1
|
Goto T, Blaukopf M, Stöger B, Pantophlet R, Kerner L, Kosma P. Glycosylation of an N-Acetylated Glucosamine Disaccharide Using an Orthogonally Protected 3-Iodo-Kdo Fluoride Donor. ChemistryOpen 2025:e2500141. [PMID: 40223430 DOI: 10.1002/open.202500141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Kdo (3-Deoxy-d-manno-oct-2-ulosonic acid) is an essential sugar found in bacterial lipopolysaccharides with significant biomedical relevance. This study introduces an orthogonally protected 3-iodo-Kdo fluoride donor and demonstrates its coupling to a pre-synthesized β-(1→6)-linked N-acetylglucosamine disaccharide acceptor as an example. Nuclear magnetic resonance data indicates the presence of an intraresidue hydrogen bond in the distal glucosamine unit. Two complementary glycosylation approaches are explored with an emphasis on achieving high stereoselectivity and minimizing protecting-group manipulation. The orthogonal protection of 3-iodo Kdo fluoride donor offers insights into tailoring Kdo-based donors for specific biomedical applications. While yields vary depending on the approach, they are sufficient to demonstrate the donor's applicability. These findings enable the design of advanced glycomimetic constructs for therapeutic and vaccine research.
Collapse
Affiliation(s)
- Takaaki Goto
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | - Markus Blaukopf
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | - Berthold Stöger
- X-Ray Center (XRC), University of Technology Vienna, Lehargasse 4, A-1060, Vienna, Austria
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A1S6, Canada
| | - Lukáš Kerner
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, SK, 842 15, Slovakia
| | - Paul Kosma
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
2
|
Dorst KM, Widmalm G. NMR chemical shift prediction and structural elucidation of linker-containing oligo- and polysaccharides using the computer program CASPER. Carbohydr Res 2023; 533:108937. [PMID: 37734222 DOI: 10.1016/j.carres.2023.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Carbohydrate structures containing alkyl groups as aglycones are useful for investigating enzyme activity and glycan-protein interactions. Moreover, linker-containing oligosaccharides with a spacer group are commonly used to print glycan microarrays or to prepare protein-conjugates as vaccine candidates. The structural accuracy of these synthesized glycans are essential for interpretation of results from biological experiments in which the compounds have been used and NMR spectroscopy can unravel and confirm their structures. An approach for efficient 1H and 13C NMR chemical shift assignments employed a parallel NOAH-10 measurement followed by NMR spin-simulation to refine the 1H NMR chemical shifts, as exemplified for a disaccharide with an azidoethyl group as an aglycone, the NMR chemical shifts of which have been used to enhance the quality of CASPER (http://www.casper.organ.su.se/casper/). The CASPER program has been further developed to aid characterization of linker-containing oligo- and polysaccharides, either by chemical shift prediction for comparison to experimental NMR data or as structural investigation of synthesized glycans based on acquired unassigned NMR data. The ability of CASPER to elucidate structures of linker-containing oligosaccharides is demonstrated and comparisons to assigned or unassigned NMR data show the utility of CASPER in supporting a proposed oligosaccharide structure. Prediction of NMR chemical shifts of an oligosaccharide, corresponding to the repeating unit of an O-antigen polysaccharide, having a linker as an aglycone and a non-natural substituent derivative thereof are presented to exemplify the diversity of structures handled. Furthermore, NMR chemical shift predictions of synthesized polysaccharides, corresponding to bacterial polysaccharides, containing a linker are described showing that in addition to oligosaccharide structures also polysaccharide structures having an aglycone spacer group can be analyzed by CASPER.
