1
|
Jiang D, Tan VGW, Gong Y, Shao H, Mu X, Luo Z, He S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025. [PMID: 40366230 DOI: 10.1021/acs.chemrev.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Semiconductors form the foundational bedrock of modern electronics and numerous cutting-edge technologies. Particularly, semiconductors crafted from organic building blocks hold immense promise as next-generation pioneers, thanks to their vast array of chemical structures, customizable frontier orbital energy levels and bandgap structures, and easily adjustable π electronic properties. Over the past 50 years, advancements in chemistry and materials science have facilitated extensive investigations into small organic π compounds, oligomers, and polymers, resulting in a rich library of organic semiconductors. However, a longstanding challenge persists: how to organize π building units or chains into well-defined π structures, which are crucial for the performance of organic semiconductors. Consequently, the pursuit of methodologies capable of synthesizing and/or fabricating organic semiconductors with ordered structures has emerged as a frontier in organic and polymeric semiconductor research. In this context, covalent organic frameworks (COFs) stand out as unique platforms allowing for the covalent integration of organic π units into periodically ordered π structures, thus facilitating the development of semiconductors with extended yet precisely defined π architectures. Since their initial report in 2008, significant strides have been made in exploring various chemistries to develop semiconducting COFs, resulting in a rich library of structures, properties, functions, and applications. This review provides a comprehensive yet focused exploration of the general structural features of semiconducting COFs, outlining the basic principles of structural design, illustrating the linkage chemistry and synthetic strategies based on typical one-pot polymerization reactions to demonstrate the growth of bulk materials, nanosheets, films, and membranes. By elucidating the interactions between COFs and various entities such as photons, phonons, electrons, holes, ions, molecules, and spins, this review categorizes semiconducting COFs into nine distinct sections: semiconductors, photoconductors, light emitters, sensors, photocatalysts, photothermal conversion materials, electrocatalysts, energy storage electrodes, and radical spin materials, focusing on disclosing structure-originated properties and functions. Furthermore, this review scrutinizes structure-function correlations and highlights the unique features, breakthroughs, and challenges associated with semiconducting COFs. Furnished with foundational knowledges and state-of-the-art insights, this review predicts the fundamental issues to be addressed and outlines future directions for semiconducting COFs, offering a comprehensive overview of this rapidly evolving and remarkable field.
Collapse
Affiliation(s)
- Donglin Jiang
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Guan Wu Tan
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haipei Shao
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyu Mu
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhangliang Luo
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shuyue He
- Department of Chemistry, Faulty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Wang H, Wang X, Jiang Y, Li M, Peng H, Ma G, Zhu L, Shakir I, Xu Y. Application of COF Materials in Carbon Dioxide Electrocatalytic Reduction. CHEM REC 2025; 25:e202400244. [PMID: 40125859 DOI: 10.1002/tcr.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/05/2025] [Indexed: 03/25/2025]
Abstract
COFs have become the most attractive frontier research area in heterogeneous catalysis. Since the geometry and electronic structure of COFs are largely determined by their microenvironment, which in turn determines the performance in electrocatalytic processes, the precise integration of atoms of COF building blocks to achieve pre-designed composition, components and functions is the core. This paper focuses on the structural design, synthesis, electrocatalytic mechanism and application of COFs in electrocatalytic CO2RR (types of COFs in electrocatalytic CO2RR, performance evaluation indicators of COFs in electrocatalytic CO2RR, and the relationship between the structure of COFs and electrocatalytic performance). In addition, we also explore the challenges faced by COFs in CO2RR and the corresponding solution strategies. Finally, by highlighting the prospects and challenges of COFs structural regulation, we hope to provide inspiration for the further development of COFs in electrocatalytic applications.
Collapse
Affiliation(s)
- Haiping Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, College of Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Xin Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, College of Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Yaping Jiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, College of Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Min Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, College of Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, College of Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, College of Engineering, Northwest Normal University, Lanzhou, 730070, Gansu Province, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, 432000, Hubei Province, China
| | - Imran Shakir
- Department of Physics, Faculty of Science, Sustainability Research Center, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Li Q, Zhu Y, Pan T, Zhang G, Pang H. Covalent organic framework nanomaterials: Syntheses, architectures, and applications. Adv Colloid Interface Sci 2025; 339:103427. [PMID: 39929054 DOI: 10.1016/j.cis.2025.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2024] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Covalent Organic Frameworks (COFs) are characterized by high thermochemical stability, low backbone density, well-controlled physical and chemical properties, large specific surface volume and porosity, permanently open pore structure, and various synthesis strategies. These remarkable attributes confer COFs with significant potential for a myriad of applications ranging from catalysis technology, gas separation and storage, optoelectronic materials, environmental and energy sciences, and biomedical development. There are many synthetic design methods for COF materials, and dynamic covalent chemistry is the scientific basis of COF materials-oriented design, which gives the error correction ability of the covalent assembly process, and is the key to obtaining crystallization and stability at the same time. However, "crystallinity" and "stability" in the synthesis and preparation of COF materials are often like "You can't have your cake and eat it, too": on the one hand, the reversible covalent bonds used in the synthesis of highly crystalline COF framework are easy to decompose under extreme conditions, which greatly limits its application scenarios; On the other hand, although highly stable COF materials can be prepared by using irreversible covalent bonds, it is usually poor crystalline and difficult to have high performance. In addition, the strict deoxygenation operation required for synthesizing COF materials also limits its macro preparation and large-scale application. Therefore, the synthesis strategy and efficient preparation of highly stable and crystalline COF materials are a major obstacle to the practical application of this field. This paper describes the four structures of COF materials, as well as their synthesis methods, electrical energy-storing electrocatalysis, and significant environmental protection applications. The future directions, prospects, and possible barriers to the development of these materials are envisioned in.
