1
|
Zhou Y, Qiu XG, Li XR, Ye YS, Zhao J, Gao H, Xu G. Racemic Meroterpenoid with a 6/6/4/6/6/10/3 Skeleton via [2 + 2] and [4 + 2] Coupling of Sesquiterpenoid and Pyrone Units. Org Lett 2025. [PMID: 40388396 DOI: 10.1021/acs.orglett.5c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Hypbeaone A (1), a pair of racemic meroterpenoids featuring a 6/6/4/6/6/10/3 heptacyclic core, along with its biogenic precursor, hypermonone A (2), were isolated from Hypericum beanii. Compound 1 represented the first trimeric meroterpenoid that should be biosynthesized through intermolecular [2 + 2] and [4 + 2] cycloadditions of two pyrones and one sesquiterpenoid unit. Its structure was unequivocally determined by spectroscopic analysis and X-ray crystallography. Both compounds (±)-1 and 2 exhibited potential α-glucosidase inhibitory activities.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xian-Gui Qiu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Ren Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan-Song Ye
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianjun Zhao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Gang Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
2
|
Huang J, Ballester P. A Bimolecular Diels-Alder Reaction Mediated by Inclusion in a Polar Bis-calix[4]pyrrole Octa-Imine Cage. J Am Chem Soc 2025; 147:13962-13972. [PMID: 40198743 DOI: 10.1021/jacs.5c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
We describe using a dynamically self-assembled octa-imine cage as a molecular flask to accelerate a bimolecular Diels-Alder reaction. We investigate the cage's binding properties using 1H NMR spectroscopic titrations, ITC experiments, and X-ray crystallography. We detect and characterize the formation of the ternary complex (Michaelis) in solution. A detailed kinetic analysis of the reaction data supports that the cage's acceleration is provided by including the two reactants, resulting in an effective molarity (EM) of ∼40 M. Exo-selectivity and shift of the reaction's chemical equilibrium are also encountered in the cage's confined space. Our results mimic enzymes' ability to bind two substrates in a polar cavity, using directional interactions, and accelerate their stereoselective reaction, with the potential for cavity engineering to enable other reactions.
Collapse
Affiliation(s)
- Jiaming Huang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, Tarragona 43007, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, Tarragona 43007, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
3
|
Zhang T, Ouyang Z, Zhang Y, Sun H, Kong L, Xu Q, Qu J, Sun Y. Marine Natural Products in Inflammation-Related Diseases: Opportunities and Challenges. Med Res Rev 2025. [PMID: 40202793 DOI: 10.1002/med.22109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
In recent decades, the potentiality of marine natural products (MNPs) in the medical field has been increasingly recognized. Natural compounds derived from marine microorganisms, algae, and invertebrates have shown significant promise for treating inflammation-related diseases. In this review, we cover the three primary sources of MNPs and their diverse and unique chemical structures and bioactivities. This review aims to summarize the progress of MNPs in combating inflammation-related diseases. Moreover, we cover the functions and mechanisms of MNPs in diseases, highlighting their functions in regulating inflammatory signaling pathways, cellular stress responses, and gut microbiota, among others. Meanwhile, we focus on key technologies and scientific methods to address the current limitations and challenges in MNPs.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zijun Ouyang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Yueran Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Gou G, Bao W, Li J. Structural diversity, biological activities and biosynthetic pathways of [2 + 2] and [4 + 2] amide alkaloid dimers from Piperaceae: An updated review. Fitoterapia 2025; 180:106305. [PMID: 39577777 DOI: 10.1016/j.fitote.2024.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The Piperaceae family is distributed widely in tropical and subtropical areas. It encompasses around 5 genera and over 3000 species. They are distinguished by the substantial chemical diversity and potential medicinal applications. Amide alkaloids, as the main secondary metabolites in the Piperaceae family, exhibit various biological activities, and the discovery of [2 + 2] and [4 + 2] amide alkaloid dimers has led to a surge in phytochemical research on Piperaceae plants. Although the identification of these dimers has been gradually increasing in recent years, there remains a lack of comprehensive and systematic evaluations of these compounds. This review aims to summarize the latest advancements in the research on natural amide alkaloid dimers, focusing on their structural diversity, biological activities and biosynthetic pathways, and the enzymatic advances of [2 + 2] and [4 + 2] cyclase enzymes. Until October 2024, research has documented 99 amide alkaloid dimers, including 37 dimers possessing [2 + 2] cyclobutanes skeletons and 62 [4 + 2] cyclohexene skeletons derived from the Piperaceae family. These compounds demonstrate a range of in vitro biological activities including anti-inflammatory, anticancer, acetylcholinesterase inhibitory, anti-platelet aggregation, hepatoprotective, antimalarial, antitubercular, anti-diabetic and notable interactions with CYP3A4 and CYP2D6 enzymes. A systematic review of these [2 + 2] and [4 + 2] amide alkaloid dimers in Piperaceae family can provide a critical scientific foundation and theoretical support for the discovery and development of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Guanghui Gou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenli Bao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
5
|
Yuan GY, Zhang JM, Xu YQ, Zou Y. Biosynthesis and Assembly Logic of Fungal Hybrid Terpenoid Natural Products. Chembiochem 2024; 25:e202400387. [PMID: 38923144 DOI: 10.1002/cbic.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
In recent decades, fungi have emerged as significant sources of diverse hybrid terpenoid natural products, and their biosynthetic pathways are increasingly unveiled. This review mainly focuses on elucidating the various strategies underlying the biosynthesis and assembly logic of these compounds. These pathways combine terpenoid moieties with diverse building blocks including polyketides, nonribosomal peptides, amino acids, p-hydroxybenzoic acid, saccharides, and adenine, resulting in the formation of plenty of hybrid terpenoid natural products via C-O, C-C, or C-N bond linkages. Subsequent tailoring steps, such as oxidation, cyclization, and rearrangement, further enhance the biological diversity and structural complexity of these hybrid terpenoid natural products. Understanding these biosynthetic mechanisms holds promise for the discovery of novel hybrid terpenoid natural products from fungi, which will promote the development of potential drug candidates in the future.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yan-Qiu Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
6
|
