1
|
Charki P, Cordier M, Ylijoki KEO, Müller DS. Reactions of Tertiary Aliphatic Cations with Silylated Alkynes: Substitution, Cyclization and Unexpected C-H Activation Products. Chemistry 2025; 31:e202403979. [PMID: 39853883 DOI: 10.1002/chem.202403979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
Capozzi's groundbreaking work in 1982 introduced a fascinating reaction involving highly reactive tertiary aliphatic cations and silylated alkynes. This reaction provided an innovative solution to the challenge of coupling a fully substituted tertiary aliphatic fragment with an alkyne moiety. Building upon Capozzi's pioneering efforts, we started an extensive exploration of reaction conditions to expand the initial scope of this reaction. Through meticulous control of the reaction parameters, we uncovered conditions capable of accommodating various functional groups, thereby enhancing the reaction's applicability. Intriguingly, our study revealed remarkably high diastereoselectivities for substrates with substitution in the α-position. Additionally, we made an unexpected discovery: an intriguing C-H activation of a cyclooctane ring furnishing a cyclooctane-fused cyclobutene. These findings not only extend the utility of Capozzi's original concept but also underscore the potential of highly reactive cations in modern organic C-H activation reactions.
Collapse
Affiliation(s)
- Paul Charki
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000, Rennes, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000, Rennes, France
| | - Kai E O Ylijoki
- Department of Chemistry, Saint Mary's University, 923 Robie St., Halifax, Nova Scotia, B3H 3C3, Canada
| | - Daniel S Müller
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000, Rennes, France
| |
Collapse
|
2
|
Weng CY, Liu LG, Sun M, Lu X, Hong X, Ye LW, Zhou B. Enantioselective Synthesis of Axially Chiral Tetrasubstituted Alkenes by Copper-Catalyzed C(sp 2)-H Functionalization of Arenes with Vinyl Cations. Angew Chem Int Ed Engl 2025; 64:e202418254. [PMID: 39565118 DOI: 10.1002/anie.202418254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Axially chiral tetrasubstituted alkenes are of increasing value and interest in chemistry-related areas. However, their catalytic asymmetric synthesis remains elusive, owing to the high steric repulsion and relatively low conformational stability. Herein, we disclose the straightforward construction of atropisomeric tetrasubstituted alkenes by effective enantiocontrol in a reaction with vinyl cation intermediates. This copper-catalyzed enantioselective C(sp2)-H functionalization of sterically hindered (hetero)arenes with vinyl cations enables the efficient and atom-economical preparation of axially chiral acyclic tetrasubstituted styrenes and pyrrolyl ethylenes with high atroposelectivities. Importantly, this reaction represents the first example of the assembly of axially chiral alkenes via vinyl cations. Computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity, Z/E selectivity and enantioselectivity. The synthetic utility has been demonstrated by diverse product derivatizations, chiral organocatalyst synthesis, as well as further applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Chen-Yong Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Miao Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Proctor S, Farias P, Carta V, Lavallo V. Beyond the Hawthorne Reaction: Li + Induced Thermal Dehydrocoupling of closo-10-vertex Carborane Anions. Inorg Chem 2025; 64:757-760. [PMID: 39719019 PMCID: PMC11734106 DOI: 10.1021/acs.inorgchem.4c04644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
In the 1970s Hawthorne reported an electrochemical dehydrocoupling reaction of the closo-carborane anion [HCB9H91-] 1 to form the biscarborane [C2B18H182-] 2. In this Communication we show that the said "Hawthorne Reaction" can be achieved thermally and that it tolerates C-butylation. The new compound 2butyl was fully characterized by 11B, 1H, and 13C NMR spectroscopies, high-resolution mass spectrometry, and single-crystal X-ray diffraction. One interesting caveat is that 2 or 2butyl only form thermally when they are salts of Li+ and not NEt4+, Na+, K+, or Cs+. This observation means that Li+ in some way facilitates this process, introducing a new kind of Li+ effect.
