1
|
Geeraerts Z, Ishigami I, Gao Y, Yeh SR. Heme-based dioxygenases: Structure, function and dynamics. J Inorg Biochem 2024; 261:112707. [PMID: 39217822 PMCID: PMC11590650 DOI: 10.1016/j.jinorgbio.2024.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yuan Gao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
2
|
Kuo LW, Crump LS, O’Neill K, Williams MM, Christenson JL, Spoelstra NS, Roy MK, Argabright A, Reisz JA, D’Alessandro A, Boorgula MP, Goodspeed A, Bickerdike M, Bitler BG, Richer JK. Blocking Tryptophan Catabolism Reduces Triple-Negative Breast Cancer Invasive Capacity. CANCER RESEARCH COMMUNICATIONS 2024; 4:2699-2713. [PMID: 39311710 PMCID: PMC11484926 DOI: 10.1158/2767-9764.crc-24-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
SIGNIFICANCE TDO2 is more highly expressed than the nonhomologous TRP-catabolizing enzyme IDO1 in TNBC. We find that TDO2 knockdown can lead to a compensatory increase in IDO1. Therefore, we tested a newly developed TDO2/IDO1 dual inhibitor and found that it decreases TRP catabolism, anchorage-independent survival, and invasive capacity.
Collapse
Affiliation(s)
- Li-Wei Kuo
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Lyndsey S. Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Kathleen O’Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Michelle M. Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Jessica L. Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Nicole S. Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Amy Argabright
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Meher P. Boorgula
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Andrew Goodspeed
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | | | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
3
|
Al-Zoubi RM, Al-Jammal WK, Shkoor M, Bani-Yaseen AD, Khan A, Agouni A, McDonald R. Efficient and regioselective synthesis of ortho-diiodinated homobenzylic alcohol derivatives: in silico evaluation as potential anticancer IDO/TDO inhibitors. Org Biomol Chem 2024; 22:7395-7410. [PMID: 39177253 DOI: 10.1039/d4ob01076k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A simple and direct synthesis of 2,6-diiodophenylethanol building blocks through highly regioselective metalation (MIE)/oxirane SN2-type ring opening of 1,2,3-triiodobenzene is described. A significant impact of the nature of the R1 group on the reactivity of the reaction was discovered but not in terms of site-selectivity. The MIE quenching step is easily controlled by the use of slow-reacting electrophiles "oxiranes" providing solely the ortho-diiodinated homobenzylic alcohol derivatives (internal products) in excellent site-selectivity and with stereoretention. The reaction proceeded without any additives to activate the oxiranes and tolerated a wide range of substrates. The reaction of electron-deficient 1,2,3-triiodoarene systems and neutral oxiranes under the optimized conditions provided the highest isolated yields. The reaction is facile, scalable, efficient, general in scope, and generates handy precursors for further chemical manipulation. In silico interaction analysis revealed that compounds 7a, 7p, 7t and 7z established favourable interactions with the receptors IDO and TDO. Moreover, the molecular simulation results revealed stable dynamics, minimal internal fluctuations, tighter packing and more favourable dynamic features. Furthermore, the 7a-IDO reported a TBE of -26.22 ± 0.24 kcal mol-1, 7t-TDO reported a TBE of -46.66 ± 0.27 kcal mol-1, 7p-TDO reported a TBE of -48.02 ± 0.29 kcal mol-1 while 7z-TDO reported a TBE of -48.51 ± 0.28 kcal mol-1. This shows that these compounds potentially interact with IDO and TDO and consequently cause the inhibition of these targets. Moreover, the BFE results also revealed that this combination suggests that the gas-phase interactions between the components are favorable, but the solvation of the system is unfavorable. In the context of binding, it further means that the protein and ligand have attractive forces when in close proximity as seen in the gas phase, but when solvated, the system experiences an increase in free energy due to interactions with the solvent. This further implies that the binding might be enthalpically favorable due to favorable gas-phase interactions but entropically unfavorable due to unfavorable solvation effects. Our analysis shows that our designed compounds have unmatched pharmacological potential, far surpassing previously reported compounds. This highlights the innovative nature of these derivatives and sets a new benchmark in IDO and TDO drug discovery, indicating their significant potential as effective anticancer inhibitors.
