1
|
Liu J, Li J, Huang Y, Li T, Xu C, Tao Z, Ji W, Huang X. Liquid-to-gel transitions of phase-separated coacervate microdroplets enabled by endogenous enzymatic catalysis. J Colloid Interface Sci 2025; 692:137486. [PMID: 40184654 DOI: 10.1016/j.jcis.2025.137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) play a crucial role in organizing biochemical processes within living cells. The phase transition of these condensates from a functional liquid-like state to a pathological gel-like or solid-like state is believed to be linked to cellular dysfunction and various diseases. Here, we present a biomimetic model to demonstrate that endogenous enzyme-catalyzed crosslinking within condensate-mimicked coacervate microdroplets can promote a liquid-to-gel phase transition. We identify the transformation in physical characteristics of the densely packed microdroplets including reduced internal mobility, increased storage modulus, selective blocking of large nanoparticles, and enhanced salt resistance. The reversible dynamics of gel-like microdroplets mediated by ionic strength exhibited a limited release and recapture of sequestered positively charged guest molecules. Furthermore, we validate that the phase transition contributes to a restricted biochemical process through an enzymatic cascade. Overall, this work represents an adaptive in vitro platform for exploring the phase transitions associated with the physiological functions of biomolecular condensates and offers chemical insights and perspectives for investigating potential mechanisms involved in phase transitions.
Collapse
Affiliation(s)
- Jian Liu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Junbo Li
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China.
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Tong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Cheng Xu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyu Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Wei Ji
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
2
|
Huang J, Zhang Y, Ren S, Wang Z, Jin X, Lu X, Zhang Y, Min X, Ge S, Zhang J, Xia N. MambaPhase: deep learning for liquid-liquid phase separation protein classification. Brief Bioinform 2025; 26:bbaf230. [PMID: 40421658 PMCID: PMC12107247 DOI: 10.1093/bib/bbaf230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/04/2025] [Accepted: 05/02/2025] [Indexed: 05/28/2025] Open
Abstract
Liquid-liquid phase separation plays a critical role in cellular processes, including protein aggregation and RNA metabolism, by forming membraneless subcellular structures. Accurate identification of phase-separated proteins is essential for understanding and controlling these processes. Traditional identification methods are effective but often costly and time-consuming. The recent machine learning methods have reduced these costs, but most models are restricted to classifying scaffold and client proteins with limited experimental conditions. To address this limitation, we developed a Mamba-based encoder using contrastive learning that incorporates separation probability, protein type, and experimental conditions. Our model achieved 95.2% accuracy in predicting phase-separated proteins and an ROCAUC score of 0.87 in classifying scaffold and client proteins. Further validation in the DgHBP-2 drug delivery system demonstrated its potential for condition modulation in drug development. This study provides an effective framework for the accurate identification and control of phase separation, facilitating advancements in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Jianwei Huang
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Youli Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Shulin Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- Information and Networking Center, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Ziyang Wang
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Xiaocheng Jin
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Xiaoli Lu
- Information and Networking Center, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Yu Zhang
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Xiaoping Min
- Institute of Artificial Intelligence, School of Informatics, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, No. 422 Siming South Rd, 361005, Xiamen, Fujian, China
| |
Collapse
|
3
|