Wang XX, Deng BQ, Ouyang ZQ, Yan Y, Lv JM, Qin SY, Hu D, Chen GD, Yao XS, Gao H. Targeted Discovery of a Natural ortho-Quinone Methide Precursor and Green Generation of Its Oligomers. JOURNAL OF NATURAL PRODUCTS 2024; 87:2139-2147. [PMID: 39194958 DOI: 10.1021/acs.jnatprod.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ortho-Quinone methides (o-QMs) are a class of highly reactive intermediates that serve as important nonisolable building blocks (NBBs) in organic synthesis and small-molecule library construction. Because of their instability and nonisolability, most reported o-QMs are generated through in situ chemical synthesis, and only a few natural o-QMs have been reported due to the lack of directed discovery strategies. Herein, a new natural o-QM precursor (trichophenol A, 2) was identified from the fungal strain of Trichoderma sp. AT0167 through genome mining, which was generated by trilA (nonreducing polyketide synthase) and trilB (2-oxoglutarate dependent dioxygenase). Combinatorial biosynthesis via two other known NRPKS genes with trilA and trilB was performed, leading to the generation of five new trichophenol o-QM oligomers (trichophenols D-H, 5-9). The strategy combining genome mining with combinatorial biosynthesis not only targetedly uncovered a new natural o-QM precursor but also produced various new molecules through oligomerization of the new o-QM and its designated o-QM acceptors without chemical synthesis and isolation of intermediates, which was named NBB genome mining-combinatorial biosynthesis strategy for o-QM molecule library construction. This study provides a new strategy for the targeted discovery of natural o-QMs and small-molecule library construction with natural o-QMs.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Bei-Qian Deng
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Zhi-Qiu Ouyang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yang Yan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Sheng-Ying Qin
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Gao L, Ding Q, Lei X. Hunting for the Intermolecular Diels-Alderase. Acc Chem Res 2024; 57:2166-2183. [PMID: 38994670 DOI: 10.1021/acs.accounts.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The Diels-Alder reaction is well known as a concerted [4 + 2] cycloaddition governed by the Woodward-Hoffmann rules. Since Prof. Otto Diels and his student Kurt Alder initially reported the intermolecular [4 + 2] cycloaddition between cyclopentadiene and quinone in 1928, it has been recognized as one of the most powerful chemical transformations to build C-C bonds and construct cyclic structures. This named reaction has been widely used in synthesizing natural products and drug molecules. Driven by the synthetic importance of the Diels-Alder reaction, identifying the enzyme that stereoselectively catalyzes the Diels-Alder reaction has become an intriguing research area in natural product biosynthesis and biocatalysis. With significant progress in sequencing and bioinformatics, dozens of Diels-Alderases have been characterized in microbial natural product biosynthesis. However, few are evolutionally dedicated to catalyzing an intermolecular Diels-Alder reaction with a concerted mechanism. This Account summarizes our endeavors to hunt for the naturally occurring intermolecular Diels-Alderase from plants. Our research journey started from the biomimetic syntheses of D-A-type terpenoids and flavonoids, showing that plants use both nonenzymatic and enzymatic intermolecular [4 + 2] cycloadditions to create complex molecules. Inspired by the biomimetic syntheses, we identify an intermolecular Diels-Alderase hidden in the biosynthetic pathway of mulberry Diels-Alder-type cycloadducts using a biosynthetic intermediate probe-based target identification strategy. This enzyme, MaDA, is an endo-selective Diels-Alderase and is then functionally characterized as a standalone intermolecular Diels-Alderase with a concerted but asynchronous mechanism. We also discover the exo-selective intermolecular Diels-Alderases in Morus plants. Both the endo- and exo-selective Diels-Alderases feature a broad substrate scope, but their mechanisms for controlling the endo/exo pathway are different. These unique intermolecular Diels-Alderases phylogenetically form a subgroup of FAD-dependent enzymes that can be found only in moraceous plants, explaining why this type of [4 + 2] cycloadduct is unique to moraceous plants. Further studies of the evolutionary mechanism reveal that an FAD-dependent oxidocyclase could acquire the Diels-Alderase activity via four critical amino acid mutations and then gradually lose its original oxidative activity to become a standalone Diels-Alderase during the natural evolution. Based on these insights, we designed new Diels-Alderases and achieved the diversity-oriented chemoenzymatic synthesis of D-A products using either naturally occurring or engineered Diels-Alderases. Overall, this Account describes our decade-long efforts to discover the intermolecular Diels-Alderases in Morus plants, particularly highlighting the importance of biomimetic synthesis and chemical proteomics in discovering new intermolecular Diels-Alderases from plants. Meanwhile, this Account also covers the evolutionary and catalytic mechanism study of intermolecular Diels-Alderases that may provide new insights into how to discover and design new Diels-Alderases as powerful biocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Ding
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Liu J, Hu Y. Discovery and evolution of [4 + 2] cyclases. Curr Opin Chem Biol 2024; 81:102504. [PMID: 39068821 DOI: 10.1016/j.cbpa.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co-crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
9
|
Zhang K, Liu J, Jiang Y, Sun S, Wang R, Sun J, Ma C, Chen Y, Wang W, Hou X, Zhu T, Zhang G, Che Q, Keyzers RA, Liu M, Li D. Sorbremnoids A and B: NLRP3 Inflammasome Inhibitors Discovered from Spatially Restricted Crosstalk of Biosynthetic Pathways. J Am Chem Soc 2024; 146:18172-18183. [PMID: 38888159 DOI: 10.1021/jacs.4c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1β by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.
Collapse
Affiliation(s)
- Kaijin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingxian Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuewen Hou
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Robert A Keyzers
- School of Chemical and Physical Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
10
|
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Chen H, Wang R, Chiba T, Foreman K, Bowen K, Zhang X. Designer "Quasi-Benzyne": The Spontaneous Reduction of Ortho-Diiodotetrafluorobenzene on Water Microdroplets. J Am Chem Soc 2024; 146:10979-10983. [PMID: 38586980 DOI: 10.1021/jacs.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
It has been widely shown that water microdroplets have a plethora of unique properties that are highly distinct from those of bulk water, among which an especially intriguing one is the strong reducing power as a result of the electrons spontaneously generated at the air-water interface. In this study, we take advantage of the reducing power of water microdroplets to reduce ortho-diiodotetrafluorobenzene (o-C6F4I2) into a C6F4I2•- radical anion. Photoelectron spectroscopy and density functional theory computations reveal that the excess electron in C6F4I2•- occupies the I-C1-C2-I linkage, which elongates the C-I bonds but surprisingly shortens the C1-C2 bond, making the bond order higher than a double bond, similar to the benzyne molecule, so we named it "quasi-benzyne". The C6F4I2•- anion was further successfully utilized in a Diels-Alder reaction, a typical reaction for benzyne. This study provides a good example of strategically utilizing the spontaneous properties of water microdroplets and generating an especially exotic anion, and we anticipate that microdroplet chemistry can be an avenue rich in opportunities for new catalyst-free organic reactions.