Collapse
Affiliation(s)
- Stephen Proctor
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| | - Phillip Farias
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| | - Veronica Carta
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| | - Vincent Lavallo
- Department of Chemistry, University
of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
4
|
Sekine K, Fuji K, Kawashima K, Mori T, Kuninobu Y. Gold-Catalyzed Synthesis of 5H-Benzo[b]indeno[2,1-d]silines by Insertion of Vinyl Carbocations into the Si-H Bond. Chemistry 2024; 30:e202403163. [PMID: 39289886 DOI: 10.1002/chem.202403163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
We have developed a gold-catalyzed cascade reaction of aryldiynes bearing a hydrosilyl group to afford a variety of unexplored 5H-benzo[b]indeno[2,1-d]silines. The reaction system is applicable to the synthesis of bidirectionally π-extended silacycles from tetra(alkynyl)aryl compounds. Computational studies suggest that 5H-benzo[b]indeno[2,1-d]silines are formed via the insertion of a vinyl carbocation intermediate into the Si-H bond.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kazuto Fuji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
5
|
Novikov RA, Borisov DD, Denisov DA, Novikov MA, Potapov KV, Tkachev YV, Tomilov YV. The concept of Gallium-controlled double C-H functionalization of aliphatic CH 2-groups driven by Vinyl carbocations. Nat Commun 2024; 15:8073. [PMID: 39277601 PMCID: PMC11401943 DOI: 10.1038/s41467-024-51237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2024] [Indexed: 09/17/2024] Open
Abstract
The direct C-H activation of inert C(sp3)-H bonds in a hydrocarbon chain has been a very attractive target in organic synthesis for many decades. Among all the variety of processes, those driven by vinyl carbocations are quite scarce thus far, and it is hard to control for unstabilized vinyl cations. In this study, we designed a double C(sp3)-H functionalization of unactivated alkyl CH2 groups to produce a totally substituted quaternary carbon stereocenter via insertion of vinyl carbocations. These processes represent complicated reaction cascades with high molecular complexity controlled by the cooperative action of Ga(III) salts & GaHal4- anions and allow one-step deep poly-functionalization of simple CH substrates to be performed. In practice, this concept was initially implemented with simple starting compounds such as alkyl acetylenes and activated cyclopropanes, alkenes, or cyclobutanes to construct norbornane, cyclopentatetralin, and other important skeletons.
Collapse
Affiliation(s)
- Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991, Moscow, Russian Federation.
| | - Denis D Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Dmitry A Denisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Maxim A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Konstantin V Potapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| | - Yaroslav V Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991, Moscow, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russian Federation
| |
Collapse
|
6
|
Williams C, Nistanaki SK, Dong K, Lee W, Houk KN, Nelson HM. Main Group-Catalyzed Cationic Claisen Rearrangements via Vinyl Carbocations. Org Lett 2024; 26:4847-4852. [PMID: 38842928 PMCID: PMC11187624 DOI: 10.1021/acs.orglett.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
We report a catalytic C-O coupling/Claisen cascade reaction enabled by interception of vinyl carbocations with allyl ethers. The reaction utilizes commercially available borate salts as catalysts and is effective at constructing sterically hindered C-C bonds. The reaction mechanism is studied experimentally and computationally to support a charge-accelerated [3,3] rearrangement of a silyloxonium cation. Our reaction is also applied to the highly stereoselective synthesis of fully substituted vinyl ethers.
Collapse
Affiliation(s)
- Chloe
G. Williams
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sepand K. Nistanaki
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Krista Dong
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Woojin Lee
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Hosea M. Nelson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Lin W, Alix A, Guillot R, Gandon V, Bour C. Aluminum-Catalyzed Intramolecular Vinylation of Arenes by Vinyl Cations. Org Lett 2024; 26:3267-3272. [PMID: 38574281 DOI: 10.1021/acs.orglett.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This study addresses the challenges associated with vinyl cation generation, a process that traditionally requires quite specific counterions. Described herein is a novel intramolecular vinylation of arenes catalyzed by aluminum(III) chloride, utilizing practical conditions and readily available vinyl triflates derived from 2-aceto-3-arylpropionates. Comprehensive experimental data support diverse carbocycle synthesis, exemplified by indenes and higher analogues. Control experiments verify the applicability of the vinylation protocol, and synthetic applications showcase a potent tubulin polymerization inhibitor with anticancer properties. Density functional theory computations reveal a Lewis-acid-driven mechanism involving triflate moiety abstraction to generate a reactive vinyl cation.