Collapse
Affiliation(s)
- Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Yuanyuan Zhu
- Guangling College, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| | - Tao Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Dai Y, Yao Y, Feng L, Qiu Z, Deng M, Peng Q. Linear Polymer Cathode Materials for Highly Efficient Aqueous Zinc-Ion Batteries: Is the High Active Sites Density Necessary? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503156. [PMID: 40285635 DOI: 10.1002/advs.202503156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Indexed: 04/29/2025]
Abstract
Recently, research on aqueous zinc-ion batteries (AZIBs) has always focused on improving the energy storage performance by increasing the number of active sites, particularly in designing organic/polymer materials with a high density of active sites. However, does a higher density of active sites necessarily induce enhanced energy storage performance? To verify this issue, we have designed two linear polymers, where TAPT-DHBQ contains an additional pair of active sites (carbonyl groups) compared to TABQ-DHBQ, with theoretical specific capacities of 545.26 and 379.14 mAh g-1, respectively. Interestingly, the experimental results have deviated with the specific capacities of these polymers being comparable, measuring to be 325 mAh g-1 (TABQ-DHBQ) and 280 mAh g-1 (TAPT-DHBQ). This is attributed to the competition effect between neighboring active sites, which leads to decreased utilization of active sites. As a result, the Zn//TABQ-DHBQ batteries with ZnI2 electrolyte additive have exhibited high specific capacities of 618 and 360 mAh g-1 at the current densities of 1 and 10 A g-1, along with a high energy density of 678.6 Wh kg-1 (1 A g-1). The finding underscores the importance of uniform electron cloud distribution in cathode materials for achieving efficient AZIBs.
Collapse
Affiliation(s)
- Yiyang Dai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yao Yao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Liang Feng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Zhenglong Qiu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Min Deng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Yan Z, Fang M, Wang L, Gao H, Ying Y, Yang J, Wang J, Liu Y, Tang Z. Linkage Engineering of Semiconductive Covalent-Organic Frameworks toward Room-Temperature Ppb-Level Selective Ammonia Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407436. [PMID: 39955759 DOI: 10.1002/smll.202407436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Rational design of molecular architectures is crucial for developing advanced materials such as covalent-organic frameworks (COFs) with excellent sensing performance. In this work, two isostructural COFs (β-keto-AnCOF and imine-AnCOF) with the same conjugated linkers but distinct linkages are constructed. Although both COFs have porous structure and semiconductor behavior conferred by the identical conjugated backbones, β-keto-AnCOF with ─C═O side groups exhibits superior room-temperature ammonia (NH3) sensing performance than imine-AnCOF and even the state-of-the-art dynamic and commercial NH3 sensors, i.e., high sensitivity up to 18.94% ppm-1, ultralow experimental detection limit of 1 ppb, outstanding selectivity, and remarkable response stability and reproducibility after 180 days. In situ spectroscopy and theoretical calculation reveal that the additional charge transfer between NH3 and ─C═O sites in β-keto-AnCOF effectively increases the distance between Fermi level and the valence band, enabling highly-sensitive NH3 detection at ppb levels. This work provides novel molecular architectures for next-generation high-performance sensors.
Collapse
Affiliation(s)
- Zhuang Yan
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Munan Fang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Longfei Wang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huiwen Gao
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Ying
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinlei Yang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiahua Wang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yaling Liu
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Li Z, Dong Z, Zhang Z, Wei B, Meng C, Zhai W, Wang Y, Cao X, Han B, Liu Y. Covalent Organic Frameworks for Boosting H 2O 2 Photosynthesis via the Synergy of Multiple Charge Transfer Channels and Polarized Field. Angew Chem Int Ed Engl 2025; 64:e202420218. [PMID: 39601236 DOI: 10.1002/anie.202420218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Covalent organic frameworks (COFs) serve as one of the most promising candidates for hydrogen peroxide (H2O2) photosynthesis, while attaining high-performance COFs remains a formidable challenge due to the insufficient separation of photogenerated charges. Here, through the rational design of bicarbazole-based COFs (Cz-COFs), we showcase the first achievement in piezo-photocatalytic synthesis of H2O2 using COFs. Noteworthily, the ethenyl group-modified Cz-COFs (COF-DH-Eth) demonstrates a record-high yield of H2O2 (9212 μmol g-1 h-1) from air and pure water through piezo-photocatalysis, which is ca. 2.5 times higher than that of pristine Cz-COFs without ethenyl groups (COF-DH-H) under identical condition and COF-DH-Eth without ultrasonic treatment. The H2O2 production rate originates from the synergistic effect between an ultrasonication-induced polarized electric field and the spatially separated multiple charge transfer channels, which significantly promote the utilization of photogenerated electrons by directional transfer from bicarbazole groups to the ethenyl group-modified benzene rings. Several Cz-COFs and bifluorenylidene-based COFs (COF-BFTB-H) with similar twisted monomers exhibit obvious piezoelectric performance for promoting H2O2 generation, signifying that organic ligands with a twistable structure play a crucial role in creating broken symmetry structures, thereby establishing piezoelectric properties in COFs.
Collapse
Affiliation(s)
- Zifan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Bingqing Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Cheng Meng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Wen Zhai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| | - Bin Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China
| |
Collapse
|
7
|
Ke SW, Li W, Gao L, Su J, Luo R, Yuan S, He P, Zuo JL. Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries. Angew Chem Int Ed Engl 2025; 64:e202417493. [PMID: 39292224 DOI: 10.1002/anie.202417493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
The rational design of porous covalent organic frameworks (COFs) with high conductivity and reversible redox activity is the key to improving their performance in sodium-ion batteries (SIBs). Herein, we report a series of COFs (FPDC-TPA-COF, FPDC-TPB-COF, and FPDC-TPT-COF) based on an organosulfur linker, (trioxocyclohexane-triylidene)tris(dithiole-diylylidene))hexabenzaldehyde (FPDC). These COFs feature two-dimensional crystalline structures, high porosity, good conductivity, and densely packed redox-active sites, making them suitable for energy storage devices. Among them, FPDC-TPT-COF demonstrates a remarkably high specific capacity of 420 mAh g-1 (0.2 A g-1), excellent cycling stability (~87 % capacity retention after 3000 cycles, 1.0 A g-1) and high rate performance (339 mAh g-1 at 2.0 A g-1) as an anode for SIBs, surpassing most reported COF-based electrodes. The superior performance is attributed to the dithiole moieties enhancing the conductivity and the presence of redox-active carbonyl, imine, and triazine sites facilitating Na storage. Furthermore, the sodiation mechanism was elucidated through in situ experiments and density functional theory (DFT) calculations. This work highlights the advantages of integrating multiple functional groups into redox-active COFs for the rational design of efficient and stable SIBs.