Collapse
Affiliation(s)
- Huan Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
| | - Ruijing Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
| | - Tatsuya Chiba
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kathryn Foreman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
| |
Collapse
|
12
|
Sukhorukov AY. Editorial: Heterodienes in organic synthesis. Front Chem 2024; 12:1403024. [PMID: 38650672 PMCID: PMC11033432 DOI: 10.3389/fchem.2024.1403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Alexey Yu. Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Ding Q, Guo N, Gao L, McKee M, Wu D, Yang J, Fan J, Weng JK, Lei X. The evolutionary origin of naturally occurring intermolecular Diels-Alderases from Morus alba. Nat Commun 2024; 15:2492. [PMID: 38509059 PMCID: PMC10954736 DOI: 10.1038/s41467-024-46845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Biosynthetic enzymes evolutionarily gain novel functions, thereby expanding the structural diversity of natural products to the benefit of host organisms. Diels-Alderases (DAs), functionally unique enzymes catalysing [4 + 2] cycloaddition reactions, have received considerable research interest. However, their evolutionary mechanisms remain obscure. Here, we investigate the evolutionary origins of the intermolecular DAs in the biosynthesis of Moraceae plant-derived Diels-Alder-type secondary metabolites. Our findings suggest that these DAs have evolved from an ancestor functioning as a flavin adenine dinucleotide (FAD)-dependent oxidocyclase (OC), which catalyses the oxidative cyclisation reactions of isoprenoid-substituted phenolic compounds. Through crystal structure determination, computational calculations, and site-directed mutagenesis experiments, we identified several critical substitutions, including S348L, A357L, D389E and H418R that alter the substrate-binding mode and enable the OCs to gain intermolecular DA activity during evolution. This work provides mechanistic insights into the evolutionary rationale of DAs and paves the way for mining and engineering new DAs from other protein families.
Collapse
Affiliation(s)
- Qi Ding
- School of Life Science, Tsinghua University, Beijing, 100084, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Nianxin Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Michelle McKee
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Dongshan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, 02120, USA
- Department of Chemistry and Chemical Biology and Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
14
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
15
|
Qian L, Mohanty P, Jayaraman A, Mittal J, Zhu X. Specific residues and conformational plasticity define the substrate specificity of short-chain dehydrogenases/reductases. J Biol Chem 2024; 300:105596. [PMID: 38145745 PMCID: PMC10827548 DOI: 10.1016/j.jbc.2023.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023] Open
Abstract
Short-chain dehydrogenases/reductases (SDRs) are one of the most prevalent enzyme families distributed among the sequenced microorganisms. Despite the presence of a conserved catalytic tetrad and high structural similarity, these enzymes exhibit different substrate specificities. The insufficient knowledge regarding the amino acids underlying substrate specificity hinders the understanding of the SDRs' roles in diverse and significant biological processes. Here, we performed bioinformatic analysis, molecular modeling, and mutagenesis studies to identify the key residues that regulate the substrate specificities of two homologous microbial SDRs (i.e., DesE and KduD). Further, we investigated the impact of altering the physicochemical properties of these amino acids on enzyme activity. Interestingly, molecular dynamics simulations also suggest a critical role of enzyme conformational flexibility in substrate recognition and catalysis. Overall, our findings improve the understanding of microbial SDR substrate specificity and shed light on future rational design of more efficient and effective biocatalysts.
Collapse
Affiliation(s)
- Liangyu Qian
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA; Department of Biomedical Engineering, Texas A&M University, College Station, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA; Department of Chemistry, Texas A&M University, College Station, USA; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, USA
| | - Xuejun Zhu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, USA.
| |
Collapse
|
16
|
Mori T, Abe I. Functional analysis of a fungal P450 enzyme. Methods Enzymol 2023; 693:171-190. [PMID: 37977730 DOI: 10.1016/bs.mie.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal cytochrome P450s participate in various physiological reactions, including the synthesis of internal cellular components, metabolic detoxification of xenobiotic compounds, and oxidative modification of natural products. Although functional analysis reports of fungal P450s continue to grow, there are still some difficulties as compared to prokaryotic P450s, because most of these fungal enzymes are transmembrane proteins. In this chapter, we will describe the methods for heterologous expression, in vivo analysis, enzyme preparation, and in vitro enzyme assays of the fungal P450 enzyme Trt6 and isomerase Trt14, which play important roles in the divergence of the biosynthetic pathway of terretonins, as a model for the functional analysis of fungal P450 enzymes.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Boutadghart T, Ghailane R. A molecular electron density theory study of asymmetric Diels-Alder [4 + 2] reaction's mechanism of furan with three substituted alkynes (5-R substituted-3-(3-(phenylsulfonyl)-propioloyl)-oxazolidin-2-one). J Mol Model 2023; 29:290. [PMID: 37612461 DOI: 10.1007/s00894-023-05665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
CONTEXT The [4 +2 ] cycloaddition reactions between furan and three substituted alkynes (5-R-substituted-3-(3-(phenylsulfonyl)-propioloyl)-oxazolidin-2-one) have been investigated using the MEDT approach. Reactivity indices, reaction pathways, and activation energies are calculated. In an investigation of conceptual DFT indices, furan acts as a nucleophile, while the three substituted alkynes (5-R-substituted-3-(3-(phenylsulfonyl)-propioloyl)-oxazolidin-2-one) function as electrophiles in this reaction. The cycloaddition is regioiselective, as demonstrated by the activation and reaction energies, in clear agreement with the experiment's results. Hetero Diels-Alder [4 + 2] cycloadditions occur following a non-concerted two stages one-step molecular mechanism. METHODS For the purpose of this study, all calculations were performed using the Gaussian 09 software. Optimization was achieved through Berny's computational gradient optimization method, employing the B3LYP functional and the 6-31G(d) basis set. Analysis of both local and global reactivity indices provided insights into the reactivity tendencies of the reactants, distinguishing between electrophilic and nucleophilic characteristics via Parr functions. Frequency calculations were employed to identify and characterize stationary points, with transition states indicated by a single imaginary frequency and positive values of all frequencies for reactants and product. The electron localization function (ELF) was investigated using the Multiwfn software within the context of topological analyses.
Collapse
Affiliation(s)
- Tarik Boutadghart
- Laboratory of Organic Chemistry, Catalysis and Environment, Unit of Theoretical Chemistry and Modeling, Faculty of Sciences, University of Ibn Tofail, Po Box 133, 14000, Kenitra, Morocco
| | - Rachida Ghailane
- Laboratory of Organic Chemistry, Catalysis and Environment, Unit of Theoretical Chemistry and Modeling, Faculty of Sciences, University of Ibn Tofail, Po Box 133, 14000, Kenitra, Morocco.
| |
Collapse
|
18
|
Ushimaru R, Abe I. Back-to-back cycloadditions in nature. Nat Chem 2023:10.1038/s41557-023-01282-2. [PMID: 37488376 DOI: 10.1038/s41557-023-01282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
19
|
Niwa K, Ohashi M, Xie K, Chiang CY, Jamieson CS, Sato M, Watanabe K, Liu F, Houk K, Tang Y. Biosynthesis of Polycyclic Natural Products from Conjugated Polyenes via Tandem Isomerization and Pericyclic Reactions. J Am Chem Soc 2023; 145:13520-13525. [PMID: 37310230 PMCID: PMC10871872 DOI: 10.1021/jacs.3c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report biosynthetic pathways that can synthesize and transform conjugated octaenes and nonaenes to complex natural products. The biosynthesis of (-)-PF1018 involves an enzyme PfB that can control the regio-, stereo-, and periselectivity of multiple reactions starting from a conjugated octaene. Using PfB as a lead, we discovered a homologous enzyme, BruB, that facilitates diene isomerization, tandem 8π-6π-electrocyclization, and a 1,2-divinylcyclobutane Cope rearrangement to generate a new-to-nature compound.