Collapse
Affiliation(s)
- Raed M Al-Zoubi
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha, 2713, Qatar.
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar.
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| | - Walid K Al-Jammal
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan.
| | - Mohanad Shkoor
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Robert McDonald
- Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G2G2, Canada.
| |
Collapse
|
4
|
Geeraerts Z, Ishigami I, Lewis-Ballester A, Pham KN, Kozlova A, Mathieu C, Frédérick R, Yeh SR. Structural Insights into Protein-Inhibitor Interactions in Human Tryptophan Dioxygenase. J Med Chem 2024; 67:14543-14552. [PMID: 39106326 DOI: 10.1021/acs.jmedchem.4c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Human tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are two important targets in cancer immunotherapy. Extensive research has led to a large number of potent IDO inhibitors; in addition, 52 structures of IDO in complex with inhibitors with a wide array of chemical scaffolds have been documented. In contrast, progress in the development of TDO inhibitors has been limited. Only four structures of TDO in complex with competitive inhibitors that compete with the substrate L-tryptophan for binding to the active site have been reported to date. Here we systematically evaluated the structures of TDO in complex with competitive inhibitors with three types of pharmacophores, imidazo-isoindole, indole-tetrazole, and indole-benzotriazole. The comparative assessment of the protein-inhibitor interactions sheds new light into the structure-based design of enzyme-selective inhibitors.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Ariel Lewis-Ballester
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Khoa N Pham
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Arina Kozlova
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 73 avenue Mounier, Brussels B-1200, Belgium
| | - Caroline Mathieu
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 73 avenue Mounier, Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 73 avenue Mounier, Brussels B-1200, Belgium
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
5
|
Aboomar NM, Essam O, Hassan A, Bassiouny AR, Arafa RK. Exploring a repurposed candidate with dual hIDO1/hTDO2 inhibitory potential for anticancer efficacy identified through pharmacophore-based virtual screening and in vitro evaluation. Sci Rep 2024; 14:9386. [PMID: 38653790 PMCID: PMC11039737 DOI: 10.1038/s41598-024-59353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Discovering effective anti-cancer agents poses a formidable challenge given the limited efficacy of current therapeutic modalities against various cancer types due to intrinsic resistance mechanisms. Cancer immunochemotherapy is an alternative strategy for breast cancer treatment and overcoming cancer resistance. Human Indoleamine 2,3-dioxygenase (hIDO1) and human Tryptophan 2,3-dioxygenase 2 (hTDO2) play pivotal roles in tryptophan metabolism, leading to the generation of kynurenine and other bioactive metabolites. This process facilitates the de novo synthesis of Nicotinamide Dinucleotide (NAD), promoting cancer resistance. This study identified a new dual hIDO1/hTDO2 inhibitor using a drug repurposing strategy of FDA-approved drugs. Herein, we delineate the development of a ligand-based pharmacophore model based on a training set of 12 compounds with reported hIDO1/hTDO2 inhibitory activity. We conducted a pharmacophore search followed by high-throughput virtual screening of 2568 FDA-approved drugs against both enzymes, resulting in ten hits, four of them with high potential of dual inhibitory activity. For further in silico and in vitro biological investigation, the anti-hypercholesterolemic drug Pitavastatin deemed the drug of choice in this study. Molecular dynamics (MD) simulations demonstrated that Pitavastatin forms stable complexes with both hIDO1 and hTDO2 receptors, providing a structural basis for its potential therapeutic efficacy. At nanomolar (nM) concentration, it exhibited remarkable in vitro enzyme inhibitory activity against both examined enzymes. Additionally, Pitavastatin demonstrated potent cytotoxic activity against BT-549, MCF-7, and HepG2 cell lines (IC50 = 16.82, 9.52, and 1.84 µM, respectively). Its anticancer activity was primarily due to the induction of G1/S phase arrest as discovered through cell cycle analysis of HepG2 cancer cells. Ultimately, treating HepG2 cancer cells with Pitavastatin affected significant activation of caspase-3 accompanied by down-regulation of cellular apoptotic biomarkers such as IDO, TDO, STAT3, P21, P27, IL-6, and AhR.