Collapse
Affiliation(s)
- Wenhua Lin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Aurélien Alix
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
8
|
Chen YB, Liu LG, Wang ZQ, Chang R, Lu X, Zhou B, Ye LW. Enantioselective functionalization of unactivated C(sp 3)-H bonds through copper-catalyzed diyne cyclization by kinetic resolution. Nat Commun 2024; 15:2232. [PMID: 38472194 PMCID: PMC10933314 DOI: 10.1038/s41467-024-46288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Site- and stereoselective C-H functionalization is highly challenging in the synthetic chemistry community. Although the chemistry of vinyl cations has been vigorously studied in C(sp3)-H functionalization reactions, the catalytic enantioselective C(sp3)-H functionalization based on vinyl cations, especially for an unactivated C(sp3)-H bond, has scarcely explored. Here, we report an asymmetric copper-catalyzed tandem diyne cyclization/unactivated C(sp3)-H insertion reaction via a kinetic resolution, affording both chiral polycyclic pyrroles and diynes with generally excellent enantioselectivities and excellent selectivity factors (up to 750). Importantly, this reaction demonstrates a metal-catalyzed enantioselective unactivated C(sp3)-H functionalization via vinyl cation and constitutes a kinetic resolution reaction based on diyne cyclization. Theoretical calculations further support the mechanism of vinyl cation-involved C(sp3)-H insertion reaction and elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhe-Qi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong Chang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zhao Z, Popov S, Lee W, Burch JE, Delgadillo DA, Kim LJ, Shahgholi M, Lebrón-Acosta N, Houk KN, Nelson HM. Accessing Medium-Sized Rings via Vinyl Carbocation Intermediates. Org Lett 2024; 26:1000-1005. [PMID: 38295154 PMCID: PMC10863392 DOI: 10.1021/acs.orglett.3c04014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Medium-sized rings (8-11-membered cycles) are often more challenging to synthesize than smaller rings (5-7-membered cycles) due to ring strain. Herein, we report a catalytic method for forming 8- and 9-membered rings that proceeds via the intramolecular Friedel-Crafts reactions of vinyl carbocation intermediates. These reactive species are generated catalytically through the ionization of vinyl toluenesulfonates by a Lewis acidic lithium cation-weakly coordinating anion salt.
Collapse
Affiliation(s)
- Zhenqi Zhao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Stasik Popov
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Woojin Lee
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jessica E. Burch
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - David A. Delgadillo
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lee Joon Kim
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mona Shahgholi
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Naiara Lebrón-Acosta
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hosea M. Nelson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Williams C, Nistanaki SK, Wells CW, Nelson HM. α-Vinylation of Ester Equivalents via Main Group Catalysis for the Construction of Quaternary Centers. Org Lett 2023; 25:3591-3595. [PMID: 37192420 PMCID: PMC10226172 DOI: 10.1021/acs.orglett.3c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 05/18/2023]
Abstract
A methodology for the construction of sterically congested quaternary centers via the trapping of vinyl carbocations with silyl ketene acetals is disclosed. This main group-catalyzed α-vinylation reaction is advantageous as methods to access these congested motifs are limited. Moreover, β,γ-unsaturated carbonyl moieties and tetrasubstituted alkenes are present in various bioactive natural products and pharmaceuticals, and this catalytic platform offers a means of accessing them using simple and inexpensive materials.
Collapse
Affiliation(s)
- Chloe
G. Williams
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Sepand K. Nistanaki
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Conner W. Wells
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Hosea M. Nelson
- Department of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Zhou JJ, Meng YN, Liu LG, Liu YX, Xu Z, Lu X, Zhou B, Ye LW. Copper-catalyzed enantioselective diyne cyclization via C(sp 2)-O bond cleavage. Chem Sci 2023; 14:3493-3500. [PMID: 37006699 PMCID: PMC10055982 DOI: 10.1039/d2sc06152j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The functionalization of etheric C-O bonds via C-O bond cleavage is an attractive strategy for the construction of C-C and C-X bonds in organic synthesis. However, these reactions mainly involve C(sp3)-O bond cleavage, and a catalyst-controlled highly enantioselective version is extremely challenging. Here, we report a copper-catalyzed asymmetric cascade cyclization via C(sp2)-O bond cleavage, allowing the divergent and atom-economic synthesis of a range of chromeno[3,4-c]pyrroles bearing a triaryl oxa-quaternary carbon stereocenter in high yields and enantioselectivities. Importantly, this protocol not only represents the first [1,2]-Stevens-type rearrangement via C(sp2)-O bond cleavage, but also constitutes the first example of [1,2]-aryl migration reactions via vinyl cations.