Collapse
Affiliation(s)
- Kanji Niwa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Kaili Xie
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chen-Yu Chiang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Cooper S. Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - K.N. Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Liu J, Lu J, Zhang C, Zhou Q, Jamieson CS, Shang C, Houk KN, Zhou J, Hu Y. Tandem intermolecular [4 + 2] cycloadditions are catalysed by glycosylated enzymes for natural product biosynthesis. Nat Chem 2023:10.1038/s41557-023-01260-8. [PMID: 37365335 DOI: 10.1038/s41557-023-01260-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Tandem Diels-Alder reactions are frequently used in the construction of polycyclic ring systems in complex organic compounds. Unlike the many Diels-Alderases (DAases) that catalyse a single cycloaddition, enzymes for multiple Diels-Alder reactions are rare. Here we demonstrate that two calcium-ion-dependent glycosylated enzymes, EupfF and PycR1, independently catalyse sequential, intermolecular Diels-Alder reactions in the biosynthesis of bistropolone-sesquiterpenes. We elucidate the origins of catalysis and stereoselectivity within these DAases through analysis of enzyme co-crystal structures, together with computational and mutational studies. These enzymes are secreted as glycoproteins with diverse N-glycans. The N-glycan at N211 in PycR1 significantly increases the affinity to the calcium ion, which in turn regulates the active cavity, making it specifically interact with substrates to accelerate the tandem [4 + 2] cycloaddition. The synergistic effect of the calcium ion and N-glycan on the catalytic centre of enzymes involved in secondary metabolism, especially for complex tandem reactions, can extend our understanding of protein evolution and improve the artificial design of biocatalysts.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jiayan Lu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Chen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Changhui Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
- CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Li Y, Li XB, Zhou JC, Xu ZJ, Zhu MZ, Zong Y, Zhang JZ, Han JJ, Tang YJ, Lou HX. Pallamins A-C, ent-labdane and pallavicinin based dimers from the Chinese liverwort Pallavicinia ambigua (mitt.) stephani. PHYTOCHEMISTRY 2023; 212:113702. [PMID: 37149119 DOI: 10.1016/j.phytochem.2023.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Three unprecedented ent-labdane and pallavicinin based dimers pallamins A-C formed via [4 + 2] Diels-Alder cycloaddition, together with eight biosynthetically related monomers were isolated from Pallavicinia ambigua. Their structures were determined by the extensive analysis of HRESIMS and NMR spectra. The absolute configurations of the labdane dimers were determined by single crystal X-ray diffraction of the homologous labdane units, 13C NMR, and ECD calculations. Moreover, a preliminary evaluation of the anti-inflammatory activities of the isolated compounds was performed using the zebrafish model. Three of the monomers demonstrated significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Yi Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021, PR China
| | - Xiao-Bin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), No 28789 Jingshi Dong Road, Jinan, 250103, PR China
| | - Jin-Chuan Zhou
- School of Pharmacy, Linyi University, Linyi, 276000, PR China
| | - Ze-Jun Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Ming-Zhu Zhu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yan Zong
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Jiao-Zhen Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Jing-Jing Han
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
22
|
Liu Z, Rivera S, Newmister SA, Sanders JN, Nie Q, Liu S, Zhao F, Ferrara JD, Shih HW, Patil S, Xu W, Miller MD, Phillips GN, Houk KN, Sherman DH, Gao X. An NmrA-like enzyme-catalysed redox-mediated Diels-Alder cycloaddition with anti-selectivity. Nat Chem 2023; 15:526-534. [PMID: 36635598 PMCID: PMC10073347 DOI: 10.1038/s41557-022-01117-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/22/2022] [Indexed: 01/14/2023]
Abstract
The Diels-Alder cycloaddition is one of the most powerful approaches in organic synthesis and is often used in the synthesis of important pharmaceuticals. Yet, strictly controlling the stereoselectivity of the Diels-Alder reactions is challenging, and great efforts are needed to construct complex molecules with desired chirality via organocatalysis or transition-metal strategies. Nature has evolved different types of enzymes to exquisitely control cyclization stereochemistry; however, most of the reported Diels-Alderases have been shown to only facilitate the energetically favourable diastereoselective cycloadditions. Here we report the discovery and characterization of CtdP, a member of a new class of bifunctional oxidoreductase/Diels-Alderase, which was previously annotated as an NmrA-like transcriptional regulator. We demonstrate that CtdP catalyses the inherently disfavoured cycloaddition to form the bicyclo[2.2.2]diazaoctane scaffold with a strict α-anti-selectivity. Guided by computational studies, we reveal a NADP+/NADPH-dependent redox mechanism for the CtdP-catalysed inverse electron demand Diels-Alder cycloaddition, which serves as the first example of a bifunctional Diels-Alderase that utilizes this mechanism.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Sebastian Rivera
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | | | - Hao-Wei Shih
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Siddhant Patil
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Weijun Xu
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
23
|
Chen BL, Jing S, Zhu XQ. Thermodynamics Evaluation of Selective Hydride Reduction for α,β-Unsaturated Carbonyl Compounds. Molecules 2023; 28:molecules28062862. [PMID: 36985834 PMCID: PMC10051270 DOI: 10.3390/molecules28062862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The selective reduction of α,β-unsaturated carbonyl compounds is one of the core reactions and also a difficult task for organic synthesis. We have been attempting to study the thermodynamic data of these compounds to create a theoretical basis for organic synthesis and computational chemistry. By electrochemical measurement method and titration calorimetry, in acetonitrile at 298 K, the hydride affinity of two types of unsaturated bonds in α,β-unsaturated carbonyl compounds, their single-electron reduction potential, and the single-electron reduction potential of the corresponding radical intermediate are determined. Their hydrogen atom affinity, along with the hydrogen atom affinity and proton affinity of the corresponding radical anion, is also derived separately based on thermodynamic cycles. The above data are used to establish the corresponding "Molecule ID Card" (Molecule identity card) and analyze the reduction mechanism of unsaturated carbonyl compounds. Primarily, the mixture of any carbonyl hydride ions and Ac-tempo+ will stimulate hydride transfer process and create corresponding α,β-unsaturated carbonyl compounds and Ac-tempoH from a thermodynamic point of view.