Patel CK, Mallik A, Rath DK, Kumar R, Mukherjee TK. Coalescence-Driven Local Crowding Promotes Liquid-to-Solid-Like Phase Transition in a Homogeneous and Heterogeneous Droplet Assembly: Regulatory Role of Ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10562-10575. [PMID: 40229215 DOI: 10.1021/acs.langmuir.5c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Liquid-to-solid-like phase transition (LSPT) of disordered proteins via metastable liquid-like droplets is a well-documented phenomenon in biology and is linked to many pathological conditions including neurodegenerative diseases. However, very less is known about the early microscopic events and transient intermediates involved in the irreversible protein aggregation of functional globular proteins. Herein, using a range of microscopic and spectroscopic techniques, we show that the LSPT of a functional globular protein, human serum albumin (HSA), is exclusively driven by spontaneous coalescence of liquid-like droplets involving various transient intermediates in a temporal manner. We show that interdroplet communication via coalescence is essential for both initial aggregation and growth of amorphous aggregates within individual droplets, which subsequently transform to amyloid-like fibrils. Immobilized droplets neither show any nucleation nor any growth upon aging. Moreover, we found that the exchange of materials with the dilute dispersed phase has negligible influence on the LSPT of HSA. Our findings reveal that interfacial properties effectively modulate the feasibility and kinetics of LSPT of HSA via ligand binding, suggesting a possible regulatory mechanism that cells utilize to control the dynamics of LSPT. Furthermore, using a dynamic heterogeneous droplet assembly of two functional proteins, HSA and human serum transferrin (Tf), we show an intriguing phenomenon within the fused droplets where both liquid-like and solid-like phases coexist within the same droplet, which eventually transform to a mixed fibrillar assembly. These microscopic insights not only highlight the importance of interdroplet interactions behind the LSPT of biomolecules but also showcase its adverse effect on the structure and function of other functional proteins in a crowded and heterogeneous protein assembly.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Abhradip Mallik
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Deb Kumar Rath
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
4
|
Mukwaya V, Yu X, Yang S, Mann S, Dou H. Adaptive ATP-induced molecular condensation in membranized protocells. Proc Natl Acad Sci U S A 2025; 122:e2419507122. [PMID: 40127264 PMCID: PMC12002177 DOI: 10.1073/pnas.2419507122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) has been achieved in various cytomimetic (protocell) models, but controlling molecular condensation using noninert crowders to systematically alter protocell function remains challenging. Intracellular ATP levels influence protein-protein interactions, and dysregulation of ATP can alter cellular crowding dynamics, thereby disrupting the normal formation or dissolution of condensates. Here, we develop a membranized protocell model capable of endogenous LLPS and liquid-gel-like phase separation through precise manipulation of intermolecular interactions within semipermeable polysaccharide-based microcapsules (polysaccharidosomes, P-somes), prepared using microtemplate-guided assembly. We demonstrate that intraprotocellular diffusion-mediated LLPS can be extended into the liquid-gel-like domain by the uptake of the biologically active crowder ATP, resulting in a range of modalities dependent on the fine-tuning of molecular condensation. Endogenous enzyme activity in these crowded polysaccharidosomes is enhanced compared to free enzymes in solution, though this enhancement diminishes at higher levels of intraprotocellular condensation. Additionally, increased molecular crowding inhibits intraprotocell DNA strand displacement reactions. Our findings introduce an expedient and optimized approach to the batch construction of membranized protocell models with controllable molecular crowding and functional diversity. Our mix-incubate-wash protocol for inducing endogenous LLPS in membranized protocells offers potential applications in microreactor technology, environmental sensing, and the delivery and sustained release of therapeutics.
Collapse
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
5
|
Li G, Yuan C, Yan X. Peptide-mediated liquid-liquid phase separation and biomolecular condensates. SOFT MATTER 2025; 21:1781-1812. [PMID: 39964249 DOI: 10.1039/d4sm01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a cornerstone of cellular organization, driving the formation of biomolecular condensates that regulate diverse biological processes and inspire innovative applications. This review explores the molecular mechanisms underlying peptide-mediated LLPS, emphasizing the roles of intermolecular interactions such as hydrophobic effects, electrostatic interactions, and π-π stacking in phase separation. The influence of environmental factors, such as pH, temperature, ionic strength, and molecular crowding on the stability and dynamics of peptide coacervates is examined, highlighting their tunable properties. Additionally, the unique physicochemical properties of peptide coacervates, including their viscoelastic behavior, interfacial dynamics, and stimuli-responsiveness, are discussed in the context of their biological relevance and engineering potential. Peptide coacervates are emerging as versatile platforms in biotechnology and medicine, particularly in drug delivery, tissue engineering, and synthetic biology. By integrating fundamental insights with practical applications, this review underscores the potential of peptide-mediated LLPS as a transformative tool for advancing science and healthcare.
