenium terpyridine complexes. The ultra-long triplet lifetimes and strong visible-light absorbing ability made them new candidates of triplet sensitizers, and were first applied to TTA-UC for terpyridine Ru(II) complexes with a Ru-1/Py system showing a ΦUC of 2.93% in dilute solutions at concentrations as low as 1.0 μM.
Collapse
Affiliation(s)
- Xingke Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Fanrui Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Weiyi Zhao
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu 610064, China
| | - Hongxia Lai
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
21
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host–Guest Complexation‐Induced Aggregation Based on Pyrene‐Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wenting Liang
- Department of Chemistry Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Shigang Wan
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| |
Collapse
|
22
|
Zhang D, Liang W, Yi J, Chen J, Lv Y, Zhao T, Xiao C, Xie X, Wu W, Yang C. Photochemical graft of γ-cyclodextrin’s interior leading to in-situ charge-transfer complexes with unusual regioselectivity and its application in 3D photo-printing. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Xu C, Lin Q, Shan C, Han X, Wang H, Wang H, Zhang W, Chen Z, Guo C, Xie Y, Yu X, Song B, Song H, Wojtas L, Li X. Metallo‐Supramolecular Octahedral Cages with Three Types of Chirality towards Spontaneous Resolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Xu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Quanjie Lin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xin Han
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Hao Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Yinghao Xie
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Heng Song
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212100 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
- Shenzhen University General Hospital Shenzhen University Clinical Medical Academy Shenzhen Guangdong 518071 China
| |
Collapse
|
24
|
Rao M, Fan C, Ji J, Liang W, Wei L, Zhang D, Yan Z, Wu W, Yang C. Catalytic Chiral Photochemistry Sensitized by Chiral Hosts-Grafted Upconverted Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21453-21460. [PMID: 35486103 DOI: 10.1021/acsami.2c02313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Singlet chiral photocatalysis is highly challenging. Herein, we report fluorescence resonance energy transfer (FRET)-based chiral photocatalysis with γ-cyclodextrin (CD)-grafted lanthanide-doped upconverted nanoparticles (UCNP). The CD-modified UCNP strongly emits in the UV wavelength region upon excitation with a 980 nm laser, which selectively sensitizes the photosubstrates complexed by CD on the surface of UCNP through FRET. Therefore, enantiodifferentiating photocyclodimerization of anthracene or naphthalene derivatives sensitized by the CD-modified UCNP gives photoproducts in good enantioselectivity even in the presence of a catalytic amount of CD-modified UCNP. Moreover, the photocatalysts are readily separated and could be reused for at least six cycles without decreasing the enantioselectivity.
Collapse
Affiliation(s)
- Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Chunying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China
| | - Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zhiqiang Yan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
25
|
Eckdahl CT, Ou C, Padgaonkar S, Hersam MC, Weiss EA, Kalow JA. Back electron transfer rates determine the photoreactivity of donor-acceptor stilbene complexes in a macrocyclic host. Org Biomol Chem 2022; 20:6201-6210. [PMID: 35419576 DOI: 10.1039/d2ob00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host-guest 2 : 1 complexation of photoreactive alkene guests improves the selectivity of [2 + 2] photodimerizations by templating alkene orientation prior to irradiation. Host-guest chemistry can also provide 1 : 1 : 1 complexes through the inclusion of electronically complementary donor and acceptor guests, but the photoreactivity of such complexes has not been investigated. We imagined that such complexes could enable selective cross-[2 + 2] photocycloadditions between donor and acceptor stilbenes. In pursuit of this strategy, we investigated a series of stilbenes and found 1 : 1 : 1 complexes with cucurbit[8]uril that exhibited charge-transfer (CT) absorption bands in the visible and near-IR regions. Irradiation of the CT band of an azastilbene, 4,4'-stilbenedicarboxylate, and cucurbit[8]uril ternary complex led to a selective cross-[2 + 2] photocycloaddition, while other substrate pairs exhibited no productive chemistry upon CT excitation. Using transient absorption spectroscopy, we were able to understand the variable photoreactivity of different stilbene donor-acceptor complexes. We found that back electron transfer following CT excitation of the photoreactive complex is positioned deep in the Marcus inverted region due to electrostatic stabilization of the ground state, allowing [2 + 2] to effectively compete with this relaxation pathway. Control reactions revealed that the cucurbit[8]uril host not only serves to template the reaction from the ground state, but also protects the long-lived radical ions formed by CT from side reactions. This protective role of the host suggests that donor-acceptor host-guest ternary complexes could be used to improve existing CT-initiated photochemistry or access new reactivity.