Collapse
Affiliation(s)
- Ji-Jia Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ya-Nan Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yi-Xi Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University Xuzhou 221004 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
12
|
Lee W, Nelson HM, Houk KN. Computational Exploration of the Nature of Li +-Ureide Anion Catalysis on Formation of Highly Reactive Vinyl Carbocations and Subsequent C-C Bond Forming Reactions. J Org Chem 2023; 88:3403-3408. [PMID: 36820472 DOI: 10.1021/acs.joc.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The mechanisms of the C-H insertion reactions of vinyl carbocations formed by heterolysis of vinyl trifluoromethanesulfonates (triflates) by catalytic lithiated 1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea (Li+-ureide) have been studied with ωB97X-D density functional theory. The ionization promoted by the Li+-ureide forms a metastable intimate ion pair complex of Li+-ureide-triflate anion and vinyl cation. The relative thermodynamic stabilities of isomeric alkyl cations are impacted by ion-pairing with the Li+-ureide-triflate anion. We show that the C-H insertion reaction of the vinyl cation intermediate is the rate-determining step and explain the effect of the aryl substituents on the formation of the vinyl cation and its C-H insertion reactivity as well as the regioselectivity of C-H activation by the vinyl cation.
Collapse
Affiliation(s)
- Woojin Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hosea M Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Carbocation Catalysis in the Synthesis of Heterocyclic Compounds. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
14
|
Ding R, Wang Y, Wang YM. Synthesis of 1,1-Disubstituted Allenylic Silyl Ethers Through Iron-Catalyzed Regioselective C(sp 2)─H Functionalization of Allenes. SYNTHESIS-STUTTGART 2023; 55:733-743. [PMID: 37274078 PMCID: PMC10237284 DOI: 10.1055/a-2004-0951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a synthesis of allenylic silyl ethers through iron-catalyzed functionalization of the C(sp2)─H bonds of monosubstituted alkylallenes. In the presence of a cyclopentadienyliron dicarbonyl based catalyst and triisopropylsilyl triflate as a silylation agent, a variety of aryl aldehydes were suitable coupling partners in this transformation, furnishing a collection of 1,1-disubstituted allenylic triisopropylsilyl ethers as products in moderate to excellent yields as a single regioisomer. Lithium bistriflimide was identified as a critical additive in this transformation. The optimized protocol was scalable, and the products were amenable to further transformation to give a number of unsaturated, polyfunctional derivatives.
Collapse
Affiliation(s)
- Ruiqi Ding
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
15
|
Nistanaki SK, Williams CG, Wigman B, Wong JJ, Haas BC, Popov S, Werth J, Sigman MS, Houk KN, Nelson HM. Catalytic asymmetric C-H insertion reactions of vinyl carbocations. Science 2022; 378:1085-1091. [PMID: 36480623 PMCID: PMC9993429 DOI: 10.1126/science.ade5320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
From the preparation of pharmaceuticals to enzymatic construction of natural products, carbocations are central to molecular synthesis. Although these reactive intermediates are engaged in stereoselective processes in nature, exerting enantiocontrol over carbocations with synthetic catalysts remains challenging. Many resonance-stabilized tricoordinated carbocations, such as iminium and oxocarbenium ions, have been applied in catalytic enantioselective reactions. However, their dicoordinated counterparts (aryl and vinyl carbocations) have not, despite their emerging utility in chemical synthesis. We report the discovery of a highly enantioselective vinyl carbocation carbon-hydrogen (C-H) insertion reaction enabled by imidodiphosphorimidate organocatalysts. Active site confinement featured in this catalyst class not only enables effective enantiocontrol but also expands the scope of vinyl cation C-H insertion chemistry, which broadens the utility of this transition metal-free C(sp3)-H functionalization platform.
Collapse
Affiliation(s)
- Sepand K. Nistanaki
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chloe G. Williams
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brittany C. Haas
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Stasik Popov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacob Werth
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hosea M. Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Dempsey SH, Kass SR. Liberating the Anion: Evaluating Weakly Coordinating Cations. J Org Chem 2022; 87:15466-15482. [DOI: 10.1021/acs.joc.2c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen H. Dempsey
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Steven R. Kass
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Corcoran JC, Guo R, Xia Y, Wang YM. Vinyl cation-mediated intramolecular hydroarylation of alkynes using pyridinium reagents. Chem Commun (Camb) 2022; 58:11523-11526. [PMID: 36149344 PMCID: PMC9588717 DOI: 10.1039/d2cc03794g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Once considered to be exotic species of limited synthetic utility, vinyl cations have recently been shown to be highly versatile intermediates in a variety of processes. Here, we report a method for the synthesis of aryl-substituted benzocycloheptenes and -hexenes using the hydrotriflate salt of an electron-poor pyridine as a uniquely efficient proton source for a vinyl cation mediated Friedel-Crafts cyclization. The mild conditions made possible by this reagent allowed a range of simple and functionalized alkynes bearing pendant aryl groups to serve as suitable substrates for this scalable and convenient protocol.