Collapse
Affiliation(s)
- Bao-Long Chen
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sha Jing
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Tong J, Zhang Y, Xu Y, Han Y, Li C, Zhuang W, Che Y. Spirocitrinols A and B, citrinin derivatives with a spiro[chromane-2,3'-isochromane] skeleton from Penicillium citrinum. RSC Adv 2023; 13:6124-6129. [PMID: 36814878 PMCID: PMC9940459 DOI: 10.1039/d3ra00665d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Spirocitrinols A (1) and B (2), two new citrinin-derived metabolites possessing a spiro[chromane-2,3'-isochromane] skeleton, were isolated from cultures of Penicillium citrinum. Their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2 were assigned by electronic circular dichroism calculations. Compound 2 is the first naturally occurring trimeric citrinin derivative with a spiro[chromane-2,3'-isochromane] core. Compound 1 showed modest cytotoxicity against A549 human tumor cells.
Collapse
Affiliation(s)
- Junjie Tong
- Tianjin University of Traditional Chinese Medicine Tianjin 300193 People's Republic of China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Toxicology & Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology Beijing 100850 People's Republic of China
| | - Yang Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Yangyang Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Chuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| | - Wenying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 People's Republic of China
| | - Yongsheng Che
- Tianjin University of Traditional Chinese Medicine Tianjin 300193 People's Republic of China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing 100050 People's Republic of China
| |
Collapse
|
25
|
Wang H, Zou Y, Li M, Tang Z, Wang J, Tian Z, Strassner N, Yang Q, Zheng Q, Guo Y, Liu W, Pan L, Houk KN. A cyclase that catalyses competing 2 + 2 and 4 + 2 cycloadditions. Nat Chem 2023; 15:177-184. [PMID: 36690833 DOI: 10.1038/s41557-022-01104-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 01/24/2023]
Abstract
Cycloaddition reactions are among the most widely used reactions in chemical synthesis. Nature achieves these cyclization reactions with a variety of enzymes, including Diels-Alderases that catalyse concerted 4 + 2 cycloadditions, but biosynthetic enzymes with 2 + 2 cyclase activity have yet to be discovered. Here we report that PloI4, a β-barrel-fold protein homologous to the exo-selective 4 + 2 cyclase that functions in the biosynthesis of pyrroindomycins, catalyses competitive 2 + 2 and 4 + 2 cycloaddition reactions. PloI4 is believed to catalyse an endo-4 + 2 cycloaddition in the biosynthesis of pyrrolosporin A; however, when the substrate precursor of pyrroindomycins was treated with PloI4, an exo-2 + 2 adduct was produced in addition to the exo- and endo-4 + 2 adducts. Biochemical characterizations, computational analyses, (co)crystal structures and mutagenesis outcomes have allowed the catalytic versatility of PloI4 to be rationalized. Mechanistic studies involved the directed engineering of PloI4 to variants that produced the exo-4 + 2, endo-4 + 2 or exo-2 + 2 product preferentially. This work illustrates an enzymatic thermal 2 + 2 cycloaddition and provides evidence of a process through which an enzyme evolves along with its substrate for specialization and activity improvement.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Miao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiabao Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry, Shanghai Normal University, Shanghai, China
| | - Zhenhua Tian
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.,Abiochem Biotechnology Co., Ltd, Shanghai, China
| | - Nina Strassner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujiao Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,Department of Chemistry, Shanghai Normal University, Shanghai, China.
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Abstract
Covering: 2015 to 2022Fungal terpenoids are of large structural diversity and often exhibit interesting biological activities. Recent work has focused on two main aspects: (1) the discovery and understanding of unknown biosynthetic genes and pathways, and (2) the usage of already known biosynthetic genes in the construction of high yielding production strains. Both aspects will be covered in this review article that aims to summarise the most important work of the past few years.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
28
|
Wang YF, Fu Y, Ji YN, Shi NN, Lu XH, Gu YC, Shi QW, Huo CH. Sesquiterpene lactone dimers from the fruit of Carpesium abrotanoides L. PHYTOCHEMISTRY 2022; 203:113389. [PMID: 36007660 DOI: 10.1016/j.phytochem.2022.113389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Seven undescribed sesquiterpene lactone dimers (SLDs) (carpeabrodilactones A-G), one known SLD, and six known sesquiterpenes were isolated from the fruit of Carpesium abrotanoides L. Carpeabrodilactone A was a dimeric carabrane featuring a rare C-13-C-13' linkage. Carpeabrodilactones B and C are the first two SLDs to be described possessing a carabranolide unit and a guaianolide unit connected by an O-ether linkage. The structures of the SLDs were assigned based on HRESIMS, NMR analysis, 13C NMR calculation, ECD calculation, and modified Mosher's method. Four SLDs showed potent cytotoxicity against K562 and/or A549 cells, with IC50 values below 10 μM, but none inhibited protein tyrosine phosphatases at 40 μM, including PTP1B, SHP1, CD45, and TCPTP.
Collapse
Affiliation(s)
- Yu-Fang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Fu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China; Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan-Nan Ji
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ning-Ning Shi
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, Shijiazhuang, 050015, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Qing-Wen Shi
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Chang-Hong Huo
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
29
|
Cao PR, Li M, Zhang JS, Zheng YL, Chen J, Zhao YQ, Qi XD, Zhu PH, Gu YC, Kong LY, Yang MH. Epicoccanes A-D, Four Oxidative Dimers of Pyrogallol Analogues from Epicoccum nigrum. Org Lett 2022; 24:6789-6793. [PMID: 36094854 DOI: 10.1021/acs.orglett.2c02666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epicoccanes A-D (1-4) are four novel metabolites of an endophytic fungus Epicoccum nigrum. Their distinct unprecedented structures are hypothesized as oxidative dimers of pyrogallol analogues. Compounds 1 and 2 possess a novel spirobicyclo[3.2.1]octane-6,1'-cyclopentane or -cyclohexane core skeleton. Compound 3 is of a unique cage-like pentacyclic system, which unusually contained three continuous spiro-carbons. Compound 4 is a highly rearranged dimer with five contiguous chiral centers. The absolute structures of 1 and 2 were deduced by electronic circular dichroism (ECD) calculations, and those of 3 and 4 were determined by X-ray crystallography. Compounds 1 and 4 showed potential antiliver fibrosis activity.