Collapse
Affiliation(s)
| | - Carrie Ou
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Suyog Padgaonkar
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
26
|
Li H, Hu X, Liu F, Sun D, Wu Y, Liu S. Photodimerization of azaanthracene derivatives mediated by cucurbit[10]uril. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Jia D, Zhong H, Jiang S, Yao R, Wang F. Simultaneous enhancement of phosphorescence and chirality by host–guest recognition of molecular tweezers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chem Rev 2022; 122:1654-1716. [PMID: 34606251 PMCID: PMC8792375 DOI: 10.1021/acs.chemrev.1c00467] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.
Collapse
Affiliation(s)
- Matthew J Genzink
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Song J, Xiao H, Fang L, Qu L, Zhou X, Xu ZX, Yang C, Xiang H. Highly Phosphorescent Planar Chirality by Bridging Two Square-Planar Platinum(II) Complexes: Chirality Induction and Circularly Polarized Luminescence. J Am Chem Soc 2022; 144:2233-2244. [DOI: 10.1021/jacs.1c11699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jintong Song
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Hui Xiao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Lizhi Fang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Cheng Yang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
30
|
|
31
|
Niu Q, Jin P, Huang Y, Fan L, Zhang C, Yang C, Dong C, Liang W, Shuang S. A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Analyst 2022; 147:880-888. [DOI: 10.1039/d1an02262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium@gold nanoparticle modified three-dimensional-reduced graphene oxide was coupled with carboxymethyl-β-cyclodextrin to form a novel nanocomposite, which served as an effective chiral sensing interface for electrochemical enantiorecognition.
Collapse
Affiliation(s)
- Qingfang Niu
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Pengyue Jin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Yu Huang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caihong Zhang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Chuan Dong
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
32
|
Buczkowski A. Thermodynamic study of pH and sodium chloride impact on gemcitabine binding to cucurbit[7]uril in aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Reactivity and selectivity modulation within a molecular assembly: recent examples from photochemistry. Photochem Photobiol Sci 2021; 21:719-737. [PMID: 34914081 PMCID: PMC9174329 DOI: 10.1007/s43630-021-00146-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022]
Abstract
In recent years, photochemical reactions have emerged as powerful transformations which significantly expand the repertoire of organic synthesis. However, a certain lack of selectivity can hamper their application and limit their scope. In this context, a major research effort continues to focus on an improved control over stereo- and chemoselectivity that can be achieved in molecular assemblies between photosubstrates and an appropriate host molecule. In this tutorial review, some recent, representative examples of photochemical reactions have been collected whose unique outcome is dictated by the formation of a molecular assembly driven by non-covalent weak interactions.
Collapse
|
34
|
Yuan DQ, Tominaga T, Fukuda K, Koga K, Fukudome M. Three-in-one: Miniature Models of Natural Acyl-transfer Systems Enable Vector-selective Reaction on the Primary Side of Cyclodextrins. Chemistry 2021; 28:e202103940. [PMID: 34889479 DOI: 10.1002/chem.202103940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Miniature models of acyl-transfer systems in cells, which were composed by replacing the protein, coenzyme and substrate with CD, functional group, and CD, respectively, and combining them all together in one, displayed definite role-sharing and exact cooperation of the functional groups and hydrophobic cavity, and thus enabled the regio-specific reaction.