Collapse
Affiliation(s)
- Kevin M Dorst
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
3
|
Usui R, Koizumi A, Nitta K, Kuribara T, Totani K. Multisite Partial Glycosylation Approach for Preparation of Biologically Relevant Oligomannosyl Branches Contribute to Lectin Affinity Analysis. J Org Chem 2023; 88:14357-14367. [PMID: 37792638 DOI: 10.1021/acs.joc.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
High-mannose-type glycans play essential biological roles, e.g., immune response and glycoprotein quality control, and preparing a series of oligomannosyl branches of high-mannose-type glycans is critical for biological studies. However, obtaining sufficient amounts of the various oligomannosyl branches is challenging. In this study, we demonstrated a partial glycosylation strategy for the single-step synthesis of various biologically relevant oligomannosyl-branched structures. First, Manα1-6(Manα1-3)Man-type oligomannosyl branch was synthesized via double glycosylation from a 3,6-di-OH mannosyl acceptor and fluorinated mannosyl donor with perfect α-selectivity. Subsequent partial glycosylation by reducing the equivalent of the mannosyl donor enabled to obtain biologically relevant Manα1-2Manα1-6(Manα1-2Manα1-3)Man, Manα1-6(Manα1-2Manα1-3)Man, Manα1-2Manα1-6(Manα1-3)Man, and Manα1-6(Manα1-3)Man in one-pot. Each oligomannosyl branch could be easily purified by liquid chromatography. The resulting structural isomers were identified by 2D-HMBC NMR. A systematic lectin affinity assay using the prepared oligomannosyl branches showed different specificities for the Galanthus nivalis lectin between structural isomers of the oligomannosyl branches with the same number of mannose residues..
Collapse
Affiliation(s)
- Ruchio Usui
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Akira Koizumi
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Kyohei Nitta
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Taiki Kuribara
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| | - Kiichiro Totani
- Department of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo 180-8863, Japan
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
5
|
Hamajima S, Komura N, Tanaka HN, Imamura A, Ishida H, Noguchi H, Ichiyanagi T, Ando H. Full Stereocontrol in α-Glycosidation of 3-Deoxy- d- manno-2-octulosonic Acid (Kdo) Using Macrobicyclic Glycosyl Donors. Org Lett 2022; 24:8672-8676. [DOI: 10.1021/acs.orglett.2c03542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shogo Hamajima
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Haruka Noguchi
- Department of Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101, Tottori 680-8553, Japan
| | - Tsuyoshi Ichiyanagi
- Department of Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101, Tottori 680-8553, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
6
|
Zou X, Hu J, Zhao M, Qin C, Zhu Y, Tian G, Cai J, Seeberger PH, Yin J. Chemical Synthesis of the Highly Sterically Hindered Core Undecasaccharide of Helicobacter pylori Lipopolysaccharide for Antigenicity Evaluation with Human Serum. J Am Chem Soc 2022; 144:14535-14547. [PMID: 35939326 DOI: 10.1021/jacs.2c03068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helicobacter pylori, listed as a human carcinogen by the Department of Health and Human Services, colonizes the gastric mucosa of more than half of the world's population. The individuals infected with H. pylori have a high risk to develop chronic gastritis, peptic ulcers, and even gastric cancer. The conserved core structure of H. pylori lipopolysaccharide (LPS) has been regarded as a promising candidate structure for development of a glycoconjugate vaccine targeting multiple serotypes. Here, we report a total synthesis of the core undecasaccharide of H. pylori LPS and its subunit antigens. The match and mismatch between the glycosyl donor and acceptor caused by the inert hydroxyl groups were addressed by a judicious choice of orthogonal protection strategies and glycosylation conditions. A combination of acyl remote participation and solvent effects has been applied for selective formation of the five 1,2-cis-glucosidic bonds. The high steric hindrance induced by the high carbon sugars and trinacriform architecture required that the core undecasaccharide was synthesized through a finely tuned linear assembly [2 + (1 + (3 + (1 + (1 + 3))))] rather than convergent strategies. An antigenicity evaluation using glycan microarrays showed that an α-(1 → 6)-glucan trisaccharide is recognized by IgG antibodies in sera of H. pylori-infected patients. The phosphate group of the inner core trisaccharide key epitope is very important for IgG recognition. These findings are an important step toward designing carbohydrate-based vaccines against H. pylori.