Collapse
Affiliation(s)
- Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Li
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Chen F, Zheng H, Yusran Y, Li H, Qiu S, Fang Q. Exploring high-connectivity three-dimensional covalent organic frameworks: topologies, structures, and emerging applications. Chem Soc Rev 2025; 54:484-514. [PMID: 39585733 DOI: 10.1039/d4cs00703d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) represent a highly versatile class of crystalline porous materials, formed by the deliberate assembly of organic building units into ordered two-dimensional (2D) and three-dimensional (3D) structures. Their unique combination of topological precision and tunable micro- or mesoporous architectures offers unmatched flexibility in material design. By selecting specific building units, reactive sites, and functional groups, COFs can be engineered to achieve customized skeletal, porous, and interfacial properties, opening the door to materials with optimized performance for diverse applications. Among recent advances, high-connectivity 3D COFs have emerged as a particularly exciting development, with their intricate network structures enabling unprecedented levels of structural complexity, stability, and functionality. This review provides a comprehensive overview of the synthesis strategies, topological design principles, structural characterization techniques, and emerging applications of high-connectivity 3D COFs. We explore their potential across a broad range of cutting-edge applications, including gas adsorption and separation, macromolecule adsorption, dye removal, photocatalysis, electrocatalysis, lithium-sulfur batteries, and charge transport. By examining these key areas, we aim to deepen the understanding of the intricate relationship between structure and function, guiding the rational design of next-generation COF materials. The continued advancements in this field hold immense promise for revolutionizing sectors such as energy storage, catalysis, and molecular separation, making high-connectivity 3D COFs a cornerstone for future technological innovations.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yusran Yusran
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
9
|
Yin Y, Zhang Y, Zhou X, Gui B, Wang W, Jiang W, Zhang YB, Sun J, Wang C. Ultrahigh-surface area covalent organic frameworks for methane adsorption. Science 2024; 386:693-696. [PMID: 39509500 DOI: 10.1126/science.adr0936] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Developing porous materials with ultrahigh surface areas for gas storage (for example, methane) is attractive but challenging. Here, we report two isostructural three-dimensional covalent organic frameworks (COFs) with a rare self-catenated alb-3,6-Ccc2 topology and a pore size of 1.1 nanometer. Notably, these imine-linked microporous COFs show both high gravimetric Brunauer-Emmett-Teller (BET) surface areas (~4400 square meters per gram) and volumetric BET surface areas (~1900 square meters per cubic centimeter). Moreover, their volumetric methane uptake reaches up to 264 cubic centimeter (standard temperature and pressure) per cubic centimeter [cm3 (STP) cm-3] at 100 bar and 298 kelvin, and they exhibit the highest volumetric working capacity of 237 cm3 (STP) cm-3 at 5 to 100 bar and 298 kelvin among all reported porous crystalline materials.
Collapse
Affiliation(s)
- Ying Yin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ya Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xu Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wenqi Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Yan X, Liu N, Liu W, Zeng J, Liu C, Chen S, Yang Y, Gui X, Yu D, Yang G, Zeng Z. Recent advances on COF-based single-atom and dual-atom sites for oxygen catalysis. Chem Commun (Camb) 2024; 60:12787-12802. [PMID: 39391942 DOI: 10.1039/d4cc03535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising platforms for the construction of single-atom and dual-atom catalysts (SACs and DACs), owing to their well-defined structures, tunable pore sizes, and abundant active sites. In recent years, the development of COF-based SACs and DACs as highly efficient catalysts has witnessed a remarkable surge. The synergistic interplay between the metal active sites and the COF has established the design and fabrication of COF-based SACs and DACs as a prominent research area in electrocatalysis. These catalytic materials exhibit promising prospects for applications in energy storage and conversion devices. This review summarizes recent advances in the design, synthesis, and applications of COF-based SACs and DACs for oxygen catalysis. The catalytic mechanisms of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are comprehensively explored, providing a comparative analysis to elucidate the correlation between the structure and performance, as well as their functional attributes in battery devices. This review highlights a promising approach for future research, emphasizing the necessity of rational design, breakthroughs, and in-situ characterization to further advance the development of high-performance COF-based SACs and DACs for sustainable energy applications.
Collapse
Affiliation(s)
- Xinru Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wencai Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jiajun Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shufen Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuhua Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Luo L, Li C, Wang Y, Chen P, Zhou Z, Chen T, Wu K, Ding SY, Tan L, Wang J, Shao X, Liu Z. Multi-Functional 2D Covalent Organic Frameworks with Diketopyrrolopyrrole as Electron Acceptor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402993. [PMID: 38750614 DOI: 10.1002/smll.202402993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 10/01/2024]
Abstract
2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.
Collapse
Affiliation(s)
- Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhaoqiong Zhou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tianwen Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kunlan Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
12
|
Li F, Mei S, Ye X, Yuan H, Li X, Tan J, Zhao X, Wu T, Chen X, Wu F, Xiang Y, Pan H, Huang M, Xue Z. Enhancing Lithium-Sulfur Battery Performance with MXene: Specialized Structures and Innovative Designs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404328. [PMID: 39052873 PMCID: PMC11423101 DOI: 10.1002/advs.202404328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Established in 1962, lithium-sulfur (Li-S) batteries boast a longer history than commonly utilized lithium-ion batteries counterparts such as LiCoO2 (LCO) and LiFePO4 (LFP) series, yet they have been slow to achieve commercialization. This delay, significantly impacting loading capacity and cycle life, stems from the long-criticized low conductivity of the cathode and its byproducts, alongside challenges related to the shuttle effect, and volume expansion. Strategies to improve the electrochemical performance of Li-S batteries involve improving the conductivity of the sulfur cathode, employing an adamantane framework as the sulfur host, and incorporating catalysts to promote the transformation of lithium polysulfides (LiPSs). 2D MXene and its derived materials can achieve almost all of the above functions due to their numerous active sites, external groups, and ease of synthesis and modification. This review comprehensively summarizes the functionalization advantages of MXene-based materials in Li-S batteries, including high-speed ionic conduction, structural diversity, shuttle effect inhibition, dendrite suppression, and catalytic activity from fundamental principles to practical applications. The classification of usage methods is also discussed. Finally, leveraging the research progress of MXene, the potential and prospects for its novel application in the Li-S field are proposed.