Collapse
Affiliation(s)
- De-Qi Yuan
- Kobe Gakuin University, Faculty of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuoku, 650-0056, Kobe, JAPAN
| | - Tatsuro Tominaga
- Kobe Gakuin University, Graduate School of Pharmaceutical Sciences, JAPAN
| | - Koki Fukuda
- Kobe Gakuin University, Graduate School of Pharmaceutical Sciences, JAPAN
| | - Kazutaka Koga
- Daiichi University of Pharmacy: Daiichi Yakka Daigaku, Faculty of Pharmacy, JAPAN
| | - Makoto Fukudome
- Kobe Gakuin University: Kobe Gakuin Daigaku, Faculty of Pharmaceutical Sciences, JAPAN
| |
Collapse
|
35
|
β-Cyclodextrin-Calcium Complex Intercalated Hydrotalcites as Efficient Catalyst for Transesterification of Glycerol. Catalysts 2021. [DOI: 10.3390/catal11111307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
β-cyclodextrin derivative intercalated MgAl-hydrotalcites (β-CD-Ca/LDH) was synthesized to convert glycerol into high value-added glycerol carbonate(GC) by transesterification of dimethyl carbonate (DMC) and glycerol in this paper. β-cyclodextrin-metal complexes and β-CD-Ca/LDH was characterized by XRD, FT-IR, SEM, XPS and nitrogen adsorption-desorption. The enrichment of organic reactants in the hydrophobic cavity of β-cyclodextrin improved the collision probability of reactants. The intercalation of β-cyclodextrin-calcium complex (β-CD-Ca) increased the pore size and basic strength of catalyst. The experiment results showed that the glycerol conversion was 93.7% and the GC yield was 91.8% catalyzed by β-CD-Ca/LDH when the molar ratio of DMC and glycerol was 3:1, the catalyst dosage was 4 wt.%, the reaction temperature was 75 °C and the reaction time was 100 min while the glycerol conversion was 49.4% and the GC yield was 48.6% catalyzed by MgAl-LDH under the same conditions.
Collapse
|
36
|
Wang X, Ji J, Rao M, Wu W, Yang C. Supramolecular Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylic Acid Mediated by Bridged β-Cyclodextrins: Critical Effects of the Host Structure, pH and Co-Solvents. Chem Asian J 2021; 16:3091-3096. [PMID: 34510777 DOI: 10.1002/asia.202100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Indexed: 02/05/2023]
Abstract
Several sulfoxide- and sulfone-bridged β-cyclodextrin (CD) dimers were synthesized for mediating the enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylic acid (AC). The complexation behavior of these chiral hosts with AC was investigated by UV-vis, circular dichroism, fluorescence, and NMR spectroscopies and certified the formation of 1 : 1 and 1 : 2 host-guest complexes. The product distribution and enantioselectivity of the photoreaction turned out to be a critical function of the chemical structure of bridged CDs. Comparing to the sulfur-bridged 2AX -3GX β-CD dimer 7, the conversion of the photolyzes with sulfoxide-bridged was significantly improved, and the ee of cyclodimer 2 was remarkably increased from -82.8% with 7 to -96.7% with the sulfoxide-bridged 2AX -3GX β-CD dimer 8. The relative yields and ee values of the slipped cyclodimers 5 and 6 were greatly enhanced in the presence of 6 M CsCl. The reaction selectivity is susceptible to the pH variation of the aqueous buffer solution, demonstrating that the supramolecular photochirogenesis is controlled by multidimensional factors, including the chemical structure of the chiral host, solvent, and pH conditions.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, Healthy Food Evaluation Research Center, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
37
|
Abstract
The construction of chemical sensors that can distinguish molecular chirality has attracted increasing attention in recent years due to the significance of chiral organic molecules and the importance of detecting their absolute configuration and chiroptical purity. The supramolecular chirality sensing strategy has shown promising potential due to its advantages of high throughput, sensitivity, and fast chirality detection. This review focuses on chirality sensors based on macrocyclic compounds. Macrocyclic chirality sensors usually have inherent complexing ability towards certain chiral guests, which combined with the signal output components, could offer many unique advantages/properties compared to traditional chiral sensors. Chirality sensing based on macrocyclic sensors has shown rapid progress in recent years. This review summarizes recent advances in chirality sensing based on both achiral and chiral macrocyclic compounds, especially newly emerged macrocyclic molecules.