Collapse
Affiliation(s)
- James C Corcoran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Rui Guo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yue Xia
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
18
|
Chen Y, Gandon V, Bour C. Squaramide/Li +-Catalyzed Direct S N1-Type Reaction of Vinyl Triflates with Difluoroenoxysilanes through Vinyl Cations. Org Lett 2022; 24:6978-6982. [PMID: 36099642 DOI: 10.1021/acs.orglett.2c02793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Difluoromethylene-skipped enones have been readily obtained from arylvinyltriflates and aryldifluoroenoxysilanes. While these useful compounds are difficult to synthesize by the classical aldol/dehydration approach, the use of a squaramide/Li+ catalyst allows their direct formation via a vinyl carbocation paired with a weakly coordinating perfluorinated alkoxyaluminate. This strategy makes possible a reaction between a typically weak electrophile and a weak nucleophile. Control experiments and DFT computations shed light on the mechanism of this transformation.
Collapse
Affiliation(s)
- Yan Chen
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Cedex Orsay, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Cedex Orsay, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Cedex Palaiseau, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Cedex Orsay, France
| |
Collapse
|
19
|
He T, Qu Z, Klare HFT, Grimme S, Oestreich M. Intermolecular Carbosilylation of α-Olefins with C(sp 3 )-C(sp) Bond Formation Involving Silylium-Ion Regeneration. Angew Chem Int Ed Engl 2022; 61:e202203347. [PMID: 35344257 PMCID: PMC9321976 DOI: 10.1002/anie.202203347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 01/05/2023]
Abstract
A regioselective addition of alkynylsilanes across unactivated, terminal alkenes is reported. The reaction is initiated by the capture of a sterically unhindered silylium ion by a silylated phenylacetylene derivative to form a bis(silylated) ketene-like carbocation. This in situ-generated key intermediate is the actual catalyst that maintains the catalytic cycle by a series of electrophilic addition reactions of silylium ions and β-silicon-stabilized carbocations. The computed reaction mechanism is fully consistent with the experimental findings. This unprecedented two-component carbosilylation establishes a C(sp3 )-C(sp) bond and a C(sp3 )-Si bond in atom-economic fashion.
Collapse
Affiliation(s)
- Tao He
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-Universität BonnBeringstraße 453115BonnGermany
| | - Hendrik F. T. Klare
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-Universität BonnBeringstraße 453115BonnGermany
| | - Martin Oestreich
- Institut für ChemieTechnische Universität BerlinStrasse des 17. Juni 11510623BerlinGermany
| |
Collapse
|
20
|
He T, Qu ZW, Klare HFT, Grimme S, Oestreich M. Intermolecular Carbosilylation of α‐Olefins with C(sp3)–C(sp) Bond Formation Involving Silylium‐Ion Regeneration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tao He
- Technische Universität Berlin: Technische Universitat Berlin Institute of Chemistry GERMANY
| | - Zheng-Wang Qu
- Universität Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institute of Physical and Theoretical Chemistry GERMANY
| | - Hendrik F. T. Klare
- Technische Universität Berlin: Technische Universitat Berlin Institute of Chemistry GERMANY
| | - Stefan Grimme
- Universität Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institute of Physical and Theoretical Chemistry GERMANY
| | - Martin Oestreich
- Technische Universität Berlin: Technische Universitat Berlin Chemistry Straße des 17. Juni 115 10623 Berlin GERMANY
| |
Collapse
|
21
|
Wigman B, Lee W, Wei W, Houk KN, Nelson HM. Electrochemical Fluorination of Vinyl Boronates through Donor-Stabilized Vinyl Carbocation Intermediates. Angew Chem Int Ed Engl 2022; 61:e202113972. [PMID: 35029844 PMCID: PMC8901537 DOI: 10.1002/anie.202113972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 01/24/2023]
Abstract
The electrochemical generation of vinyl carbocations from alkenyl boronic esters and boronates is reported. Using easy-to-handle nucleophilic fluoride reagents, these intermediates are trapped to form fully substituted vinyl fluorides. Mechanistic studies support the formation of dicoordinated carbocations through sequential single-electron oxidation events. Notably, this electrochemical fluorination features fast reaction times and Lewis acid-free conditions. This transformation provides a complementary method to access vinyl fluorides with simple fluoride salts such as TBAF.