Collapse
Affiliation(s)
- Fei Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Shijie Mei
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xing Ye
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Haowei Yuan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiaoqin Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jie Tan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiaoli Zhao
- School of Materials Science and EngineeringXihua UniversityChengdu610039China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiehang Chen
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Fang Wu
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Yong Xiang
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Hong Pan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Ming Huang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Zhiyu Xue
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| |
Collapse
|
13
|
Ma Y, Li J, Sun D, Wu Y, Liu C, Li H. Design of Three-Dimensional Mesoporous Adamantane-Based Covalent Organic Framework with Exceptionally High Surface Areas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45383-45388. [PMID: 39146512 DOI: 10.1021/acsami.4c10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The development of three-dimensional (3D) covalent organic frameworks (COFs) with large pores and high specific surface areas is of critical for practical applications. However, it remains a tremendous challenge to reconcile the contradiction between high porosity and high specific surface areas, and increasing the length of building blocks leads to structural interpenetration in 3D COFs. Here, we report the preparation of mesoporous three-dimensional COF by a new steric hindrance engineering method. By incorporating adamantane into the monomers instead of carbon centers, we successfully achieve 2-fold interpenetrated diamondoid-structured 3D COFs, featuring permanent mesopores (up to 33 Å), exceptionally high surface areas (>3400 m2 g-1), and low crystal densities (0.123 g cm-3). These properties far surpass those of most conventional 3D COFs with similar topologies. This work not only aims to construct 3D COFs with low interpenetration but also to establish a foundation for the systematic design and structural control of 3D COFs.
Collapse
Affiliation(s)
- Yunchao Ma
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Jingyang Li
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Dongshu Sun
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Yuanyuan Wu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
- College of Chemistry, Jilin Normal University, Siping 136000, P. R. China
| | - Chunbo Liu
- Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Ma TR, Ge F, Ke SW, Lv S, Yang ZM, Zhou XC, Liu C, Wu XJ, Yuan S, Zuo JL. Accessible Tetrathiafulvalene Moieties in a 3D Covalent Organic Framework for Enhanced Near-Infrared Photo-Thermal Conversion and Photo-Electrical Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308013. [PMID: 37988642 DOI: 10.1002/smll.202308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023]
Abstract
Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF. In comparison to its 2D counterpart employing a 4-connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm-2 808 nm laser, the oxidized 3D COF samples (I X - ${\mathrm{I}}_{\mathrm{X}}^{-}$ @TTF-8CHO-COF and Au NPs@TTF-8CHO-COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well-exposed TTF moieties.
Collapse
Affiliation(s)
- Tian-Rui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Sen Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Cheng Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
17
|
Puthukkudi A, Nath S, Shee P, Dutta A, Rajput CV, Bommakanti S, Mohapatra J, Samal M, Anwar S, Pal S, Biswal BP. Terahertz Conductivity of Free-Standing 3D Covalent Organic Framework Membranes Fabricated via Triple-Layer-Dual Interfacial Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312960. [PMID: 38146892 DOI: 10.1002/adma.202312960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Processable covalent organic framework membranes (COFM) are emerging as potential semiconducting materials for device applications. Nevertheless, the fabrication of crystalline and free-standing 3D COFMs is challenging. In this work, a unique time and solvent-efficient triple-layer-dual interfacial (TLDI) approach for the simultaneous synthesis of two 3D COFMs from a single system is developed. Besides, for the first time, the optical conductivity of these free-standing 3D COFMs is analyzed using terahertz (THz) spectroscopy in transmission mode. Interestingly, these membranes show excellent transmittance at THz frequencies with very high intrinsic THz conductivities. The evaluated scattering time and plasma frequency of the free carriers of the COFMs are highly promising for future applications in optoelectronic devices in THz frequencies.
Collapse
Affiliation(s)
- Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Payel Shee
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Arpita Dutta
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chetan V Rajput
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Mahalaxmi Samal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
| | - Sharmistha Anwar
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, Odisha, India
| | - Shovon Pal
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| |
Collapse
|
18
|
Yan Q, Tao S, Liu R, Zhi Y, Jiang D. Crystalline, Porous Helicene Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202316092. [PMID: 38029378 DOI: 10.1002/anie.202316092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Helicenes are a class of fascinating chiral helical molecules with rich chemistry developed continuously over the past 100 years. Their helical, conjugated, and twisted structures make them attractive for constructing molecular systems. However, studies over the past century are mainly focused on synthesizing helicenes with increased numbers of aromatic rings and complex heterostructures, while research on inorganic, organic, and polymeric helicene materials is still embryonic. Herein, we report the first examples of helicene covalent organic frameworks, i.e., [7]Helicene sp2 c-COF-1, by condensing [7]Helicene dialdehyde with trimethyl triazine via the C=C bond formation reaction under solvothermal conditions. The resultant [7]Helicene sp2 c-COF-1 exhibits prominent X-ray diffraction peaks and assumes a highly ordered 2D lattice structure originated from the twisted configuration of [7]Helicene unit. The C=C linked [7]Helicene sp2 c-COF-1 materials exhibited extended π conjugation and broadly tuned their absorption, emission, redox activity, photoconductivity, and light-emitting activity, demonstrating rich multifunctionalities and great potentials in developing various applications. This work opens a way to a new family of COFs as well as helicene materials, enabling the exploration of unprecedented π architectures and properties.
Collapse
Affiliation(s)
- Qianqian Yan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
19
|
Wang X, Yang S, Bai X, Shan J. Bimetallic CoCu nanoparticles anchored on COF/SWCNT for electrochemical detection of carbendazim. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166530. [PMID: 37633369 DOI: 10.1016/j.scitotenv.2023.166530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Carbendazim (CBZ) is a widespread fungicide used in crop protection, but the CBZ residues in drinking water, fruits, and vegetables can also cause adverse impacts on public health due to direct exposure. In this paper, a ternary synergistic composite of bimetallic CoCu nanoparticles anchored on covalent organic framework/single-walled carbon nanotube (CoCu/COF/SWCNT) was prepared and further applied as an electrochemical sensing platform for detecting CBZ. The sensor showed a sensitive response performance toward CBZ oxidation, as a result of the enhanced charge transfer ability, large electrochemically active surface area, and high electro-catalytic activity from the rational integration of the ternary components in CoCu/COF/SWCNT. Under the optimal conditions, the proposed sensor exhibited a detection range of 0.001 to 10 μM and a limit detection of 0.65 nM for CBZ detection. In addition, the sensor displayed practical feasibility for the determination of CBZ in water and pear samples with a recovery of 96.1 % to 102.1 %.