Collapse
|
38
|
Liu G, Xu X, Dai X, Jiang C, Zhou Y, Lu L, Liu Y. Cucurbituril-activated photoreaction of dithienylethene for controllable targeted lysosomal imaging and anti-counterfeiting. MATERIALS HORIZONS 2021; 8:2494-2502. [PMID: 34870307 DOI: 10.1039/d1mh00811k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular macrocycle-mediated photoreaction has been a research hotspot recently. Herein, we fabricated a photo-responsive intelligent supramolecular assembly that consisted of a water-soluble dithienylethene derivative (DTE-MPBT) and cucurbit[n]urils (CB[n]). Importantly, CB[n], especially CB[8], could act as activators and trigger conformational alteration of the arm parts (typical molecular rotors) of DTE-MPBT, achieving dual functions, i.e. high-efficiency visible-light-cyclization reaction of the DTE core and fluorescence enhancement of DTE-MPBT, resulting in the formation of a dual visible light-driven fluorescent switch. These unexpected discoveries prompted the supramolecular assembly to be applied to dual-visible-light-controlled targeted lysosomal imaging and QR code information recognition. Moreover, the solid-state assembly exhibited more outstanding fluorescence and visible-light-switched fluorescence performance because of the host-guest-induced aggregation synergistic effect, showing fascinating applications, such as light-manipulative data storage and anti-counterfeiting. In brief, we unprecedentedly adopted a supramolecular strategy of "killing two birds with one stone", i.e. assembly-activated photochromism (AAP) and assembly-activated emission enhancement (AAEE), to fabricate dual-visible-light-driven fluorescent switches, which show promising application prospects in biomimetic smart nanomaterials based on supramolecular self-assembly systems.
Collapse
Affiliation(s)
- Guoxing Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Chunhui Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Lei Lu
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
39
|
Bui CV, Rosenau T, Hettegger H. Polysaccharide- and β-Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications. Molecules 2021; 26:molecules26144322. [PMID: 34299597 PMCID: PMC8307936 DOI: 10.3390/molecules26144322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019-2020 of this rapidly developing field.
Collapse
Affiliation(s)
- Cuong Viet Bui
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Department of Food Technology, Faculty of Chemical Engineering, University of Science and Technology—The University of Danang, Danang City 550000, Vietnam
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo, Finland
| | - Hubert Hettegger
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, Tulln, A-3430 Vienna, Austria; (C.V.B.); (T.R.)
- Correspondence:
| |
Collapse
|
40
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
41
|
Chen XY, Chen H, Đorđević L, Guo QH, Wu H, Wang Y, Zhang L, Jiao Y, Cai K, Chen H, Stern CL, Stupp SI, Snurr RQ, Shen D, Stoddart JF. Selective Photodimerization in a Cyclodextrin Metal-Organic Framework. J Am Chem Soc 2021; 143:9129-9139. [PMID: 34080831 DOI: 10.1021/jacs.1c03277] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For the most part, enzymes contain one active site wherein they catalyze in a serial manner chemical reactions between substrates both efficiently and rapidly. Imagine if a situation could be created within a chiral porous crystal containing trillions of active sites where substrates can reside in vast numbers before being converted in parallel into products. Here, we report how it is possible to incorporate 1-anthracenecarboxylate (1-AC-) as a substrate into a γ-cyclodextrin-containing metal-organic framework (CD-MOF-1), where the metals are K+ cations, prior to carrying out [4+4] photodimerizations between pairs of substrate molecules, affording selectively one of four possible regioisomers. One of the high-yielding regioisomers exhibits optical activity as a result of the presence of an 8:1 ratio of the two enantiomers following separation by high-performance liquid chromatography. The solid-state superstructure of 1-anthracenecarboxylate potassium salt (1-ACK), which is co-crystallized with γ-cyclodextrin, reveals that pairs of substrate molecules are not only packed inside tunnels between spherical cavities present in CD-MOF-1, but also stabilized-in addition to hydrogen-bonding to the C-2 and C-3 hydroxyl groups on the d-glucopyranosyl residues present in the γ-cyclodextrin tori-by combinations of hydrophobic and electrostatic interactions between the carboxyl groups in 1-AC- and four K+ cations on the waistline between the two γ-cyclodextrin tori in the tunnels. These non-covalent bonding interactions result in preferred co-conformations that account for the highly regio- and enantioselective [4+4] cycloaddition during photoirradiation. Theoretical calculations, in conjunction with crystallography, support the regio- and stereochemical outcome of the photodimerization.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