Collapse
Affiliation(s)
- Peng-Ran Cao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Min Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jing-Shu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yi-Lei Zheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jie Chen
- The Third People's Hospital of Kunming, 357 Wujing Road, Guandu District, Kunming 650000, People's Republic of China
| | - Yong-Qin Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Dong Qi
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Pan-Hu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
30
|
Yin S, Liu Z, Shen J, Xia Y, Wang W, Gui P, Jia Q, Kachanuban K, Zhu W, Fu P. Chimeric natural products derived from medermycin and the nature-inspired construction of their polycyclic skeletons. Nat Commun 2022; 13:5169. [PMID: 36056035 PMCID: PMC9440243 DOI: 10.1038/s41467-022-32901-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Medermycin, produced by Streptomyces species, represents a family of antibiotics with significant activity against Gram-positive pathogens. The biosynthesis of this family of natural products has been studied, and new skeletons related to medermycin have rarely been reported until recently. Herein, we report eight chimeric medermycin-type natural products with unusual polycyclic skeletons. The formation of these compounds features some key nonenzymatic steps, which inspired us to construct complex polycyclic skeletons via three efficient one-step reactions under mild conditions. This strategy was further developed to efficiently synthesize analogues for biological activity studies. The synthetic compounds, chimedermycins L and M, and sekgranaticin B, show potent antibacterial activity against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and methicillin-resistant Staphylococcus epidermidis. This work paves the way for understanding the nonenzymatic formation of complex natural products and using it to synthesize natural product derivatives.
Collapse
Affiliation(s)
- Shupeng Yin
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jingjing Shen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Yuwei Xia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Weihong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Pengyan Gui
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qian Jia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Konthorn Kachanuban
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
31
|
Stereochemical and Biosynthetic Rationalisation of the Tropolone Sesquiterpenoids. J Fungi (Basel) 2022; 8:jof8090929. [PMID: 36135654 PMCID: PMC9503010 DOI: 10.3390/jof8090929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
This review summarises the known structures, biological activities, and biosynthetic pathways of the tropolone sesquiterpenoid family of fungal secondary metabolites. Synthesis of this knowledge allows likely structural and stereochemical misassignments to be revised and shows how the compounds can be divided into three main biosynthetic classes based on the stereochemistry of key biosynthetic steps.
Collapse
|
32
|
Chang Y, Sun C, Wang C, Huo X, Zhao W, Ma X. Biogenetic and biomimetic synthesis of natural bisditerpenoids: hypothesis and practices. Nat Prod Rep 2022; 39:2030-2056. [PMID: 35983892 DOI: 10.1039/d2np00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to March 2022Bisditerpenoids, or diterpenoid dimers, are a group of natural products with high structural variance, deriving from homo- or hetero-dimeric coupling of two diterpenoid units. They usually possess complex architectures resulting from the diversity of monomeric diterpenoids as building blocks and the dimerization processes. These compounds have attracted the attention of synthetic and biological scientists owing to the rarity of their natural origin and their significant biological activities. Herein, we provide a review highlighting some of the interesting bisditerpenoids reported since 1961 and showcase the chemical diversity in both their structures and biosynthesis, as well as their biological functions. This review focuses on the biosynthetic dimerization pathways of interesting molecules and their biomimetic synthesis, which may act as useful inspiration for the discovery and synthesis of more bisditerpenoids and further pharmacological investigations.
Collapse
Affiliation(s)
- Yibo Chang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China. .,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| | - Chengpeng Sun
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Chao Wang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| | - Wenyu Zhao
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Xiaochi Ma
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China. .,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
33
|
Chen Z, Sato S, Geng Y, Zhang J, Liu HW. Identification of the Early Steps in Herbicidin Biosynthesis Reveals an Atypical Mechanism of C-Glycosylation. J Am Chem Soc 2022; 144:15653-15661. [PMID: 35981300 DOI: 10.1021/jacs.2c05728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herbicidins are adenosine-derived nucleoside antibiotics with an unusual tricyclic core structure. Deletion of the genes responsible for formation of the tricyclic skeleton in Streptomyces sp. L-9-10 reveals the in vivo importance of Her4, Her5, and Her6 in the early stages of herbicidin biosynthesis. In vitro characterization of Her4 and Her5 demonstrates their involvement in an initial, two-stage C-C coupling reaction that results in net C5'-glycosylation of ADP/ATP by UDP/TDP-glucuronic acid. Biochemical analyses and intermediate trapping experiments imply a noncanonical mechanism of C-glycosylation reminiscent of NAD-dependent S-adenosylhomocysteine (SAH)-hydrolase catalysis. Structural characterization of the isolated metabolites suggests possible reactions catalyzed by Her6 and Her7. An overall herbicidin biosynthetic pathway is proposed based on these observations.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shusuke Sato
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX, Ge HM. Biosynthesis of Sordarin Revealing a Diels–Alderase for the Formation of the Norbornene Skeleton. Angew Chem Int Ed Engl 2022; 61:e202205577. [DOI: 10.1002/anie.202205577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Jia Li Sun
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Zhang Yuan Yan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Xing Guo
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Zhi Kai Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops Ministry of Agriculture Institute of Tropical Bioscience and Bio-technology Chinese Academy of Tropical Agricultural Sciences Haikou 571101 China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules Chemistry and Biomedicine Innovation Center (ChemBIC) School of Life Sciences Nanjing University Nanjing 210023 China
| |
Collapse
|
35
|
Ge HM, Liu SH, Sun JL, Hu YL, Zhang L, Zhang X, Yan ZY, Guo X, Guo ZK, Jiao RH, Zhang B, Tan RX. Biosynthesis of Sordarin Revealing a Diels‐Alderase for the Formation of the Norbornene Skeleton. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Ming Ge
- Nanjing University School of Lifescience 22 Hankou Road 210093 Nanjing CHINA
| | | | - Jia Li Sun
- Nanjing University School of Life Science CHINA
| | - Yi Ling Hu
- Nanjing University School of Life Science CHINA
| | - Li Zhang
- Nanjing University School of Life Science CHINA
| | - Xuan Zhang
- Nanjing University School of Life Science CHINA
| | | | - Xing Guo
- Nanjing University School of Life Science CHINA
| | - Zhi Kai Guo
- Chinese Academy of Tropical Agricultural Sciences Key Laboratory of Biology and Genetic Resources of Tropical Crops CHINA
| | | | - Bo Zhang
- Nanjing University School of Life Science xianlin No163, Jiangsu, ChinaJiangsu, China 210023 nanjing CHINA