Collapse
Affiliation(s)
- Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| | - Shuang Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Xuting Bai
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
20
|
Xue R, Liu YS, Wang MY, Guo H, Yang W, Yang GY. Combination of covalent organic frameworks (COFs) and polyoxometalates (POMs): the preparation strategy and potential application of COF-POM hybrids. MATERIALS HORIZONS 2023; 10:4710-4723. [PMID: 37622235 DOI: 10.1039/d3mh00906h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Both covalent organic frameworks (COFs) and polyoxometalates (POMs) show excellent properties and application potential in many fields, thus receiving widespread attention. In recent years, COF-POM hybrid materials were prepared by combining COFs and POMs through physical or chemical methods. COF-POM hybrids have shown high performance in many fields, such as catalysis, sensing, energy storage, and biomedicine. In this review, we introduced the preparation strategy and application of COF-POM hybrids in detail. We believe that the combination of COFs and POMs will provide more abundant functions and broad application prospects.
Collapse
Affiliation(s)
- Rui Xue
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yin-Sheng Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ming-Yue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
21
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
22
|
He XL, Shao B, Huang RK, Dong M, Tong YQ, Luo Y, Meng T, Yang FJ, Zhang Z, Huang J. A Mixed Protonic-Electronic Conductor Base on the Host-Guest Architecture of 2D Metal-Organic Layers and Inorganic Layers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205944. [PMID: 37076939 DOI: 10.1002/advs.202205944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The key to designing and fabricating highly efficient mixed protonic-electronic conductors materials (MPECs) is to integrate the mixed conductive active sites into a single structure, to break through the shortcomings of traditional physical blending. Herein, based on the host-guest interaction, an MPEC is consisted of 2D metal-organic layers and hydrogen-bonded inorganic layers by the assembly methods of layered intercalation. Noticeably, the 2D intercalated materials (≈1.3 nm) exhibit the proton conductivity and electron conductivity, which are 2.02 × 10-5 and 3.84 × 10-4 S cm-1 at 100 °C and 99% relative humidity, much higher than these of pure 2D metal-organic layers (>>1.0 × 10-10 and 2.01×10-8 S cm-1 ), respectively. Furthermore, combining accurate structural information and theoretical calculations reveals that the inserted hydrogen-bonded inorganic layers provide the proton source and a networks of hydrogen-bonds leading to efficient proton transport, meanwhile reducing the bandgap of hybrid architecture and increasing the band electron delocalization of the metal-organic layer to greatly elevate the electron transport of intrinsic 2D metal-organic frameworks.
Collapse
Affiliation(s)
- Xing-Lu He
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Bing Shao
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Rui-Kang Huang
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Min Dong
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yan Luo
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Ting Meng
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| | - Fu-Jie Yang
- College Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510275, P. R. China
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jin Huang
- Pharmaceutical College, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Medical University, 530021, Nanning, P. R. China
| |
Collapse
|
23
|
Chen H, Wang J, Zhang W, Guo Y, Ding Q, Zhang L. In Situ Rapid Electrochemical Fabrication of Porphyrin-Based Covalent Organic Frameworks: Novel Fibers for Electro-Enhanced Solid-Phase Microextraction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12453-12461. [PMID: 36826831 DOI: 10.1021/acsami.3c00580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electro-enhanced solid-phase microextraction (EE-SPME) is a bright separation and enrichment technique that integrates solid-phase microextraction with the electric field. It retains the excellent extraction performance of SPME technology while having the advantages of efficient driving of electric field and special interaction between the electric field and electrons in the molecules of material structure. Replacing conventional SPME fibers with highly efficient and highly conductive original EE-SPME fibers is critical for the practical applications of these technologies. Here, a novel fiber preparation strategy was proposed to obtain a highly conductive porphyrin-based covalent organic framework (POR-COF) by one-step electropolymerization. Benefiting from the excellent semiconducting properties of porphyrin groups, the POR-COF can be spontaneously polymerized on the fiber surface under an appropriate voltage within a few hours. Its performance was evaluated by the EE-SPME of phthalate esters (PAEs) from food and environmental samples, followed by gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS) technology. The results showed that the POR-COF fiber has been successfully used for the detection of trace PAEs in beverages, industrial wastewater, lake water, and oyster samples with high adsorption selectivity and satisfactory sensitivity. The remarkable extraction properties are mainly attributed to the synergistic effect from material characteristics and electrical parameters' control in the extraction process. The presented strategy for the controlled design and synthesis of highly conductive porphyrin-based covalent organic framework fibers offers prospects in developing EE-SPME technologies.
Collapse
Affiliation(s)
- Hui Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Juan Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenmin Zhang
- Department of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian 350108, China
| | - Yuheng Guo
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
24
|
Chen XJ, Zhang CR, Liu X, Qi JX, Jiang W, Yi SM, Niu CP, Cai YJ, Liang RP, Qiu JD. Flexible three-dimensional covalent organic frameworks for ultra-fast and selective extraction of uranium via hydrophilic engineering. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130442. [PMID: 36436454 DOI: 10.1016/j.jhazmat.2022.130442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
It has been considered challenging to develop ideal adsorbents for efficient and lower adsorption time uranium extraction, especially 3D covalent organic frameworks with interpenetrating topologies and tunable porous structures. Here, a "soft" three-dimensional (3D) covalent organic framework (TAM-DHBD) with a fivefold interpenetrating structure is prepared as a novel porous platform for the efficient extraction of radioactive uranium. The resultant TAM-DHBD appears exceptional crystallinity, prominent porosity and excellent chemical stability. Based on the strong mutual coordination between phenolic-hydroxyl/imine-N on the main chain and uranium, TAM-DHBD can effectively avert the competition of other ions, showing high selectivity for uranium extraction. Impressively, the 3D ultra-hydrophilic transport channels and multi-directional uniform pore structure of TAM-DHBD lay the foundation for the ultra-high-speed diffusion of uranium (the adsorption equilibrium can be reached within 60 min under a high-concentration environment). Furthermore, the utilization of lightweight structure not only increases the adsorption site density, but renders the adsorption process flexible, achieving a breakthrough adsorption capacity of 1263.8 mg g-1. This work not only highlights new opportunities for designing microporous 3D COFs, but paves the way for the practical application of 3D COFs for uranium adsorption.