Collapse
Affiliation(s)
- Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Woojin Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenjing Wei
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hosea M Nelson
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Wigman B, Lee W, Wei W, Houk KN, Nelson HM. Electrochemical Fluorination of Vinyl Boronates through Donor‐Stabilized Vinyl Carbocation Intermediates**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin Wigman
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Woojin Lee
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Wenjing Wei
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Hosea M. Nelson
- Department of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
23
|
Liu XJ, Xu Y, Tang C, Qian PC, Ye LW. Unactivated C(sp3)-H functionalization via vinyl cations. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1117-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Zheng H, Wang K, De Angelis L, Arman HD, Doyle MP. Brønsted Acid Catalyzed Oxocarbenium-Olefin Metathesis/Rearrangements of 1 H-Isochromene Acetals with Vinyl Diazo Compounds. J Am Chem Soc 2021; 143:15391-15399. [PMID: 34510888 DOI: 10.1021/jacs.1c07271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An oxocarbenium-olefin cross metathesis occurs during Brønsted acid catalyzed reactions of 1H-isochromene acetals with vinyl diazo compounds. Formally a carbonyl-alkene [2 + 2]-cyclization between isobenzopyrylium ions and the vinyl group of vinyl diazoesters, the retro-[2 + 2] cycloaddition produces a tethered alkene and a vinyl diazonium ion that, upon loss of dinitrogen, undergoes a highly selective carbocationic cascade rearrangements to diverse products whose formation is controlled by reactant substituents. Polysubstituted benzobicyclo[3.3.1]oxocines, benzobicyclo[3.2.2]oxepines, benzobicyclopropane, and naphthalenes are obtained in good to excellent yields and selectivities. Furthermore, isotopic tracer and control experiments shed light on the oxocarbenium-olefin metathesis/rearrangement process as well as on the origin of the interesting substituent-dependent selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
25
|
Borodkin GI, Elanov IR, Shubin VG. Carbocation Catalysis of Organic Reactions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021030015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Hong SY, Kim D, Chang S. Catalytic access to carbocation intermediates via nitrenoid transfer leading to allylic lactams. Nat Catal 2020. [DOI: 10.1038/s41929-020-00558-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Nelson HM, Popov S, Shao B, Bagdasarian AL, Wigman B. C–H Functionalization Reactions of Phenyl and Vinyl Carbocations Paired with Weakly Coordinating Anions. Synlett 2020. [DOI: 10.1055/s-0040-1707908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Carbocations have played a central role in the chemical sciences for over a century. In a synthetic setting, most methods utilize stabilized tricoordinate carbocations, while there are far fewer examples of reactions featuring nonstabilized dicoordinate cations. Here, we provide an overview of recent developments in the generation of high-energy carbocations mediated by weakly coordinating anions and the C–H insertion reactions of such carbocations. Moreover, we discuss mechanistic studies of these catalytic C–H insertion reactions aimed at furthering our understanding of the reactive nature of these rarely invoked cationic intermediates.1 Introduction2 Background: Phenyl Carbocations3 Silylium/Carborane-Catalyzed C–H Insertion Reactions of Phenyl Carbocations4 Silane-Fueled, Weakly Coordinating Anion-Catalyzed, Reductive C–H Insertion Reactions of Vinyl Carbocations5 C–H Insertion Reactivity of Vinyl Carbocations under Basic Conditions6 Conclusion and Outlook
Collapse
Affiliation(s)
- Hosea M. Nelson
- Department of Chemistry and Biochemistry, University of California
| | | | | | | | | |
Collapse
|
28
|
Bagdasarian AL, Popov S, Wigman B, Wei W, Lee W, Nelson HM. Urea-Catalyzed Vinyl Carbocation Formation Enables Mild Functionalization of Unactivated C-H Bonds. Org Lett 2020; 22:7775-7779. [PMID: 32558583 PMCID: PMC8448122 DOI: 10.1021/acs.orglett.0c01745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein we report the 3,5-bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C-H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C-H insertion and Friedel-Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen-bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C-O bonds. Despite the highly Lewis-acidic nature of these catalysts that enables triflate abstraction from sp2 carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis-basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.