42
|
Rao M, Wu W, Yang C. Recent progress on the enantioselective excited-state photoreactions by pre-arrangement of photosubstrate(s). GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
43
|
Chiral supramolecular hydrogel with controllable phase transition behavior for stereospecific molecular recognition. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Zuo M, Velmurugan K, Wang K, Tian X, Hu XY. Insight into functionalized-macrocycles-guided supramolecular photocatalysis. Beilstein J Org Chem 2021; 17:139-155. [PMID: 33564325 PMCID: PMC7849235 DOI: 10.3762/bjoc.17.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 01/11/2023] Open
Abstract
Due to the unique characteristics of macrocycles (e.g., the ease of modification, hydrophobic cavities, and specific guest recognition), they can provide a suitable environment to realize photocatalysis via noncovalent interactions with different substrates. In this minireview, we emphasized the photochemical transformation and catalytic reactivity of different guests based on the binding with various macrocyclic hosts as well as on the role of macrocyclic-hosts-assisted hybrid materials in energy transfer. To keep the clarity of this review, the macrocycles are categorized into the most commonly used supramolecular hosts, including crown ethers, cyclodextrins, cucurbiturils, calixarenes, and pillararenes. This minireview not only summarizes the role that macrocycles play in photocatalytic reactions but also clarifies the photocatalytic mechanisms. Finally, the future research efforts and new pathways to apply macrocycles and supramolecular hybrid materials in photocatalysis are also discussed.
Collapse
Affiliation(s)
- Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| |
Collapse
|
45
|
Peng C, Liang W, Ji J, Fan C, Kanagaraj K, Wu W, Cheng G, Su D, Zhong Z, Yang C. Pyrene-tiaraed pillar[5]arene: Strong intramolecular excimer emission applicable for photo-writing. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Hao T, Yang Y, Liang W, Fan C, Wang X, Wu W, Chen X, Fu H, Chen H, Yang C. Trace mild acid-catalysed Z → E isomerization of norbornene-fused stilbene derivatives: intelligent chiral molecular photoswitches with controllable self-recovery. Chem Sci 2020; 12:2614-2622. [PMID: 34164029 PMCID: PMC8179340 DOI: 10.1039/d0sc05213b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Stilbene derivatives have long been known to undergo "acid-catalyzed" Z → E isomerization, where a strong mineral acid at high concentration is practically necessary. Such severe reaction conditions often cause undesired by-reactions and limit their potential application. Herein, we present a trace mild acid-catalyzed Z → E isomerization found with stilbene derivatives fused with a norbornene moiety. By-reactions, such as the migration of the C[double bond, length as m-dash]C double bond and electrophilic addition reactions, were completely inhibited because of the ring strain caused by the fused norbornene component. Direct photolysis of the E isomers at selected wavelengths led to the E → Z photoisomerization of these stilbene derivatives and thus constituted a unique class of molecular switches orthogonally controllable by light and acid. The catalytic amount of acid could be readily removed, and the Z → E isomerization could be controlled by turning on/off the irradiation of a photoacid, which allowed repeated isomerization in a non-invasive manner. Moreover, the Z isomer produced by photoisomerization could spontaneously self-recover to the E isomer in the presence of a catalytic amount of acid. The kinetics of Z → E isomerization were adjustable by manipulating catalytic factors and, therefore, unprecedented molecular photoswitches with adjustable self-recovery were realized.
Collapse
Affiliation(s)
- Taotao Hao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yongsheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University Taiyuan 030006 China
| | - Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xin Wang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
47
|
Wang Q, Liang W, Wei X, Wu W, Inoue Y, Yang C, Liu Y. A Supramolecular Strategy for Enhancing Photochirogenic Performance through Host/Guest Modification: Dicationic γ-Cyclodextrin-Mediated Photocyclodimerization of 2,6-Anthracenedicarboxylate. Org Lett 2020; 22:9757-9761. [PMID: 33284623 DOI: 10.1021/acs.orglett.0c03848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Possessing an extra anionic handle for chiral supramolecular interactions, 2,6-anthracenedicarboxylate exhibited greater photochirogenic performance than 2-anthracenecarboxylate to afford the anti-cyclodimer in up to 94% yield and -72% enantiomeric excess upon photoirradiation with dicationic γ-cyclodextrins.