Collapse
Affiliation(s)
- Nourhan M Aboomar
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Omar Essam
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
- Euro-Mediterranean Master in Neuroscience and Biotechnology Program, Alexandria University, Alexandria, 21511, Egypt
| | - Ahmad R Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt.
| |
Collapse
|
6
|
Hanif N, Sari S. Discovery of novel IDO1/TDO2 dual inhibitors: a consensus Virtual screening approach with molecular dynamics simulations, and binding free energy analysis. J Biomol Struct Dyn 2024:1-17. [PMID: 38498355 DOI: 10.1080/07391102.2024.2329302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The pursuit of effective cancer immunotherapy drugs remains challenging, with overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) allowing cancer cells to evade immune attacks. While several IDO1 inhibitors have undergone clinical testing, only three dual IDO1/TDO2 inhibitors have reached human trials. Hence, this study focuses on identifying novel IDO1/TDO2 dual inhibitors through consensus structure-based virtual screening (SBVS). ZINC15 natural products library was refined based on molecular descriptors, and the selected compounds were docked to the holo form IDO1 and TDO2 using two different software programs and ranked according to their consensus docking scores. The top-scoring compounds underwent in silico evaluations for pharmacokinetics, toxicity, CYP3A4 affinity, molecular dynamics (MD) simulations, and MM-GBSA binding free energy calculations. Five compounds (ZINC00000079405/10, ZINC00004028612/11, ZINC00013380497/12, ZINC00014613023/13, and ZINC00103579819/14) were identified as potential IDO1/TDO2 dual inhibitors due to their high consensus docking scores, key residue interactions with the enzymes, favorable pharmacokinetics, and avoidance of CYP3A4 binding. MD simulations of the top three hits with IDO1 indicated conformational changes and compactness, while MM-GBSA analysis revealed strong binding free energy for compounds 10 (ΔG: -20.13 kcal/mol) and 11 (ΔG: -16.22 kcal/mol). These virtual hits signify a promising initial step in identifying candidates as supplementary therapeutics to immune checkpoint inhibitors in cancer treatment. Their potential to deliver potent dual inhibition of IDO1/TDO2, along with safety and favorable pharmacokinetics, makes them compelling. Validation through in vitro and in vivo assays should be conducted to confirm their activity, selectivity, and preclinical potential as holo IDO1/TDO2 dual inhibitors.
Collapse
Affiliation(s)
- Naufa Hanif
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta, Indonesia
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
León-Letelier RA, Dou R, Vykoukal J, Sater AHA, Ostrin E, Hanash S, Fahrmann JF. The kynurenine pathway presents multi-faceted metabolic vulnerabilities in cancer. Front Oncol 2023; 13:1256769. [PMID: 37876966 PMCID: PMC10591110 DOI: 10.3389/fonc.2023.1256769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The kynurenine pathway (KP) and associated catabolites play key roles in promoting tumor progression and modulating the host anti-tumor immune response. To date, considerable focus has been on the role of indoleamine 2,3-dioxygenase 1 (IDO1) and its catabolite, kynurenine (Kyn). However, increasing evidence has demonstrated that downstream KP enzymes and their associated metabolite products can also elicit tumor-microenvironment immune suppression. These advancements in our understanding of the tumor promotive role of the KP have led to the conception of novel therapeutic strategies to target the KP pathway for anti-cancer effects and reversal of immune escape. This review aims to 1) highlight the known biological functions of key enzymes in the KP, and 2) provide a comprehensive overview of existing and emerging therapies aimed at targeting discrete enzymes in the KP for anti-cancer treatment.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Hussein Abdel Sater
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Zhao J, Wu M, Luo J, Shi L, Li H. N-Heterocyclic carbene-catalyzed enantioselective annulation of 2-amino-1 H-indoles and bromoenals for the synthesis of chiral 2-aryl-2,3-dihydropyrimido[1,2- a]indol-4 (1 H)-ones. Org Biomol Chem 2023; 21:6675-6680. [PMID: 37540068 DOI: 10.1039/d3ob01006f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient N-heterocyclic carbene (NHC)-catalyzed enantioselective [3 + 3] annulation of 2-bromoenals with 2-amino-1H-indoles has been developed. A series of functionalized 2-aryl-2,3-dihydropyrimido[1,2-a]indol-4(1H)-ones were synthesized using NHCs as the catalyst in good yields with high to excellent enantioselectivities.