Collapse
Affiliation(s)
- Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu214122, P. R. China.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, 14476 Potsdam, Germany
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu214122, P. R. China
| | - Ming Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu214122, P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu214122, P. R. China
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, 14476 Potsdam, Germany
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu214122, P. R. China
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu214122, P. R. China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, 14476 Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu214122, P. R. China
| |
Collapse
|
7
|
Chaube MA, Trattnig N, Lee D, Belkhadir Y, Pfrengle F. Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses. European J Org Chem 2022; 2022:e202200313. [PMID: 36035813 PMCID: PMC9401017 DOI: 10.1002/ejoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and β-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) β-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.
Collapse
Affiliation(s)
- Manishkumar A. Chaube
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nino Trattnig
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| | - Du‐Hwa Lee
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
8
|
Liu CC, Huo CX, Zhai C, Zheng XJ, Xiong DC, Ye XS. Synthesis and Immunological Evaluation of Pentamannose-Based HIV-1 Vaccine Candidates. Bioconjug Chem 2022; 33:807-820. [PMID: 35470665 DOI: 10.1021/acs.bioconjchem.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dense glycosylation and the trimeric conformation of the human immunodeficiency virus-1 (HIV-1) envelope protein limit the accessibility of some cellular glycan processing enzymes and end up with high-mannose-type N-linked glycans on the envelope spike, among which the Man5GlcNAc2 structure occupies a certain proportion. The Man5GlcNAc2 glycan composes the binding sites of some potent broadly neutralizing antibodies, and some lectins that can bind Man5GlcNAc2 show HIV-neutralizing activity. Therefore, Man5GlcNAc2 is a potential target for HIV-1 vaccine development. Herein, a highly convergent and effective strategy was developed for the synthesis of Man5 and its monofluoro-modified, trifluoro-modified, and S-linked analogues. We coupled these haptens to carrier protein CRM197 and evaluated the immunogenicity of the glycoconjugates in mice. The serological assays showed that the native Man5 conjugates failed to induce Man5-specific antibodies in vivo, while the modified analogue conjugates induced stronger antibody responses. However, these antibodies could not bind the native gp120 antigen. These results demonstrated that the immune tolerance mechanism suppressed the immune responses to Man5-related structures and the conformation of glycan epitopes on the synthesized glycoconjugates was distinct from that of native glycan epitopes on gp120.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Canjia Zhai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
9
|
Cattin M, Bruxelle JF, Ng K, Blaukopf M, Pantophlet R, Kosma P. Synthetic neoglycoconjugates of hepta- and nonamannoside ligands for eliciting oligomannose-specific HIV-1-neutralizing antibodies. Chembiochem 2022; 23:e202200061. [PMID: 35104013 PMCID: PMC9108342 DOI: 10.1002/cbic.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/01/2022] [Indexed: 11/08/2022]
Abstract
Oligomannose-type glycans on the spike protein of HIV-1 constitute relevant epitopes to elicit broadly neutralizing antibodies (bnAbs). Herein we describe an improved synthesis of α- and β-linked hepta- and nonamannosyl ligands that, subsequently, were converted into BSA and CRM 197 neoglycoconjugates. We assembled the ligands from anomeric 3-azidopropyl spacer glycosides from select 3-O-protected thiocresyl mannoside donors. Chain extensions were achieved using 4+3 or 4+5 block synthesis of thiocresyl and trichloroacetimidate glycosyl donors. Subsequent global deprotection generated the 3-aminopropyl oligosaccharide ligands. ELISA binding data obtained with the β-anomeric hepta- and nonamannosyl conjugates with a selection of HIV-1 bnAbs showed comparable binding of both mannosyl ligands by Fab fragments yet lesser binding of the nonasaccharide conjugate by the corresponding IgG antibodies. These results support previous observations that a complete Man 9 structure might not be the preferred antigenic binding motif for some oligomannose-specific antibodies and have implications for glycoside designs to elicit oligomannose-targeted HIV-1-neutralizing antibodies.