Collapse
Affiliation(s)
- Qian Wang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China
| | - Xueqin Wei
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Osaka University, Yamada-oka 2-1, Suita 565-0871, Japan
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
48
|
Bai S, Ma LL, Yang T, Wang F, Wang LF, Hahn FE, Wang YY, Han YF. Supramolecular-induced regiocontrol over the photochemical [4 + 4] cyclodimerization of NHC- or azole-substituted anthracenes. Chem Sci 2020; 12:2165-2171. [PMID: 34163981 PMCID: PMC8179318 DOI: 10.1039/d0sc06017h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thanks to the impressive control that microenvironments within enzymes can have over substrates, many biological reactions occur with high regio- and stereoselectivity. However, comparable regio- and stereoselectivity is extremely difficult to achieve for many types of reactions, particularly photochemical cycloaddition reactions in homogeneous solutions. Here, we describe a supramolecular templating strategy that enables photochemical [4 + 4] cycloaddition of 2,6-difunctionalized anthracenes with unique regio- and stereoselectivity and reactivity using a concept known as the supramolecular approach. The reaction of 2,6-azolium substituted anthracenes H4-L(PF6)2 (L = 1a–1c) with Ag2O yielded complexes anti-[Ag2L2](PF6)4 featuring an antiparallel orientation of the anthracene groups. Irradiation of complexes anti-[Ag2L2](PF6)4 proceeded under [4 + 4] cycloaddition linking the two anthracene moieties to give cyclodimers anti-[Ag2(2)](PF6)2. Reaction of 2,6-azole substituted anthracenes with a dinuclear complex [Cl-Au-NHC–NHC-Au-Cl] yields tetranuclear assemblies with the anthracene moieties oriented in syn-fashion. Irradiation and demetallation gives a [4 + 4] syn-photodimer of two anthracenes. The stereoselectivity of the [4 + 4] cycloaddition between two anthracene moieties is determined by their orientation in the metallosupramolecular assemblies. A supramolecular templating strategy that enables the photochemical [4 + 4] cycloaddition of 2,6-difunctionalized anthracene derivatives with unique stereoselectivity has been developed based on metal-NHC units.![]()
Collapse
Affiliation(s)
- Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Li-Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Tao Yang
- School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Li-Feng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
49
|
|
50
|
Zheng DW, Li RQ, An JX, Xie TQ, Han ZY, Xu R, Fang Y, Zhang XZ. Prebiotics-Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004529. [PMID: 33006175 DOI: 10.1002/adma.202004529] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Indexed: 06/11/2023]
Abstract
While microbial-based therapy has been considered as an effective strategy for treating diseases such as colon cancer, its safety remains the biggest challenge. Here, probiotics and prebiotics, which possess ideal biocompatibility and are extensively used as additives in food and pharmaceutical products, are combined to construct a safe microbiota-modulating material. Through the host-guest chemistry between commercial Clostridium butyricum and chemically modified prebiotic dextran, prebiotics-encapsulated probiotic spores (spores-dex) are prepared. It is found that spores-dex can specifically enrich in colon cancers after oral administration. In the lesion, dextran is fermented by C. butyricum, and thereby produces anti-cancer short-chain fatty acids (SCFAs). Additionally, spores-dex regulate the gut microbiota, augment the abundance of SCFA-producing bacteria (e.g., Eubacterium and Roseburia), and markedly increase the overall richness of microbiota. In subcutaneous and orthotopic tumor models, drug-loaded spores-dex inhibit tumor growth up to 89% and 65%, respectively. Importantly, no obvious adverse effect is found. The work sheds light on the possibility of using a highly safe strategy to regulate gut microbiota, and provides a promising avenue for treating various gastrointestinal diseases.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Run-Qing Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Tian-Qiu Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu Fang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|