Collapse
Affiliation(s)
- Alex L Bagdasarian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Stasik Popov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Benjamin Wigman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wenjing Wei
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Woojin Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Zheng H, Dong K, Wherritt D, Arman H, Doyle MP. Brønsted Acid Catalyzed Friedel-Crafts-Type Coupling and Dedinitrogenation Reactions of Vinyldiazo Compounds. Angew Chem Int Ed Engl 2020; 59:13613-13617. [PMID: 32372540 DOI: 10.1002/anie.202004328] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The direct Friedel-Crafts-type coupling and dedinitrogenation reactions of vinyldiazo compounds with aromatic compounds using a metal-free strategy are described. This Brønsted acid catalyzed method is efficient for the formation of α-diazo β-carbocations (vinyldiazonium ions), vinyl carbocations, and allylic or homoallylic carbocation species via vinyldiazo compounds. By choosing suitable nucleophilic reagents to selectively capture these intermediates, both trisubstituted α,β-unsaturated esters, β-indole-substituted diazo esters, and dienes are obtained with good to high yields and selectivity. Experimental insights implicate a reaction mechanism involving the selective protonation of vinyldiazo compounds and the subsequent release of dinitrogen to form vinyl cations that undergo intramolecular 1,3- and 1,4- hydride transfer processes as well as fragmentation.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kuiyong Dong
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Daniel Wherritt
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
30
|
Guo R, Qi X, Xiang H, Geaneotes P, Wang R, Liu P, Wang Y. Stereodivergent Alkyne Hydrofluorination Using Protic Tetrafluoroborates as Tunable Reagents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rui Guo
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaotian Qi
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Hengye Xiang
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Paul Geaneotes
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruihan Wang
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Peng Liu
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA 15260 USA
| | - Yi‐Ming Wang
- Department of ChemistryUniversity of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
31
|
Guo R, Qi X, Xiang H, Geaneotes P, Wang R, Liu P, Wang YM. Stereodivergent Alkyne Hydrofluorination Using Protic Tetrafluoroborates as Tunable Reagents. Angew Chem Int Ed Engl 2020; 59:16651-16660. [PMID: 32485005 DOI: 10.1002/anie.202006278] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Indexed: 01/10/2023]
Abstract
The discovery of safe, general, and practical procedures to prepare vinyl fluorides from readily available precursors remains a synthetic challenge. The metal-free hydrofluorination of alkynes constitutes an attractive though elusive strategy for their preparation. Introduced here is an inexpensive and easily handled reagent that enables the development of simple and scalable protocols for the regioselective hydrofluorination of alkynes to access both the E and Z isomers of vinyl fluorides. These reaction conditions were suitable for a diverse collection of alkynes, including several highly functionalized pharmaceutical derivatives. Computational and experimental mechanistic studies support C-F bond formation through vinyl cation intermediates, with the E- and Z-hydrofluorination products forming under kinetic and thermodynamic control, respectively.
Collapse
Affiliation(s)
- Rui Guo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Hengye Xiang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Paul Geaneotes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
32
|
Zheng H, Dong K, Wherritt D, Arman H, Doyle MP. Brønsted Acid Catalyzed Friedel–Crafts‐Type Coupling and Dedinitrogenation Reactions of Vinyldiazo Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Haifeng Zheng
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kuiyong Dong
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Daniel Wherritt
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi Arman
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P. Doyle
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
33
|
Wang Y, Cai PJ, Yu ZX. Mechanistic Study on Gold-Catalyzed Cycloisomerization of Dienediynes Involving Aliphatic C-H Functionalization and Inspiration for Developing a New Strategy to Access Polycarbocycles. J Am Chem Soc 2020; 142:2777-2786. [PMID: 31950827 DOI: 10.1021/jacs.9b10362] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previously, we developed a gold-catalyzed cycloisomerization of dienediynes to synthesize the fused 6,7,5-tricyclic compounds. This reaction involves aliphatic C-H functionalization under mild conditions with high regio- and diastereoselectivities. Herein, we present a combined density functional theory (DFT) and experimental study to understand its mechanism. The reaction starts with a 6-endo-dig cyclization to generate a cis-1-alkynyl-2-alkenylcyclopropane. Then, a Cope rearrangement takes place to give a seven-membered-ring allene intermediate, whose central carbon atom possesses vinyl cation character and thus is highly reactive toward aliphatic C-H insertion. After the C-H insertion, two successive [1,2]-hydride shifts then occur to give the tricyclic product and to complete the catalytic cycle. Notably, steric effect induced by the bulky ligand is found to be important for the diastereocontrol in the C-H insertion step. DFT calculations suggested that the malonate-tethered substrate utilized in our previous work may undergo an undesired 5-exo-dig cyclization under gold catalysis, which could be the reason why the desired fused 6,7,5-tricarbocyclic product was not generated. These mechanistic insights then guided us to design substrates with a shortened carbon tether in the present work to inhibit the exo-dig cyclization so that the tandem cyclopropanation/Cope rearrangement/C-H functionalization could occur to construct polycarbocycles containing a seven-membered ring. This prediction was supported by new experiments, providing a new strategy to access fused 5,7,5-tricyclic and 5,7,6,6-tetracyclic carbocycles. In addition, how the substituents affect the chemoselectivity was also investigated.