Collapse
Affiliation(s)
- Jianbo Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Min Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jiamin Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Shi
- Döhler Food & Beverage Ingredients (Shanghai) Co., Ltd, 739 Shennan Road, Shanghai 201108, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
9
|
Tan Y, Liu M, Li M, Chen Y, Ren M. Indoleamine 2, 3-dioxygenase 1 inhibitory compounds from natural sources. Front Pharmacol 2022; 13:1046818. [PMID: 36408235 PMCID: PMC9672321 DOI: 10.3389/fphar.2022.1046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
L-tryptophan metabolism is involved in the regulation of many important physiological processes, such as, immune response, inflammation, and neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme that catalyzes the first rate-limiting step of tryptophan conversion to kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various diseases, such as, cancer, autoimmune disease, and depression. In the search for potent IDO1 inhibitors, natural quinones were the first reported IDO1 inhibitors with potent inhibitory activity. Subsequently, natural compounds with diverse structures have been found to have anti-IDO1 inhibitory activity. In this review, we provide a summary of these natural IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and others. The overview of in vitro IDO1 inhibitory activity of natural compounds will help medicinal chemists to understand the mode of action and medical benefits of them. The scaffolds of these natural compounds can also be used for further optimization of potent IDO1 inhibitors.
Collapse
Affiliation(s)
- Ying Tan
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujuan Chen
- Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Ren
- United Front Work Department, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Meng Ren,
| |
Collapse
|
10
|
Salimova EV, Parfenova LV. Fischer Reaction in the Synthesis of New Triterpene Indoles of the Fusidane Series. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
3-Carbamoylmethyl-Indole-1-Carboxylic Acid Ethyl Ester. MOLBANK 2022. [DOI: 10.3390/m1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
3-Carbamoylmethyl-Indole-1-Carboxylic Acid Ethyl Ester (an ethoxycarbonyl derivative of indole-3-acetamide) is obtained by Friedel–Crafts type cyclocondensation of γ-functionalized acetoacetamide in neat polyphosphoric acid.
Collapse
|
12
|
Mirgaux M, Leherte L, Wouters J. Temporary Intermediates of L-Trp Along the Reaction Pathway of Human Indoleamine 2,3-Dioxygenase 1 and Identification of an Exo Site. Int J Tryptophan Res 2021; 14:11786469211052964. [PMID: 34949925 PMCID: PMC8689440 DOI: 10.1177/11786469211052964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/19/2021] [Indexed: 12/28/2022] Open
Abstract
Protein dynamics governs most of the fundamental processes in the human body.
Particularly, the dynamics of loops located near an active site can be involved
in the positioning of the substrate and the reaction mechanism. The
understanding of the functioning of dynamic loops is therefore a challenge, and
often requires the use of a multi-disciplinary approach mixing, for example,
crystallographic experiments and molecular dynamics simulations. In the present
work, the dynamic behavior of the JK-loop of the human indoleamine
2,3-dioxygenase 1 hemoprotein, a target for immunotherapy, is investigated. To
overcome the lack of knowledge on this dynamism, the study reported here is
based on 3 crystal structures presenting different conformations of the loop,
completed with molecular dynamics trajectories and MM-GBSA analyses, in order to
trace the reaction pathway of the enzyme. In addition, the crystal structures
identify an exo site in the small unit of the enzyme, that is populated
redundantly by the substrate or the product of the reaction. The role of this
newer reported exo site still needs to be investigated.