Collapse
Affiliation(s)
- Xiao-Juan Chen
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Xin Qi
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shun-Mo Yi
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Peng Niu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yuan-Jun Cai
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
25
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
26
|
Bao R, Xiang Z, Qiao Z, Yang Y, Zhang Y, Cao D, Wang S. Designing Thiophene-Enriched Fully Conjugated 3D Covalent Organic Framework as Metal-Free Oxygen Reduction Catalyst for Hydrogen Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202216751. [PMID: 36428273 DOI: 10.1002/anie.202216751] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The application of three-dimensional (3D) covalent organic frameworks (COFs) in renewable energy fields is greatly limited due to their non-conjugated skeletons. Here, we design and successfully synthesize a thiophene-enriched fully conjugated 3D COF (BUCT-COF-11) through an all-thiophene-linked saddle-shaped building block (COThTh-CHO). The BUCT-COF-11 exhibits excellent semiconducting property with intrinsic metal-free oxygen reduction reaction (ORR) activity. Using the COF as cathode catalyst, the assembled anion-exchange membrane fuel cells (AEMFCs) exhibited a high peak power density up to 493 mW cm-2 . DFT calculations reveal that thiophene introduction in the COF not only improves the conductivity but also optimizes the electronic structure of the sample, which therefore boosts the ORR performance. This is the first report on the application of COFs as metal-free catalysts in fuel cells, demonstrating the great potential of fully conjugated 3D COFs as promising semiconductors in energy fields.
Collapse
Affiliation(s)
- Rui Bao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhehao Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuting Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
27
|
Guan X, Chen F, Qiu S, Fang Q. Three-Dimensional Covalent Organic Frameworks: From Synthesis to Applications. Angew Chem Int Ed Engl 2023; 62:e202213203. [PMID: 36253336 DOI: 10.1002/anie.202213203] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods. Hereafter, applications of these functional materials are presented, covering adsorption, separation, catalysis, fluorescence, sensing, and batteries. Finally, the future challenges and perspectives for the development of 3D COFs are discussed.
Collapse
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
28
|
Seo JM, Noh HJ, Jeon JP, Kim H, Han GF, Kwak SK, Jeong HY, Wang L, Li F, Baek JB. Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform. J Am Chem Soc 2022; 144:19973-19980. [PMID: 36239442 DOI: 10.1021/jacs.2c08344] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.
Collapse
Affiliation(s)
- Jeong-Min Seo
- Department of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyuk-Jun Noh
- Department of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jong-Pil Jeon
- Department of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyeongjun Kim
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Gao-Feng Han
- Department of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Lianli Wang
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Feng Li
- Department of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai 200433, P. R. China
| | - Jong-Beom Baek
- Department of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
29
|
Liu W, Gong L, Liu Z, Jin Y, Pan H, Yang X, Yu B, Li N, Qi D, Wang K, Wang H, Jiang J. Conjugated Three-Dimensional High-Connected Covalent Organic Frameworks for Lithium-Sulfur Batteries. J Am Chem Soc 2022; 144:17209-17218. [PMID: 36084308 DOI: 10.1021/jacs.2c07596] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing conjugated three-dimensional (3D) covalent organic frameworks (COFs) still remains an extremely difficult task due to the lack of enough conjugated 3D building blocks. Herein, condensation between an 8-connected pentiptycene-based D2h building block (DMOPTP) and 4-connected square-planar linkers affords two 3D COFs (named 3D-scu-COF-1 and 3D-scu-COF-2). A combination of the 3D homoaromatic conjugated structure of the former building block with the 2D conjugated structure of the latter linking units enables the π-electron delocalization over the whole frameworks of both COFs, endowing them with excellent conductivities of 3.2-3.5 × 10-5 S cm-1. In particular, the 3D rigid quadrangular prism shape of DMOPTP guides the formation of a twofold interpenetrated scu 3D topology and high-connected permanent porosity with a large Brunauer-Emmett-Teller (BET) surface area of 2340 and 1602 m2 g-1 for 3D-scu-COF-1 and 3D-scu-COF-2, respectively, ensuring effective small molecule storage and mass transport characteristics. This, in combination with their good charge transport properties, renders them promising sulfur host materials for lithium-sulfur batteries (LSBs) with high capacities (1035-1155 mA h g-1 at 0.2 C, 1 C = 1675 mA g-1), excellent rate capabilities (713-757 mA h g-1 at 5.0 C), and superior cycling stability (71-83% capacity retention at 2.0 C after 500 cycles), surpassing the most of organic LSB cathodes reported thus far.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
30
|
Zhang M, Lai C, Xu F, Huang D, Liu S, Fu Y, Li L, Yi H, Qin L, Chen L. Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
A novel antibacterial benzimidazolium hexachlorotellurate hybrid compound: Experimental-Theoretical characterization. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Koga H, Nagashima K, Suematsu K, Takahashi T, Zhu L, Fukushima D, Huang Y, Nakagawa R, Liu J, Uetani K, Nogi M, Yanagida T, Nishina Y. Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano-Micro-Macro Trans-Scale Design. ACS NANO 2022; 16:8630-8640. [PMID: 35471008 PMCID: PMC9245344 DOI: 10.1021/acsnano.1c10728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of electrical conductivity. To overcome this challenge, a pyrolyzed cellulose nanofiber paper (CNP) semiconductor with a 3D network structure is proposed. Its nano-micro-macro trans-scale structural design is achieved by a combination of iodine-mediated morphology-retaining pyrolysis with spatially controlled drying of a cellulose nanofiber dispersion and paper-crafting techniques, such as microembossing, origami, and kirigami. The electrical conduction of this semiconductor is widely and systematically tuned, via the temperature-controlled progressive pyrolysis of CNP, from insulating (1012 Ω cm) to quasimetallic (10-2 Ω cm), which considerably exceeds that attained in other previously reported nanomaterials with 3D networks. The pyrolyzed CNP semiconductor provides not only the tailorable functionality for applications ranging from water-vapor-selective sensors to enzymatic biofuel cell electrodes but also the designability of macroscopic device configurations for stretchable and wearable applications. This study provides a pathway to realize structurally and functionally designable semiconducting nanomaterials and all-nanocellulose semiconducting technology for diverse electronics.