Collapse
Affiliation(s)
- Matteo Cattin
- University of Natural Resources and Life Sciences: Universitat fur Bodenkultur Wien, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| | - Jean-François Bruxelle
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, Burnaby, CANADA
| | - Kurtis Ng
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, CANADA
| | - Markus Blaukopf
- University of Natural Resources and Life Sciences Vienna: Universitat fur Bodenkultur Wien, Chemistry, AUSTRIA
| | - Ralph Pantophlet
- Simon Fraser University Faculty of Health Sciences, Molecular Biology and Biochemistry, V5A 1S6, Burnaby, CANADA
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Chemistry, Muthgasse 18, A 1190, Vienna, AUSTRIA
| |
Collapse
|
10
|
Dhara D, Mulard LA. Exploratory N-Protecting Group Manipulation for the Total Synthesis of Zwitterionic Shigella sonnei Oligosaccharides. Chemistry 2021; 27:5694-5711. [PMID: 33314456 PMCID: PMC8048667 DOI: 10.1002/chem.202003480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Shigella sonnei surface polysaccharides are well-established protective antigens against this major cause of diarrhoeal disease. They also qualify as unique zwitterionic polysaccharides (ZPSs) featuring a disaccharide repeating unit made of two 1,2-trans linked rare aminodeoxy sugars, a 2-acetamido-2-deoxy-l-altruronic acid (l-AltpNAcA) and a 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose (AAT). Herein, the stereoselective synthesis of S. sonnei oligosaccharides comprising two, three and four repeating units is reported for the first time. Several sets of up to seven protecting groups were explored, shedding light on the singular conformational behavior of protected altrosamine and altruronic residues. A disaccharide building block equipped with three distinct N-protecting groups and featuring the uronate moiety already in place was designed to accomplish the iterative high yielding glycosylation at the axial 4-OH of the altruronate component and achieve the challenging full deprotection step. Key to the successful route was the use of a diacetyl strategy whereby the N-acetamido group of the l-AltpNAcA is masked in the form of an imide.
Collapse
Affiliation(s)
- Debashis Dhara
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| | - Laurence A. Mulard
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| |
Collapse
|
11
|
Nakagawa Y, Yamaji F, Miyanishi W, Ojika M, Igarashi Y, Ito Y. Binding Evaluation of Pradimicins for Oligomannose Motifs from Fungal Mannans. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yu Nakagawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Fumiya Yamaji
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Wataru Miyanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Bruxelle JF, Kirilenko T, Trattnig N, Yang Y, Cattin M, Kosma P, Pantophlet R. A glycoside analog of mammalian oligomannose formulated with a TLR4-stimulating adjuvant elicits HIV-1 cross-reactive antibodies. Sci Rep 2021; 11:4637. [PMID: 33633304 PMCID: PMC7907241 DOI: 10.1038/s41598-021-84116-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
The occurrence of oligomannose-specific broadly neutralizing antibodies (bnAbs) has spurred efforts to develop immunogens that can elicit similar antibodies. Here, we report on the antigenicity and immunogenicity of a CRM197-conjugate of a previously reported oligomannose mimetic. Oligomannose-specific bnAbs that are less dependent on interactions with the HIV envelope protein sequence showed strong binding to the glycoconjugates, with affinities approximating those reported for their cognate epitope. The glycoconjugate is also recognized by inferred germline precursors of oligomannose-specific bnAbs, albeit with the expected low avidity, supporting its potential as an immunogen. Immunization of human-antibody transgenic mice revealed that only a TLR4-stimulating adjuvant formulation resulted in antibodies able to bind a panel of recombinant HIV trimers. These antibodies bound at relatively modest levels, possibly explaining their inability to neutralize HIV infectivity. Nevertheless, these findings contribute further to understanding conditions for eliciting HIV-cross-reactive oligomannose-specific antibodies and inform on next steps for improving on the elicited response.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Tess Kirilenko