Collapse
Affiliation(s)
- Guangle Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
R. Tejedor A, Aguirre Gonzalez A, Maristany MJ, Chew PY, Russell K, Ramirez J, Espinosa JR, Collepardo-Guevara R. Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates. ACS CENTRAL SCIENCE 2025; 11:302-321. [PMID: 40028356 PMCID: PMC11869137 DOI: 10.1021/acscentsci.4c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
Biomolecular condensates composed of highly charged biomolecules, such as DNA, RNA, chromatin, and nucleic-acid binding proteins, are ubiquitous in the cell nucleus. The biophysical properties of these charge-rich condensates are largely regulated by electrostatic interactions. Residue-resolution coarse-grained models that describe solvent and ions implicitly are widely used to gain mechanistic insights into the biophysical properties of condensates, offering transferability, computational efficiency, and accurate predictions for multiple systems. However, their predictive accuracy diminishes for charge-rich condensates due to the implicit treatment of solvent and ions. Here, we present Mpipi-Recharged, a residue-resolution coarse-grained model that improves the description of charge effects in biomolecular condensates containing disordered proteins, multidomain proteins, and/or disordered single-stranded RNAs. Mpipi-Recharged introduces a pair-specific asymmetric Yukawa electrostatic potential, informed by atomistic simulations. We show that this asymmetric coarse-graining of electrostatic forces captures intricate effects, such as charge blockiness, stoichiometry variations in complex coacervates, and modulation of salt concentration, without requiring explicit solvation. Mpipi-Recharged provides excellent agreement with experiments in predicting the phase behavior of highly charged condensates. Overall, Mpipi-Recharged improves the computational tools available to investigate the physicochemical mechanisms regulating biomolecular condensates, enhancing the scope of computer simulations in this field.
Collapse
Affiliation(s)
- Andrés R. Tejedor
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anne Aguirre Gonzalez
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. Julia Maristany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Maxwell
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Pin Yu Chew
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kieran Russell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jorge Ramirez
- Department
of Chemical Engineering, Universidad Politécnica
de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jorge R. Espinosa
- Department
of Physical-Chemistry Universidad Complutense
de Madrid, Av. Complutense s/n, Madrid 28040, Spain
| | - Rosana Collepardo-Guevara
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Maxwell
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Genetics University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
7
|
Jeon HJ, Lee JH, Park AJ, Choi JM, Kang K. A Single Amino Acid Model for Hydrophobically Driven Liquid-Liquid Phase Separation. Biomacromolecules 2025; 26:1075-1085. [PMID: 39865610 DOI: 10.1021/acs.biomac.4c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This study proposes fluorenylmethoxycarbonyl (Fmoc)-protected single amino acids (Fmoc-AAs) as a minimalistic model system to investigate liquid-liquid phase separation (LLPS) and the elusive liquid-to-solid transition of condensates. We demonstrated that Fmoc-AAs exhibit LLPS depending on the pH and ionic strength, primarily driven by hydrophobic interactions. Systematic examination of the conditions under which each Fmoc-AA undergoes LLPS revealed distinct residue-dependent trends in the critical concentrations and phase behavior. Importantly, we elucidated the liquid-to-solid transition process, suggesting that it may be driven by a molecular mechanism different from that of LLPS. Fmoc-AA condensates showed promise for biomolecular enrichment and catalytic applications. This work provides significant insights into the molecular mechanisms of LLPS and the subsequent liquid-to-solid transition, offering a robust platform for future studies related to protocells and protein aggregation diseases.
Collapse
Affiliation(s)
- Hyo Jae Jeon
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Joo Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Ae Ji Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| |
Collapse
|
8
|
Sun Y, Hsieh T, Lin C, Shao W, Lin Y, Huang J. A Few Charged Residues in Galectin-3's Folded and Disordered Regions Regulate Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402570. [PMID: 39248370 PMCID: PMC11538691 DOI: 10.1002/advs.202402570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Proteins with intrinsically disordered regions (IDRs) often undergo phase separation to control their functions spatiotemporally. Changing the pH alters the protonation levels of charged sidechains, which in turn affects the attractive or repulsive force for phase separation. In a cell, the rupture of membrane-bound compartments, such as lysosomes, creates an abrupt change in pH. However, how proteins' phase separation reacts to different pH environments remains largely unexplored. Here, using extensive mutagenesis, NMR spectroscopy, and biophysical techniques, it is shown that the assembly of galectin-3, a widely studied lysosomal damage marker, is driven by cation-π interactions between positively charged residues in its folded domain with aromatic residues in the IDR in addition to π-π interaction between IDRs. It is also found that the sole two negatively charged residues in its IDR sense pH changes for tuning the condensation tendency. Also, these two residues may prevent this prion-like IDR domain from forming rapid and extensive aggregates. These results demonstrate how cation-π, π-π, and electrostatic interactions can regulate protein condensation between disordered and structured domains and highlight the importance of sparse negatively charged residues in prion-like IDRs.