Collapse
Affiliation(s)
- Hirotaka Koga
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuki Nagashima
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan
Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Koichi Suematsu
- Department
of Advanced Materials Science and Engineering, Faculty of Engineering
Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Tsunaki Takahashi
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Japan
Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Luting Zhu
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Daiki Fukushima
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yintong Huang
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ryo Nakagawa
- Graduate
School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Jiangyang Liu
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kojiro Uetani
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masaya Nogi
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute
for Materials Chemistry and Engineering, Kyushu University, 6-1
Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Yuta Nishina
- Research
Core for Interdisciplinary Sciences, Okayama
University, 3-1-1 Tsushimanaka,
Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
33
|
Guan X, Fang Q, Yan Y, Qiu S. Functional Regulation and Stability Engineering of Three-Dimensional Covalent Organic Frameworks. Acc Chem Res 2022; 55:1912-1927. [DOI: 10.1021/acs.accounts.2c00200] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
34
|
2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction. CRYSTALS 2022. [DOI: 10.3390/cryst12070880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covalent organic frameworks (COFs) are a new class of porous crystalline polymers, which are considered to be excellent supports for metal nanoparticles (MNPs) due to their highly ordered structure, chemical tunability, and porosity. In this work, two novel ultra-microporous COFs, JUC−624 and JUC−625, with narrow pore size distribution have been synthesized and used for the confined growth of ultrafine Co nanoparticles (CoNPs) with high loading. In an alkaline environment, the produced materials were investigated as electrocatalysts for the hydrogen evolution reaction (HER). Electrochemical test results show that CoNPs@COFs have a Tafel slope of 84 mV·dec−1, an onset overpotential of 105 mV, and ideal stability. Remarkably, CoNPs@JUC−625 required only 146 mV of overpotential to afford a current density of 10 mA cm−2. This research will open up new avenues for making COF-supported ultrafine MNPs with good dispersity and stability for extensive applications.
Collapse
|
35
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022; 61:e202203584. [DOI: 10.1002/anie.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
36
|
Boyn JN, McNamara LE, Anderson JS, Mazziotti DA. Interplay of Electronic and Geometric Structure Tunes Organic Biradical Character in Bimetallic Tetrathiafulvalene Tetrathiolate Complexes. J Phys Chem A 2022; 126:3329-3337. [PMID: 35604797 DOI: 10.1021/acs.jpca.2c01773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis and design of organic biradicals with tunable singlet-triplet gaps have become the subject of significant research interest, owing to their possible photochemical applications and use in the development of molecular switches and conductors. Recently, tetrathiafulvalene tetrathiolate (TTFtt) has been demonstrated to exhibit such organic biradical character in doubly ionized bimetallic complexes. In this article we use high-level ab initio calculations to interrogate the electronic structure of a series of TTFtt-bridged metal complexes, resolving the factors governing their biradical character and singlet-triplet gaps. We show that the degree of biradical character correlates with a readily measured experimental predictor, the central TTFtt C-C bond length, and that it may be described by a one-parameter model, providing valuable insight for the future rational design of TTFtt based biradical compounds and materials.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Lauren E McNamara
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
She P, Qin Y, Wang X, Zhang Q. Recent Progress in External-Stimulus-Responsive 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101175. [PMID: 34240479 DOI: 10.1002/adma.202101175] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Indexed: 05/26/2023]
Abstract
Recently, smart 2D covalent organic frameworks (COFs), combining the advantages of both inherent structure features and functional building blocks, have been demonstrated to show reversible changes in conformation, color, and luminescence in response to external stimuli. This review provides a summary on the recent progress of 2D COFs that are responsive to external stimuli such as metal ions, gas molecules, pH values, temperature, electricity, light, etc. Moreover, the responsive mechanisms and design strategies, along with the applications of these stimulus-responsive 2D COFs in chemical sensors and photoelectronic devices are also discussed. It is believed that this review would provide some guidelines for designing novel single-/multistimulus-responsive 2D COFs with controllable responsive behaviors for advanced photoelectronic applications.
Collapse
Affiliation(s)
- Pengfei She
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yanyan Qin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
38
|
Liao L, Zhang Z, Guan X, Li H, Liu Y, Zhang M, Tang B, Valtchev V, Yan Y, Qiu S, Yao X, Fang Q. Three‐Dimensional
sp
2
Carbon‐Linked
Covalent Organic Frameworks as a Drug Carrier Combined with Fluorescence Imaging. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Liao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zerong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Minghao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Bin Tang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216 Australia
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District Qingdao Shandong 266101 P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
39
|
Yang Y, Schäfer C, Börjesson K. Detachable all-carbon-linked 3D covalent organic framework films for semiconductor/COF heterojunctions by continuous flow synthesis. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Ke SW, Wang Y, Su J, Liao K, Lv S, Song X, Ma T, Yuan S, Jin Z, Zuo JL. Redox-Active Covalent Organic Frameworks with Nickel-Bis(dithiolene) Units as Guiding Layers for High-Performance Lithium Metal Batteries. J Am Chem Soc 2022; 144:8267-8277. [PMID: 35484687 DOI: 10.1021/jacs.2c01996] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Combining the chemistry of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) can bring new opportunities for the design of advanced materials with enhanced tunability and functionality. Herein, we constructed two COFs based on Ni-bis(dithiolene) units and imine bonds, representing a bridge between traditional MOFs and COFs. The Ni-bis(dithiolene)tetrabenzaldehyde as the 4-connected linker was initially synthesized, which was further linked by 4-connected tetra(aminophenyl)pyrene (TAP) or 3-connected tris(aminophenyl)amine (TAA) linkers into two COFs, namely, Ni-TAP and Ni-TAA. Ni-TAP shows a two-dimensional sql network, while TAA is a twofold interpenetrated framework with an ffc topology. They both exhibit a high Brunauer-Emmett-Teller surface area (324 and 689 m2 g-1 for Ni-TAP and Ni-TAA, respectively), a fairly good conductivity (1.57 × 10-6 and 9.75 × 10-5 S m-1 for Ni-TAP and Ni-TAA, respectively), and high chemical stability (a stable pH window of 1-14 for Ni-TAA). When applied in lithium metal batteries as an intermediate layer for guiding the uniform Li electrodeposition, Ni-TAP and Ni-TAA displayed impressive lithiophilicity and high Li-ion conductivity, enabling the achievement of smooth and dense Li deposition with a clear columnar morphology and stable Li plating/stripping behaviors with high Li utilization, which is anticipated to pave the way to upgrade Li metal anodes for application in high-energy-density battery systems.