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada ,grid.479077.aPresent Address: AbCellera Biologics Inc., Vancouver, BC Canada
| | - Nino Trattnig
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria ,grid.5477.10000000120346234Present Address: Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Yiqiu Yang
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| | - Matteo Cattin
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Kosma
- grid.5173.00000 0001 2298 5320Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ralph Pantophlet
- grid.61971.380000 0004 1936 7494Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada ,grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
13
|
Bastida I, Fernández-Tejada A. Synthetic carbohydrate-based HIV-1 vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:45-56. [PMID: 33388127 DOI: 10.1016/j.ddtec.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023]
Abstract
An effective prophylactic HIV-1 vaccine is essential in order to contain the HIV/AIDS global pandemic. The discovery of different broadly neutralizing antibodies (bnAbs) in the last decades has enabled the characterization of several minimal epitopes on the HIV envelope (Env) spike, including glycan-dependent fragments. Herein, we provide a brief overview of the progress made on the development of synthetic carbohydrate-based epitope mimics for the elicitation of bnAbs directed to certain regions on Env gp120 protein: the outer domain high-mannose cluster and the variable loops V1V2 and V3. We focus on the design, synthesis and biological evaluation of minimal immunogens and discuss key aspects towards the development of a successful protective vaccine against HIV-1.
Collapse
Affiliation(s)
- Iñaki Bastida
- Chemical Immunology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48169 Derio, Bizkaia, Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48169 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, María Díaz de Haro 13, 48013 Bilbao, Bizkaia, Spain.
| |
Collapse
|
14
|
Zhang Z, Wang T, Yang R, Fu S, Guan L, Hou T, Mu W, Pang X, Liang S, Liu Y, Zhang N. Small Morph Nanoparticles for Deep Tumor Penetration via Caveolae-Mediated Transcytosis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38499-38511. [PMID: 32805954 DOI: 10.1021/acsami.0c06872] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumor penetration of nanomedicines constitutes a great challenge in the treatment of solid tumors, leading to the highly compromised therapeutic efficacy of nanomedicines. Here, we developed small morph nanoparticles (PDMA) by modifying polyamidoamine (PAMAM) dendrimers with dimethylmaleic anhydride (DMA). PDMA achieved deep tumor penetration via an active, energy-dependent, caveolae-mediated transcytosis, which circumvented the obstacles in the process of deep penetration. PDMA remained negatively charged under normal physiological conditions and underwent rapid charge reversal from negative to positive under acidic conditions in the tumor microenvironment (pH < 6.5), which enhanced their uptake by tumor cells and their deep penetration into tumor tissues in vitro and in vivo. The deep tumor penetration of PDMA was achieved mainly by caveolae-mediated transcytosis, which could be attributed to the small sizes (5-10 nm) and positive charge of the morphed PDMA. In vivo studies demonstrated that PDMA exhibited increased tumor accumulation and doxorubicin-loaded PDMA (PDMA/DOX) showed better antitumor efficacy. Overall, the small morph PDMA for enhanced deep tumor penetration via caveolae-mediated transcytosis could provide new inspiration for the design of anticancer drug delivery systems.