Collapse
Affiliation(s)
- Manon Mirgaux
- Laboratoire de Chimie Biologique Structurale, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Laurence Leherte
- Laboratoire de Chimie Biologique Structurale, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
13
|
Röhrig UF, Michielin O, Zoete V. Structure and Plasticity of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2021; 64:17690-17705. [PMID: 34907770 DOI: 10.1021/acs.jmedchem.1c01665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the discovery of the implication of indoleamine 2,3-dioxygenase 1 (IDO1) in tumoral immune resistance in 2003, the search for inhibitors has been intensely pursued both in academia and in pharmaceutical companies, supported by the publication of the first crystal structure of IDO1 in 2006. More recently, it has become clear that IDO1 is an important player in various biological pathways and diseases ranging from neurodegenerative diseases to infection and autoimmunity. Its inhibition may lead to clinical benefit in different therapeutic settings. At present, over 50 experimental structures of IDO1 in complex with different ligands are available in the Protein Data Bank. Our analysis of this wealth of structural data sheds new light on several open issues regarding IDO1's structure and function.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research─Lausanne Branch, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, 1066 Epalinges, Switzerland
| |
Collapse
|
14
|
Dai Q, Yan Y, Ning X, Li G, Yu J, Deng J, Yang L, Li GB. AncPhore: A versatile tool for anchor pharmacophore steered drug discovery with applications in discovery of new inhibitors targeting metallo- β-lactamases and indoleamine/tryptophan 2,3-dioxygenases. Acta Pharm Sin B 2021; 11:1931-1946. [PMID: 34386329 PMCID: PMC8343198 DOI: 10.1016/j.apsb.2021.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022] Open
Abstract
We herein describe AncPhore, a versatile tool for drug discovery, which is characterized by pharmacophore feature analysis and anchor pharmacophore (i.e., most important pharmacophore features) steered molecular fitting and virtual screening. Comparative analyses of numerous protein–ligand complexes using AncPhore revealed that anchor pharmacophore features are biologically important, commonly associated with protein conservative characteristics, and have significant contributions to the binding affinity. Performance evaluation of AncPhore showed that it had substantially improved prediction ability on different types of target proteins including metalloenzymes by considering the specific contributions and diversity of anchor pharmacophore features. To demonstrate the practicability of AncPhore, we screened commercially available chemical compounds and discovered a set of structurally diverse inhibitors for clinically relevant metallo-β-lactamases (MBLs); of them, 4 and 6 manifested potent inhibitory activity to VIM-2, NDM-1 and IMP-1 MBLs. Crystallographic analyses of VIM-2:4 complex revealed the precise inhibition mode of 4 with VIM-2, highly consistent with the defined anchor pharmacophore features. Besides, we also identified new hit compounds by using AncPhore for indoleamine/tryptophan 2,3-dioxygenases (IDO/TDO), another class of clinically relevant metalloenzymes. This work reveals anchor pharmacophore as a valuable concept for target-centered drug discovery and illustrates the potential of AncPhore to efficiently identify new inhibitors for different types of protein targets.