Collapse
Affiliation(s)
- Yung‐Chen Sun
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Tsung‐Lun Hsieh
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Chia‐I Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Wan‐Yu Shao
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Yu‐Hao Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Jie‐rong Huang
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| |
Collapse
|
9
|
Patel CK, Mukherjee TK. Biomolecular Condensation of Trypsin Prevents Autolysis and Promotes Ca 2+-Mediated Activation of Esterase Activity. Biomacromolecules 2024; 25:6082-6092. [PMID: 39116325 DOI: 10.1021/acs.biomac.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The presence of Ca2+ ions is known to facilitate the activity of trypsin-like serine proteases via structural stabilization against thermal denaturation and autolysis. Herein, we report a new and hidden regulatory role of Ca2+ in the catalytic pathways of trypsin and α-chymotrypsin under physiological conditions. We discovered that macromolecular crowding promotes spontaneous homotypic condensation of trypsin via liquid-liquid phase separation to yield membraneless condensates over a broad range of concentrations, pH, and temperature, which are stabilized by multivalent hydrophobic interactions. Interestingly, we found that Ca2+ binding in the calcium binding loop reversibly regulates the condensation of trypsin and α-chymotrypsin. Spontaneous condensation effectively prevents autolysis of trypsin and preserves its native-like esterase activity for a prolonged period of time. It has also been found that phase-separated trypsin responds to Ca2+-dependent activation of its esterase activity even after 14 days of storage while free trypsin failed to do so. The present study highlights an important physiological aspect by which cells can spatiotemporally regulate the biocatalytic efficacy of trypsin-like serine proteases via Ca2+-signaling.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
10
|
Le NTK, Park E, Kim H, Park J, Kang K. Viscosity Regulation of Chemically Simple Condensates. Biomacromolecules 2024; 25:5959-5967. [PMID: 39166772 DOI: 10.1021/acs.biomac.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study investigates the viscosity and liquid-solid transition behavior of biomolecular condensates formed by polyarginine chains (Rx) of varying lengths and citric acid (CA) derivatives. By condensing Rx chains of various lengths with CA derivatives, we showed that the shorter Rx chains attenuate the high aggregation tendency of the longer chains when condensed with CA. A mixture of different Rx lengths exhibited uniform intracondensate distribution, while its mobility largely depended on the ratio of the longer Rx chain. Our findings demonstrate a simple method to modulate condensate properties by adjusting the composition of scaffold molecules, shedding light on the role of molecular composition in controlling condensate viscosity and transition dynamics. This research contributes to a deeper understanding of biomolecular condensation processes and offers insights into potential strategies for manipulating condensate properties for various applications, including in the fields of synthetic biology and disease therapeutics in the future.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Eunbin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| |
Collapse
|
11
|
Levenson R, Malady B, Lee T, Al Sabeh Y, Gordon MJ, Morse DE. Protein Charge Neutralization Is the Proximate Driver Dynamically Tuning Reflectin Assembly. Int J Mol Sci 2024; 25:8954. [PMID: 39201640 PMCID: PMC11354490 DOI: 10.3390/ijms25168954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Reflectin is a cationic, block copolymeric protein that mediates the dynamic fine-tuning of color and brightness of light reflected from nanostructured Bragg reflectors in iridocyte skin cells of squids. In vivo, the neuronally activated phosphorylation of reflectin triggers its assembly, driving osmotic dehydration of the membrane-bounded Bragg lamellae containing the protein to simultaneously shrink the lamellar thickness and spacing while increasing their refractive index contrast, thus tuning the wavelength and increasing the brightness of reflectance. In vitro, we show that the reduction in repulsive net charge of the purified, recombinant reflectin-either (for the first time) by generalized anionic screening with salt or by pH titration-drives a finely tuned, precisely calibrated increase in the size of the resulting multimeric assemblies. The calculated effects of phosphorylation in vivo are consistent with these effects observed in vitro. The precise proportionality between the assembly size and charge neutralization is enabled by the demonstrated rapid dynamic arrest of multimer growth by a continual, equilibrium tuning of the balance between the protein's Coulombic repulsion and short-range interactive forces. The resulting stability of reflectin assemblies with time ensures a reciprocally precise control of the particle number concentration, encoding a precise calibration between the extent of neuronal signaling, osmotic pressure, and the resulting optical changes. The charge regulation of reflectin assembly precisely fine-tunes a colligative property-based nanostructured biological machine. A physical mechanism is proposed.