Collapse
Affiliation(s)
- Zipeng Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Rui Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Li Guan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Teng Hou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Xiuping Pang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province 250012, People's Republic of China
| |
Collapse
|
15
|
Chang CW, Lin MH, Wu CH, Chiang TY, Wang CC. Mapping Mechanisms in Glycosylation Reactions with Donor Reactivity: Avoiding Generation of Side Products. J Org Chem 2020; 85:15945-15963. [DOI: 10.1021/acs.joc.0c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University Taipei 106, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
16
|
Tian G, Hu J, Qin C, Li L, Zou X, Cai J, Seeberger PH, Yin J. Chemical Synthesis and Immunological Evaluation of
Helicobacter pylori
Serotype O6 Tridecasaccharide O‐Antigen Containing a
dd
‐Heptoglycan. Angew Chem Int Ed Engl 2020; 59:13362-13370. [PMID: 32363752 DOI: 10.1002/anie.202004267] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
17
|
Tian G, Hu J, Qin C, Li L, Zou X, Cai J, Seeberger PH, Yin J. Chemical Synthesis and Immunological Evaluation of
Helicobacter pylori
Serotype O6 Tridecasaccharide O‐Antigen Containing a
dd
‐Heptoglycan. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jing Hu
- Wuxi School of Medicine Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Lihu Avenue 1800 Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
18
|
Bruxelle JF, Kirilenko T, Qureshi Q, Lu N, Trattnig N, Kosma P, Pantophlet R. Serum alpha-mannosidase as an additional barrier to eliciting oligomannose-specific HIV-1-neutralizing antibodies. Sci Rep 2020; 10:7582. [PMID: 32371950 PMCID: PMC7200719 DOI: 10.1038/s41598-020-64500-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Oligomannose-type glycans on HIV-1 gp120 form a patch that is targeted by several broadly neutralizing antibodies (bnAbs) and that therefore is of interest to vaccine design. However, attempts to elicit similar oligomannose-specific bnAbs by immunizing with oligomannosidic glycoconjugates have only been modestly successful so far. A common assumption is that eliciting oligomannose-specific bnAbs is hindered by B cell tolerance, resulting from the presented oligomannosides being sensed as self molecules. Here, we present data, along with existing scientific evidence, supporting an additional, or perhaps alternate, explanation: serum mannosidase trimming of the presented oligomannosides in vivo. Mannosidase trimming lessens the likelihood of eliciting antibodies with capacity to bind full-sized oligomannose, which typifies the binding mode of existing bnAbs to the oligomannose patch. The rapidity of the observed trimming suggests the need for immunization strategies and/or synthetic glycosides that readily avoid or resist mannosidase trimming upon immunization and can overcome possible tolerance restrictions.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | - Tess Kirilenko
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
- AbCellera Biologics Inc., Vancouver, British Columbia, Canada
| | - Quratulain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | - Naiomi Lu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | - Nino Trattnig
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1190, Austria
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1190, Austria
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada.
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada.
| |
Collapse
|
19
|
Nguyen DN, Redman RL, Horiya S, Bailey JK, Xu B, Stanfield RL, Temme JS, LaBranche CC, Wang S, Rodal AA, Montefiori DC, Wilson IA, Krauss IJ. The Impact of Sustained Immunization Regimens on the Antibody Response to Oligomannose Glycans. ACS Chem Biol 2020; 15:789-798. [PMID: 32109354 PMCID: PMC7091532 DOI: 10.1021/acschembio.0c00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The high mannose
patch (HMP) of the HIV envelope protein (Env)
is the structure most frequently targeted by broadly neutralizing
antibodies; therefore, many researchers have attempted to use mimics
of this region as a vaccine immunogen. In our previous efforts, vaccinating
rabbits with evolved HMP mimic glycopeptides containing Man9 resulted in an overall antibody response targeting the glycan core
and linker rather than the full glycan or Manα1→2Man
tips of Man9 glycans. A possible reason could be processing
of our immunogen by host serum mannosidases. We sought to test whether
more prolonged dosing could increase the antibody response to intact
glycans, possibly by increasing the availability of intact Man9 to germinal centers. Here, we describe a study investigating
the impact of immunization regimen on antibody response by testing
immunogen delivery through bolus, an exponential series of mini doses,
or a continuously infusing mini-osmotic pump. Our results indicate
that, with our glycopeptide immunogens, standard bolus immunization
elicited the strongest HIV Env-binding antibody response, even though
higher overall titers to the glycopeptide were elicited by the exponential
and pump regimens. Antibody selectivity for intact glycan was, if
anything, slightly better in the bolus-immunized animals.
Collapse
Affiliation(s)
- Dung N. Nguyen
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Richard L. Redman
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Satoru Horiya
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Jennifer K. Bailey
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Bokai Xu
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - J. Sebastian Temme
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Shiyu Wang
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Avital A. Rodal
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Isaac J. Krauss
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| |
Collapse
|