Collapse
Key Words
- AMPC, asian mouse phenotyping consortium
- AP, anchor pharmacophore
- AR, aromatic ring
- AUC, area under the curve
- Anchor pharmacophore
- BACE1, beta-secretase 1
- BRD4, bromodomain-containing protein 4
- CA, carbonic anhydrase
- CA2, carbonic anhydrase 2
- CDK2, cyclin-dependent kinase 2
- CTS, cathepsins
- CV, covalent bonding
- CatK, cathepsin K
- EF, enrichment factor
- EX, exclusion volume
- GA, genetic algorithm
- HA, hydrogen-bond acceptor
- HD, hydrogen-bond donor
- HIV-P, human immunodeficiency virus protease
- HIV1-P, human immunodeficiency virus type 1 protease
- HY, hydrophobic
- IDO1, indoleamine 2,3-dioxygenase 1
- IMP, imipenemase
- Indoleamine 2,3-dioxygenase
- LE, ligand efficiency
- MAPK14, mitogen-activated protein kinase 14
- MB, metal coordination
- MBL, metallo-β-lactamase
- MIC, minimum inhibitory concentration
- MMP, matrix metalloproteinase
- MMP13, matrix metallopeptidase 13
- Metallo-β-lactamase
- Metalloenzyme
- NDM, new delhi MBL
- NE, negatively charged center
- NP, without anchor pharmacophore features
- PO, positively charged center
- RMSD, root mean square deviation
- ROC curve, receiver operating characteristic curve
- ROCK1, rho-associated protein kinase 1
- RT, reverse transcriptase
- RTK, receptor tyrosine kinase
- SBL, serine beta lactamase
- SSEL, secondary structure element length
- STK, serine threonine kinase
- TDO, tryptophan 2,3-dioxygenase
- TDSS, torsion-driving systematic search
- TNKS2, tankyrase 2
- Tryptophan 2,3-dioxygenase
- VEGFR2, vascular endothelial growth factor receptor 2
- VIM, verona integron-encoded MBL
- Virtual screening
Collapse
|
15
|
Base-promoted relay reaction of heterocyclic ketene aminals with o-difluorobenzene derivatives for the highly site-selective synthesis of functionalized indoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kassab SE, Mowafy S. Structural Basis of Selective Human Indoleamine-2,3-dioxygenase 1 (hIDO1) Inhibition. ChemMedChem 2021; 16:3149-3164. [PMID: 34174026 DOI: 10.1002/cmdc.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Indexed: 11/08/2022]
Abstract
hIDO1 is a heme-dioxygenase overexpressed in the tumor microenvironment and is implicated in the survival of cancer cells. Metabolism of tryptophan to N-formyl-kynurenine by hIDO1 leads to immune suppression to result in cancer cell immune escape. In this article, we discuss the discovery of selective hIDO1 inhibitors for therapeutic intervention that have been promoted to clinical trials and for which crystallographic structural information is available for the respective inhibitor-enzyme complex. The structural insights are based on the complex crystal structures and the relative biological data profiles. The structural basis of selective hIDO1 inhibition, as discussed herein, opens new avenues to the discovery of novel inhibitors with improved activity profiles, selectivity, and distinct structure frameworks.
Collapse
Affiliation(s)
- Shaymaa Emam Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt.,Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States of America
| |
Collapse
|
17
|
Zheng Y, Stafford PM, Stover KR, Mohan DC, Gupta M, Keske EC, Schiavini P, Villar L, Wu F, Kreft A, Thomas K, Raaphorst E, Pasangulapati JP, Alla SR, Sharma S, Mittapalli RR, Sagamanova I, Johnson SL, Reed MA, Weaver DF. A Series of 2-((1-Phenyl-1H-imidazol-5-yl)methyl)-1H-indoles as Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. ChemMedChem 2021; 16:2195-2205. [PMID: 33759400 DOI: 10.1002/cmdc.202100107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising therapeutic target in cancer immunotherapy and neurological disease. Thus, searching for highly active inhibitors for use in human cancers is now a focus of widespread research and development efforts. In this study, we report the structure-based design of 2-(5-imidazolyl)indole derivatives, a series of novel IDO1 inhibitors which have been designed and synthesized based on our previous study using N1-substituted 5-indoleimidazoles. Among these, we have identified one with a strong IDO1 inhibitory activity (IC50 =0.16 μM, EC50 =0.3 μM). Structural-activity relationship (SAR) and computational docking simulations suggest that a hydroxyl group favorably interacts with a proximal Ser167 residue in Pocket A, improving IDO1 inhibitory potency. The brain penetrance of potent compounds was estimated by calculation of the Blood Brain Barrier (BBB) Score and Brain Exposure Efficiency (BEE) Score. Many compounds had favorable scores and the two most promising compounds were advanced to a pharmacokinetic study which demonstrated that both compounds were brain penetrant. We have thus discovered a flexible scaffold for brain penetrant IDO1 inhibitors, exemplified by several potent, brain penetrant, agents. With this promising scaffold, we provide herein a basis for further development of brain penetrant IDO1 inhibitors.