Collapse
Affiliation(s)
- Robert Levenson
- Life Sciences, Soka University of America, Aliso Viejo, CA 92656, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Brandon Malady
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Tyler Lee
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Yahya Al Sabeh
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| | - Michael J. Gordon
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
| | - Daniel E. Morse
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-5100, USA
| |
Collapse
|
12
|
Liu J, Jiang Y, Liu R, Jin J, Wei S, Ji W, He X, Wu F, Yu P, Mao L. Vitamin C Drives Reentrant Actin Phase Transition: Biphasic Exocytosis Regulation Revealed by Single-Vesicle Electrochemistry. J Am Chem Soc 2024; 146:17747-17756. [PMID: 38889317 DOI: 10.1021/jacs.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Unveiling molecular mechanisms that dominate protein phase dynamics has been a pressing need for deciphering the intricate intracellular modulation machinery. While ions and biomacromolecules have been widely recognized for modulating protein phase separations, effects of small molecules that essentially constitute the cytosolic chemical atmosphere on the protein phase behaviors are rarely understood. Herein, we report that vitamin C (VC), a key small molecule for maintaining a reductive intracellular atmosphere, drives reentrant phase transitions of myosin II/F-actin (actomyosin) cytoskeletons. The actomyosin bundle condensates dissemble in the low-VC regime and assemble in the high-VC regime in vitro or inside neuronal cells, through a concurrent myosin II protein aggregation-dissociation process with monotonic VC concentration increase. Based on this finding, we employ in situ single-cell and single-vesicle electrochemistry to demonstrate the quantitative modulation of catecholamine transmitter vesicle exocytosis by intracellular VC atmosphere, i.e., exocytotic release amount increases in the low-VC regime and decreases in the high-VC regime. Furthermore, we show how VC regulates cytomembrane-vesicle fusion pore dynamics through counteractive or synergistic effects of actomyosin phase transitions and the intracellular free calcium level on membrane tensions. Our work uncovers the small molecule-based reversive protein phase regulatory mechanism, paving a new way to chemical neuromodulation and therapeutic repertoire expansion.
Collapse
Affiliation(s)
- Jing Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ran Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jing Jin
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shiyi Wei
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiulan He
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Sood A, Zhang B. Preserving condensate structure and composition by lowering sequence complexity. Biophys J 2024; 123:1815-1826. [PMID: 38824391 PMCID: PMC11267431 DOI: 10.1016/j.bpj.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Biomolecular condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating heterogeneous, nonspecific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that although spacer interactions contribute to phase separation and co-condensation, their nonspecific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined networked structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low-complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
14
|
Zhu R, Wang R, Li J, Chen M, Qiu L, Bai S. An artificial liquid-liquid phase separation-driven silk fibroin-based adhesive for rapid hemostasis and wound sealing. Acta Biomater 2024; 182:14-27. [PMID: 38750918 DOI: 10.1016/j.actbio.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024]
Abstract
The powerful adhesion systems of marine organisms have inspired the development of artificial protein-based bioadhesives. However, achieving robust wet adhesion using artificial bioadhesives remains technically challenging because the key element of liquid-liquid phase separation (LLPS)-driven complex coacervation in natural adhesion systems is often ignored. In this study, mimicking the complex coacervation phenomenon of marine organisms, an artificial protein-based adhesive hydrogel (SFG hydrogel) was developed by adopting the LLPS-mediated coacervation of the natural protein silk fibroin (SF) and the anionic surfactant sodium dodecylbenzene sulfonate (SDBS). The assembled SF/SDBS complex coacervate enabled precise spatial positioning and easy self-adjustable deposition on irregular substrate surfaces, allowing for tight contact. Spontaneous liquid-to-solid maturation promoted the phase transition of the SF/SDBS complex coacervate to form the SFG hydrogel in situ, enhancing its bulk cohesiveness and interfacial adhesion. The formed SFG hydrogel exhibited intrinsic advantages as a new type of artificial protein-based adhesive, including good biocompatibility, robust wet adhesion, rapid blood-clotting capacity, and easy operation. In vitro and in vivo experiments demonstrated that the SFG hydrogel not only achieved instant and effective hemostatic sealing of tissue injuries but also promoted wound healing and tissue regeneration, thus advancing its clinical applications. STATEMENT OF SIGNIFICANCE: Marine mussels utilize the liquid-liquid phase separation (LLPS) strategy to induce the supramolecular assembly of mussel foot proteins, which plays a critical role in strong underwater adhesion of mussel foot proteins. Herein, an artificial protein-based adhesive hydrogel (named SFG hydrogel) was reported by adopting the LLPS-mediated coacervation of natural protein silk fibroin (SF) and anionic surfactant sodium dodecylbenzene sulfonate (SDBS). The assembled SFG hydrogel enabled the precise spatial positioning and easy self-adjustable deposition on substrate surfaces with irregularities, allowing tight interfacial adhesion and cohesiveness. The SFG hydrogel not only achieved instant and effective hemostatic sealing of tissue injuries but also promoted wound healing and tissue regeneration, exhibiting intrinsic advantages as a new type of artificial protein-based bioadhesives.