| | | |
Collapse
|
36
|
Sun Z, Jamieson CS, Ohashi M, Houk KN, Tang Y. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat Commun 2022; 13:2568. [PMID: 35546152 PMCID: PMC9095873 DOI: 10.1038/s41467-022-30288-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pericyclases, enzymes that catalyze pericyclic reactions, form an expanding family of enzymes that have biocatalytic utility. Despite the increasing number of pericyclases discovered, the Diels-Alder cyclization between a cyclopentadiene and an olefinic dienophile to form norbornene, which is among the best-studied cycloadditions in synthetic chemistry, has surprisingly no enzymatic counterpart to date. Here we report the discovery of a pathway featuring a norbornene synthase SdnG for the biosynthesis of sordaricin-the terpene precursor of antifungal natural product sordarin. Full reconstitution of sordaricin biosynthesis reveals a concise oxidative strategy used by Nature to transform an entirely hydrocarbon precursor into the highly functionalized substrate of SdnG for intramolecular Diels-Alder cycloaddition. SdnG generates the norbornene core of sordaricin and accelerates this reaction to suppress host-mediated redox modifications of the activated dienophile. Findings from this work expand the scopes of pericyclase-catalyzed reactions and P450-mediated terpene maturation.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - K N Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
37
|
Mechanistic investigations of hirsutene biosynthesis catalyzed by a chimeric sesquiterpene synthase from Steccherinum ochraceum. Fungal Genet Biol 2022; 161:103700. [DOI: 10.1016/j.fgb.2022.103700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
|
38
|
Zetzsche LE, Chakrabarty S, Narayan ARH. The Transformative Power of Biocatalysis in Convergent Synthesis. J Am Chem Soc 2022; 144:5214-5225. [PMID: 35290055 PMCID: PMC10082969 DOI: 10.1021/jacs.2c00224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
39
|
Purdy TN, Moore BS, Lukowski AL. Harnessing ortho-Quinone Methides in Natural Product Biosynthesis and Biocatalysis. JOURNAL OF NATURAL PRODUCTS 2022; 85:688-701. [PMID: 35108487 PMCID: PMC9006567 DOI: 10.1021/acs.jnatprod.1c01026] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The implementation of ortho-quinone methide (o-QM) intermediates in complex molecule assembly represents a remarkably efficient strategy designed by Nature and utilized by synthetic chemists. o-QMs have been taken advantage of in biomimetic syntheses for decades, yet relatively few examples of o-QM-generating enzymes in natural product biosynthetic pathways have been reported. The biosynthetic enzymes that have been discovered thus far exhibit tremendous potential for biocatalytic applications, enabling the selective production of desirable compounds that are otherwise intractable or inherently difficult to achieve by traditional synthetic methods. Characterization of this biosynthetic machinery has the potential to shine a light on new enzymes capable of similar chemistry on diverse substrates, thus expanding our knowledge of Nature's catalytic repertoire. The presently known o-QM-generating enzymes include flavin-dependent oxidases, hetero-Diels-Alderases, S-adenosyl-l-methionine-dependent pericyclases, and α-ketoglutarate-dependent nonheme iron enzymes. In this review, we discuss their diverse enzymatic mechanisms and potential as biocatalysts in constructing natural product molecules such as cannabinoids.
Collapse
Affiliation(s)
- Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, United States
| | - April L Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Yan D, Wang K, Bai S, Liu B, Bai J, Qi X, Hu Y. Flavin-Dependent Monooxygenase-Mediated 1,2-Oxazine Construction via Meisenheimer Rearrangement in the Biosynthesis of Paeciloxazine. J Am Chem Soc 2022; 144:4269-4276. [PMID: 35192348 DOI: 10.1021/jacs.2c00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The [1,2]-Meisenheimer rearrangement is well known as the [1,2]-migration of an O-substituted hydroxylamine from a tertiary amine N-oxide, and it is frequently employed in organic synthesis to enforce adjacent carbon oxidation or install a 1,2-oxazine core, which is a prevalent structural feature and pharmacophore of many bioactive natural products. Although the [1,2]-Meisenheimer rearrangement was proposed to occur in the biosynthesis of a number of 1,2-oxazine-containing natural products, it has never been proved biosynthetically. Here, we identified the biosynthetic gene cluster of an insecticidal natural product, paeciloxazine (1), from Penicillium janthinellum and characterized a flavin-dependent monooxygenase, PaxA, as the first example that mediates the formation of a 1,2-oxazine moiety via Meisenheimer rearrangement. In vitro biochemical assays, site-directed mutations, docking and molecular dynamics simulations, and density functional theory calculations support the mechanism that PaxA first catalyzes N-oxidation to form an N-oxide intermediate, which undergoes [1,2]-Meisenheimer rearrangement with the assistance of an amino acid with proton transfer property. This study expands the repertoire of rearrangement reactions during the biosynthesis of natural products and provides a new strategy for discovering natural products with N-O tethers by genome mining.
Collapse
Affiliation(s)
- Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kunya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,NHC Key Laboratory of Biosynthesis of Natural Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Li B, Guan X, Yang S, Zou Y, Liu W, Houk KN. Mechanism of the Stereoselective Catalysis of Diels-Alderase PyrE3 Involved in Pyrroindomycin Biosynthesis. J Am Chem Soc 2022; 144:5099-5107. [PMID: 35258962 DOI: 10.1021/jacs.2c00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The biosynthesis of pyrroindomycins A and B features a complexity-building [4 + 2] cycloaddition cascade, which generates the spirotetramate core under the catalytic effects of monofunctional Diels-Alderases PyrE3 and PyrI4. We recently showed that the main functions of PyrI4 include acid catalysis and induced-fit/conformational selection. We now present quantum mechanical and molecular dynamics studies implicating a different mode of action by PyrE3, which prearranges an anionic polyene substrate into a high-energy reactive conformation at which an inverse-electron-demand Diels-Alder reaction can occur with a low barrier. Stereoselection is realized by strong binding interactions at the endo stereochemical relationship and a local steric constraint on the endo-1,3-diene unit. These findings, illustrating distinct mechanisms for PyrE3 and PyrI4, highlight how nature has evolved multiple ways to catalyze Diels-Alder reactions.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Xingyi Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Song Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
42
|
Wei X, Wang WG, Matsuda Y. Branching and converging pathways in fungal natural product biosynthesis. Fungal Biol Biotechnol 2022; 9:6. [PMID: 35255990 PMCID: PMC8902786 DOI: 10.1186/s40694-022-00135-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractIn nature, organic molecules with great structural diversity and complexity are synthesized by utilizing a relatively small number of starting materials. A synthetic strategy adopted by nature is pathway branching, in which a common biosynthetic intermediate is transformed into different end products. A natural product can also be synthesized by the fusion of two or more precursors generated from separate metabolic pathways. This review article summarizes several representative branching and converging pathways in fungal natural product biosynthesis to illuminate how fungi are capable of synthesizing a diverse array of natural products.