Collapse
Affiliation(s)
- Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry , Peking University , Beijing 100871 , China
| | - Pei-Jun Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry , Peking University , Beijing 100871 , China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry , Peking University , Beijing 100871 , China
| |
Collapse
|
34
|
Li Z, Gandon V, Bour C. Bimolecular vinylation of arenes by vinyl cations. Chem Commun (Camb) 2020; 56:6507-6510. [DOI: 10.1039/d0cc02300k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Styrene derivatives can be easily synthesized from vinyl triflates and arenes under mild reaction conditions, using [Li][Al(OC(CF3)3)4] as a catalyst and LiHMDS as a base.
Collapse
Affiliation(s)
- Zhilong Li
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- CNRS UMR 8182
- Université Paris-Saclay
- 91405 Orsay Cedex
- France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- CNRS UMR 8182
- Université Paris-Saclay
- 91405 Orsay Cedex
- France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- CNRS UMR 8182
- Université Paris-Saclay
- 91405 Orsay Cedex
- France
| |
Collapse
|
35
|
Cleary SE, Hensinger MJ, Qin ZX, Hong X, Brewer M. Migratory Aptitudes in Rearrangements of Destabilized Vinyl Cations. J Org Chem 2019; 84:15154-15164. [PMID: 31747287 DOI: 10.1021/acs.joc.9b02130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Lewis acid-promoted generation of destabilized vinyl cations from β-hydroxy diazo ketones leads to an energetically favorable 1,2-shift across the alkene followed by an irreversible C-H insertion to give cyclopentenone products. This reaction sequence overcomes typical challenges of counter-ion trapping and rearrangement reversibility of vinyl cations and has been used to study the migratory aptitudes of nonequivalent substituents in an uncommon C(sp2) to C(sp) vinyl cation rearrangement. The migratory aptitude trends were consistent with those observed in other cationic rearrangements; the substituent that can best stabilize a cation more readily migrates. However, density functional theory calculations show that the situation is more complex. Selectivity in the formation of one conformational isomer of the vinyl cation and facial selective migration across the alkene due to an electrostatic interaction between the vinyl cation and the adjacent carbonyl oxygen work in concert to determine which group migrates. This study provides valuable insight into predicting migration preferences when applying this methodology to the synthesis of structurally complex cyclopentenones that are differentially substituted at the α and β positions.
Collapse
Affiliation(s)
- Sarah E Cleary
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Magenta J Hensinger
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| | - Zhi-Xin Qin
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Xin Hong
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Matthias Brewer
- Department of Chemistry , The University of Vermont , Burlington , Vermont 05405 , United States
| |
Collapse
|
36
|
Suleymanov AA, Doll M, Ruggi A, Scopelliti R, Fadaei‐Tirani F, Severin K. Synthesis of Tetraarylethene Luminogens by C−H Vinylation of Aromatic Compounds with Triazenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Martin Doll
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de ChimieUniversité de Fribourg 1700 Fribourg Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
37
|
Suleymanov AA, Doll M, Ruggi A, Scopelliti R, Fadaei‐Tirani F, Severin K. Synthesis of Tetraarylethene Luminogens by C−H Vinylation of Aromatic Compounds with Triazenes. Angew Chem Int Ed Engl 2019; 59:9957-9961. [DOI: 10.1002/anie.201908755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Martin Doll
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de ChimieUniversité de Fribourg 1700 Fribourg Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|