Collapse
Affiliation(s)
- Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yaoda Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Kang Liao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sen Lv
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinmei Song
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tianrui Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
41
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
42
|
Sun R, Wang X, Wang X, Tan B. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022; 61:e202117668. [PMID: 35038216 DOI: 10.1002/anie.202117668] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/09/2022]
Abstract
The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
43
|
Lei Q, Huang X, Zheng L, Zheng F, Dong J, Chen F, Zeng W. Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta 2022; 240:123198. [PMID: 34998139 DOI: 10.1016/j.talanta.2021.123198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
Abstract
Caspase-3 plays irreplaceable roles in apoptosis and related diseases. An imbalance in the measured levels of Caspase-3 is implicated in irreversible apoptosis. Therefore, the detection of Caspase-3 is of great significance for apoptosis imaging and the evaluation effect of early tumor treatment and other diseases. Herein, advances in the recent innovations of Caspase-3 response fluorescence biosensors, including molecular probes and nanoprobes, are systematically summarized in sections corresponding. The performances of various luminescence probes in Caspase-3 detection are discussed intensively in the design strategy of chemical structure, response mechanism and biological application. Finally, the current challenges and prospects of the design of new Caspase-3 responsive fluorescence probes for apoptosis imaging, or similar molecular event are proposed.
Collapse
Affiliation(s)
- Qian Lei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Lijuan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China.
| |
Collapse
|
44
|
Li R, Xing G, Li H, Li S, Chen L. A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Yu C, Li H, Wang Y, Suo J, Guan X, Wang R, Valtchev V, Yan Y, Qiu S, Fang Q. Three-Dimensional Triptycene-Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angew Chem Int Ed Engl 2022; 61:e202117101. [PMID: 35072318 DOI: 10.1002/anie.202117101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Owing to the finite building blocks and difficulty in structural identification, it remains a tremendous challenge to elaborately design and synthesize three-dimensional covalent organic frameworks (3D COFs) with predetermined topologies. Herein, we report the first two cases of 3D COFs with the non-interpenetrated hea net, termed JUC-596 and JUC-597, by using the combination of tetrahedral and triangular prism building units. Due to the presence of triptycene functional groups and fluorine atoms, JUC-596 exhibits an exceptional performance in the H2 adsorption up to 305 cm3 g-1 (or 2.72 wt%) at 77 K and 1 bar, which is higher than previous benchmarks from porous organic materials reported so far. Furthermore, the strong interaction between H2 and COF materials is verified through the DFT theoretical calculations. This work represents a captivating example of rational design of functional COFs based on a reticular chemistry guide and demonstrates its promising application in clean energy storage.
Collapse
Affiliation(s)
- Chengyang Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jinqun Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie University, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
46
|
Yu X, Li C, Chang J, Wang Y, Xia W, Suo J, Guan X, Valtchev V, Yan Y, Qiu S, Fang Q. Gating Effects for Ion Transport in Three-Dimensional Functionalized Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202200820. [PMID: 35072979 DOI: 10.1002/anie.202200820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
The development of bioinspired nano/subnano-sized (<2 nm) ion channels is still considered a great challenge due to the difficulty in precisely controlling pore's internal structure and chemistry. Herein, for the first time, we report that three-dimensional functionalized covalent organic frameworks (COFs) can act as an effective nanofluidic platform for intelligent modulation of the ion transport. By strategic attachment of 12-crown-4 groups to the monomers as ion-driver door locks, we demonstrate that gating effects of functionalized COFs can be activated by lithium ions. The obtained materials exhibit an outstanding selective ion transmission performance with a high gating ratio (up to 23.6 for JUC-590), which is among the highest values in metal ion-activated solid-state nanochannels reported so far. Furthermore, JUC-590 offers high tunability, selectivity, and recyclability of ion transport proved by the experimental and simulated studies.
Collapse
Affiliation(s)
- Xiuqin Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Weifeng Xia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
47
|
Zheng X, Zhang L, Xie C, Wang H, Liu H, Pan Q, Zhao Y. Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D2h and C2 Building Blocks. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Xing G, Zheng W, Gao L, Zhang T, Wu X, Fu S, Song X, Zhao Z, Osella S, Martínez-Abadía M, Wang HI, Cai J, Mateo-Alonso A, Chen L. Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. J Am Chem Soc 2022; 144:5042-5050. [PMID: 35189061 DOI: 10.1021/jacs.1c13534] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) are an emerging class of promising 2D materials with high crystallinity and tunable structures. However, the low electrical conductivity impedes their applications in electronics and optoelectronics. Integrating large π-conjugated building blocks into 2D lattices to enhance efficient π-stacking and chemical doping is an effective way to improve the conductivity of 2D COFs. Herein, two nonplanar 2D COFs with kagome (DHP-COF) and rhombus (c-HBC-COF) lattices have been designed and synthesized from distorted aromatics with different π-conjugated structures (flexible and rigid structure, respectively). DHP-COF shows a highly distorted 2D lattice that hampers stacking, consequently limiting its charge carrier transport properties. Conversely, c-HBC-COF, with distorted although concave-convex self-complementary nodes, shows a less distorted 2D lattice that does not interfere with interlayer π-stacking. Employing time- and frequency-resolved terahertz spectroscopy, we unveil a high charge-carrier mobility up to 44 cm2 V-1 s-1, among the highest reported for 2D COFs.
Collapse
Affiliation(s)
- Guolong Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Wenhao Zheng
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Lei Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Ting Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Xiaowei Wu
- Fujian Institute of Research on the Structure of Matter, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shuai Fu
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoyu Song
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Ziqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Marta Martínez-Abadía
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Hai I Wang
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
49
|
Guo L, Zhang J, Huang Q, Zhou W, Jin S. Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Fang Q, Yu C, Li H, Wang Y, Suo J, Guan X, Wang R, Valtchev V, Yan Y, Qiu S. Three‐Dimensional Triptycene‐Functionalized Covalent Organic Frameworks with hea net for Hydrogen Adsorption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qianrong Fang
- Jilin University Department of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| | | | - Hui Li
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Yujie Wang
- Jilin University College of Chemistry CHINA
| | | | - Xinyu Guan
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| | - Rui Wang
- Jilin University College of Chemistry CHINA
| | - Valentin Valtchev
- Normandie Université: Normandie Universite Laboratoire Catalyse et Spectrochimie FRANCE
| | - Yushan Yan
- University of Delaware Chemical and Biomolecular Engineering UNITED STATES
| | - Shilun Qiu
- Jilin University College of Chemistry 2699 Qianjin StreetChangchun 130118 Changchun CHINA
| |
Collapse
|