Collapse
Affiliation(s)
- Yong Zheng
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paul M Stafford
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Darapaneni Chandra Mohan
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Eric C Keske
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paolo Schiavini
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Laura Villar
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Alexander Kreft
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kiersten Thomas
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Elana Raaphorst
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Jagadeesh P Pasangulapati
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Siva R Alla
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Simmi Sharma
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Ramana R Mittapalli
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Irina Sagamanova
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Shea L Johnson
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Kim M, Tomek P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front Immunol 2021; 12:636081. [PMID: 33708223 PMCID: PMC7940516 DOI: 10.3389/fimmu.2021.636081] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.
Collapse
Affiliation(s)
- Minah Kim
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Galardon E. Efficient C3-alkylsulfenylation of indoles under mild conditions using Lewis acid-activated 8-quinolinethiosulfonates. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Wu Y, Zhang Y, Chen X, Hu Y, Dong G, Guo Y, Sheng C. A theranostic probe of indoleamine 2,3-dioxygenase 1 (IDO1) for small molecule cancer immunotherapy. Eur J Med Chem 2021; 213:113163. [PMID: 33482599 DOI: 10.1016/j.ejmech.2021.113163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Discovering novel small molecules for cancer immunotherapy represents a promising but challenging strategy in future cancer treatment. Herein, we designed the first theranostic fluorescent probes to efficiently detect and inhibit the enzymatic activity of 2,3-dioxygenase 1 (IDO1). Probe 6b is a highly active IDO1 inhibitor (IC50 = 12 nM, Cellular IC50 = 10 nM), which can sensitively and specifically detect endogenous IDO1 in living cells. Furthermore, as a theranostic probe, 6b showed excellent in vivo antitumor efficacy in the CT26 xenograft mouse model as well. Therefore, it can be applied as a valuable chemical tool for better understanding the immunotherapy mechanism of IDO1 and improving the therapeutic efficiency.
Collapse
Affiliation(s)
- Ying Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yanhui Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an, 710127, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an, 710127, China
| | - Yulu Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an, 710127, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an, 710127, China.
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
21
|
Pham KN, Lewis-Ballester A, Yeh SR. Conformational Plasticity in Human Heme-Based Dioxygenases. J Am Chem Soc 2020; 143:1836-1845. [PMID: 33373218 DOI: 10.1021/jacs.0c09970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human indoleamine 2,3-dioxygenase 1 (hIDO1) and human tryptophan dioxygenase (hTDO) are two important heme proteins that degrade the essential amino acid, l-tryptophan (Trp), along the kynurenine pathway. The two enzymes share a similar active site structure and an analogous catalytic mechanism, but they exhibit a variety of distinct functional properties. Here we used carbon monoxide (CO) as a structural probe to interrogate how the functionalities of the two enzymes are encoded in their structures. With X-ray crystallography, we detected an unexpected photochemical intermediate trapped in a crystal of the hIDO1-CO-Trp complex, where CO is photolyzed from the heme iron by X-rays at cryogenic temperatures (100 K). The CO photolysis triggers a large-scale migration of the substrate Trp, as well as the photolyzed CO, from the active site to a temporary binding site, Sa*. It is accompanied by a large conformational change to an active site loop, JK-LoopC, despite the severely restricted protein motion under the frozen conditions, which highlights the remarkable conformational plasticity of the hIDO1 protein. Comparative studies of a crystal of the hTDO-CO-Trp complex show that CO and Trp remain bound in the active site under comparable X-ray illumination, indicating a much more rigid protein architecture. The data offer important new insights into the structure and function relationships of the heme-based dioxygenases and provide new guidelines for structure-based design of inhibitors targeting them.