Collapse
|
43
|
Chen Q, Yuan G, Yuan T, Zeng H, Zou ZR, Tu ZC, Gao J, Zou Y. Set of Cytochrome P450s Cooperatively Catalyzes the Synthesis of a Highly Oxidized and Rearranged Diterpene-Class Sordarinane Architecture. J Am Chem Soc 2022; 144:3580-3589. [PMID: 35170947 DOI: 10.1021/jacs.1c12427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450s are one of the most versatile oxidases that catalyze significant and unique chemical transformations for the construction of complex structural frameworks during natural product biosynthesis. Here, we discovered a set of P450s, including SdnB, SdnH, SdnF, and SdnE, that cooperatively catalyzes the reshaping of the inert cycloaraneosene framework to form a highly oxidized and rearranged sordarinane architecture. Among them, SdnB is confirmed to be the first P450 (or oxidase) that cleaves the C-C bond of the epoxy residue to yield formyl groups in pairs. SdnF selectively oxidizes one generated formyl group to a carboxyl group and accelerates the final Diels-Alder cyclization to furnish the sordarinane architecture. Our work greatly enriches the enzyme functions of the P450 superfamily, supplies the missing skills of the P450 synthetic toolbox, and supports them as biocatalysts in further applications toward the synthesis of new chemical entities.
Collapse
Affiliation(s)
- Qibin Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Guanyin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Tao Yuan
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Huiting Zeng
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zheng-Rong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zong-Cai Tu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
44
|
Peng Y, Chang Y, Sun C, Wang W, Wang C, Tian Y, Zhang B, Deng S, Zhao W, Ma X. Octacyclic and decacyclic ent-abietane dimers with cytotoxic activity from Euphorbia fischeriana steud. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Sara AA, Um-e-Farwa UEF, Saeed A, Kalesse M. Recent Applications of the Diels–Alder Reaction in the Synthesis of Natural Products (2017–2020). SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1532-4763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Diels–Alder reaction has long been established as an extremely useful procedure in the toolbox of natural product chemists. It tolerates a wide spectrum of building blocks of different complexity and degrees of derivatization, and enables the formation of six-membered rings with well-defined stereochemistry. In recent years, many total syntheses of natural products have been reported that rely, at some point, on the use of a [4+2]-cycloaddition step. Among classic approaches, several modifications of the Diels–Alder reaction, such as hetero-Diels–Alder reactions, dehydro-Diels–Alder reactions and domino-Diels–Alder reactions, have been employed to extend the scope of this process in the synthesis of natural products. Our short review covers applications of the Diels–Alder reaction in natural product syntheses between 2017 and 2020, as well as selected methodologies which are inspired by, or that can be used to access natural products.1 Introduction2 Syntheses from 20173 Syntheses from 20184 Syntheses from 20195 Syntheses from 20206 Conclusion
Collapse
Affiliation(s)
| | | | - Aamer Saeed
- Quaid-I-Azam University, Department of Chemistry
| | - Markus Kalesse
- Leibniz Universität Hannover, Institut für Organische Chemie
- Helmholtz Zentrum für Infektionsforschung (HZI)
| |
Collapse
|
46
|
Mohamed Abdelmoniem A, Abdelshafy Abdelhamid I, Butenschön H. Bidirectional Synthesis, Photophysical and Electrochemical Characterization of Polycyclic Quinones Using Benzocyclobutenes and Benzodicyclobutenes as Precursors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amr Mohamed Abdelmoniem
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
- Department of Chemistry Faculty of Science Cairo University 12613 Giza A. R. Egypt
| | | | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
47
|
Abstract
4-Hydroxy-2-pyridone alkaloids have attracted attention for synthetic and biosynthetic studies due to their broad biological activities and structural diversity. Here, we elucidated the pathway and chemical logic of (-)-sambutoxin (1) biosynthesis. In particular, we uncovered the enzymatic origin of the tetrahydropyran moiety and showed that the p-hydroxyphenyl group is installed via a late-stage, P450-catalyzed oxidation of the phenylalanine-derived side chain rather than via a direct incorporation of tyrosine.
Collapse
Affiliation(s)
- Eun Bin Go
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Lee Joon Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
48
|
Xu H, Schotte C, Cox RJ, Dickschat JS. Stereochemical characterisation of the non-canonical α-humulene synthase from Acremonium strictum. Org Biomol Chem 2021; 19:8482-8486. [PMID: 34533184 DOI: 10.1039/d1ob01769a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The non-canonical fungal α-humulene synthase was investigated through isotopic labelling experiments for its stereochemical course regarding inversion or retention at C-1, the face selectivity at C-11, and the stereoselectivity of the final deprotonation. A new and convenient desymmetrisation strategy was developed to enable a full stereochemical analysis of the catalysed steps to the achiral α-humulene product from stereoselectively labelled farnesyl diphosphate.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany.
| | - Carsten Schotte
- Institute of Organic Chemistry, University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Russell J Cox
- Institute of Organic Chemistry, University of Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
49
|
New dimeric phloroglucinol derivatives from Agrimonia pilosa and their hepatoprotective activities. Bioorg Chem 2021; 116:105341. [PMID: 34525394 DOI: 10.1016/j.bioorg.2021.105341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 02/01/2023]
Abstract
Five new dimeric phloroglucinol derivatives, agrimones A - E (1-5), were isolated from the whole plant of Agrimonia pilosa. Their structures including absolute configurations were determined by a series of spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR), complemented with the comparison of the experimental and calculated ECD spectra, and gauge-independent atomic orbital (GIAO) NMR calculations. Notably, compounds 1 and 2 represent a highly oxidized 6/6/6 tricyclic ring skeleton based on the cis-fused paraquinone and chroman. Compounds 1a, 4, and 5 exhibited moderate hepatoprotective activities against APAP-induced HepG2 cell injury at 10 μM.
Collapse
|
50
|
Schotte C, Lukat P, Deuschmann A, Blankenfeldt W, Cox RJ. Understanding and Engineering the Stereoselectivity of Humulene Synthase. Angew Chem Int Ed Engl 2021; 60:20308-20312. [PMID: 34180566 PMCID: PMC8457177 DOI: 10.1002/anie.202106718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Indexed: 11/09/2022]
Abstract
The non-canonical terpene cyclase AsR6 is responsible for the formation of 2E,6E,9E-humulene during the biosynthesis of the tropolone sesquiterpenoid (TS) xenovulene A. The structures of unliganded AsR6 and of AsR6 in complex with an in crystallo cyclized reaction product and thiolodiphosphate reveal a new farnesyl diphosphate binding motif that comprises a unique binuclear Mg2+ -cluster and an essential K289 residue that is conserved in all humulene synthases involved in TS formation. Structure-based site-directed mutagenesis of AsR6 and its homologue EupR3 identify a single residue, L285/M261, that controls the production of either 2E,6E,9E- or 2Z,6E,9E-humulene. A possible mechanism for the observed stereoselectivity was investigated using different isoprenoid precursors and results demonstrate that M261 has gatekeeping control over product formation.
Collapse
Affiliation(s)
- Carsten Schotte
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Peer Lukat
- Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstr. 738124BraunschweigGermany
| | - Adrian Deuschmann
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Wulf Blankenfeldt
- Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstr. 738124BraunschweigGermany
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität BraunschweigSpielmannstr. 738106BraunschweigGermany
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|