Collapse
Affiliation(s)
- Khoa N Pham
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, New York 10461, United States
| | - Ariel Lewis-Ballester
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, New York 10461, United States
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, The Bronx, New York 10461, United States
| |
Collapse
|
22
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
23
|
Mirgaux M, Leherte L, Wouters J. Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1211-1221. [DOI: 10.1107/s2059798320013510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 has sparked interest as an immunotherapeutic target in cancer research. Its structure includes a loop, named the JK-loop, that controls the orientation of the substrate or inhibitor within the active site. However, little has been reported about the crystal structure of this loop. In the present work, the conformation of the JK-loop is determined for the first time in the presence of the heme cofactor in the active site through X-ray diffraction experiments (2.44 Å resolution). Molecular-dynamics trajectories were also obtained to provide dynamic information about the loop according to the presence of cofactor. This new structural and dynamic information highlights the importance of the JK-loop in confining the labile heme cofactor to the active site.
Collapse
|
24
|
Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2,3-dioxygenases as important future therapeutic targets. Pharmacol Ther 2020; 221:107746. [PMID: 33212094 DOI: 10.1016/j.pharmthera.2020.107746] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Conversion of tryptophan to N-formylkynurenine is the first and rate-limiting step of the tryptophan metabolic pathway (i.e., the kynurenine pathway). This conversion is catalyzed by three enzyme isoforms: indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). As this pathway generates numerous metabolites that are involved in various pathological conditions, IDOs and TDO represent important targets for therapeutic intervention. This pathway has especially drawn attention due to its importance in tumor resistance. Over the last decade, a large number of IDO and TDO inhibitors have been developed, many of which have entered clinical trials. Here, detailed structural comparisons of these three enzymes (with emphasis on their active sites), their involvement in cellular signaling, and their role(s) in pathological conditions are discussed. Furthermore, the most important recent inhibitors described in papers and patents and involved in clinical trials are reviewed, with a focus on both selective and multiple inhibitors. A short overview of the biochemical and cellular assays used for inhibitory potency evaluation is also presented. This review summarizes recent advances on IDO and TDO as potential drug targets, and provides the key features and perspectives for further research and development of potent inhibitors of the kynurenine pathway.
Collapse
Affiliation(s)
- Ana Dolšak
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Sun L. Advances in the discovery and development of selective heme-displacing IDO1 inhibitors. Expert Opin Drug Discov 2020; 15:1223-1232. [DOI: 10.1080/17460441.2020.1781811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Zheng Z, Guo X, Yu M, Wang X, Lu H, Li F, Wang J. Identification of Human IDO1 Enzyme Activity by Using Genetically Encoded Nitrotyrosine. Chembiochem 2020; 21:1593-1596. [DOI: 10.1002/cbic.201900735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaopeng Zheng
- Department of DermatologyThe Affiliated Hospital of Guizhou Medical UniversityDepartment of Immunology, orgDiv/>School of Basic Medical ScienceGuizhou Medical University Beijing Road Yunyan District Guiyang 550005 P.R. China
- Department of OncologyGuizhou People's Hospital Nanming District Guiyang 550005 P.R. China
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Xuzhen Guo
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
- College of Life SciencesUniversity of Chinese Academy of Sciences 19 Yuquan Road Shijingshan District Beijing 100049 P.R. China
| | - Minling Yu
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Xiaoyan Wang
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Hongguang Lu
- Department of DermatologyThe Affiliated Hospital of Guizhou Medical UniversityDepartment of Immunology, orgDiv/>School of Basic Medical ScienceGuizhou Medical University Beijing Road Yunyan District Guiyang 550005 P.R. China
| | - Fahui Li
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Jiangyun Wang
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
- College of Life SciencesUniversity of Chinese Academy of Sciences 19 Yuquan Road Shijingshan District Beijing 100049 P.R. China
| |
Collapse
|