Collapse
Affiliation(s)
- Rui Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ruiheng Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jie Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Minghui Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lingyu Qiu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
15
|
Zhu L, Pan Y, Hua Z, Liu Y, Zhang X. Ionic Effect on the Microenvironment of Biomolecular Condensates. J Am Chem Soc 2024; 146:14307-14317. [PMID: 38722189 DOI: 10.1021/jacs.4c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Biomolecules such as proteins and RNA could organize to form condensates with distinct microenvironments through liquid-liquid phase separation (LLPS). Recent works have demonstrated that the microenvironment of biomolecular condensates plays a crucial role in mediating biological activities, such as the partition of biomolecules, and the subphase organization of the multiphasic condensates. Ions could influence the phase transition point of LLPS, following the Hofmeister series. However, the ion-specific effect on the microenvironment of biomolecular condensates remains unknown. In this study, we utilized fluorescence lifetime imaging microscopy (FLIM), fluorescence recovery after photobleaching (FRAP), and microrheology techniques to investigate the ion effect on the microenvironment of condensates. We found that ions significantly affect the microenvironment of biomolecular condensates: salting-in ions increase micropolarity and reduce the microviscosity of the condensate, while salting-out ions induce opposing effects. Furthermore, we manipulate the miscibility and multilayering behavior of condensates through ion-specific effects. In summary, our work provides the first quantitative survey of the microenvironment of protein condensates in the presence of ions from the Hofmeister series, demonstrating how ions impact micropolarity, microviscosity, and viscoelasticity of condensates. Our results bear implications on how membrane-less organelles would exhibit varying microenvironments in the presence of continuously changing cellular conditions.
Collapse
Affiliation(s)
- Longchen Zhu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. China
| | - Yifei Pan
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. China
| | - Ziyi Hua
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, P. R. China
| |
Collapse
|
16
|
Ye S, Latham AP, Tang Y, Hsiung CH, Chen J, Luo F, Liu Y, Zhang B, Zhang X. Micropolarity governs the structural organization of biomolecular condensates. Nat Chem Biol 2024; 20:443-451. [PMID: 37973891 PMCID: PMC10978266 DOI: 10.1038/s41589-023-01477-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Membraneless organelles within cells have unique microenvironments that play a critical role in their functions. However, how microenvironments of biomolecular condensates affect their structure and function remains unknown. In this study, we investigated the micropolarity and microviscosity of model biomolecular condensates by fluorescence lifetime imaging coupling with environmentally sensitive fluorophores. Using both in vitro and in cellulo systems, we demonstrated that sufficient micropolarity difference is key to forming multilayered condensates, where the shells present more polar microenvironments than the cores. Furthermore, micropolarity changes were shown to be accompanied by conversions of the layered structures. Decreased micropolarities of the granular components, accompanied by the increased micropolarities of the dense fibrillar components, result in the relocation of different nucleolus subcompartments in transcription-stalled conditions. Our results demonstrate the central role of the previously overlooked micropolarity in the regulation of structures and functions of membraneless organelles.
Collapse
Affiliation(s)
- Songtao Ye
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yuqi Tang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chia-Heng Hsiung
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Junlin Chen
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Feng Luo
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
17
|
Rai S, Pramanik S, Mukherjee S. Deciphering the liquid-liquid phase separation induced modulation in the structure, dynamics, and enzymatic activity of an ordered protein β-lactoglobulin. Chem Sci 2024; 15:3936-3948. [PMID: 38487243 PMCID: PMC10935713 DOI: 10.1039/d3sc06802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
Owing to the significant role in the subcellular organization of biomolecules, physiology, and the realm of biomimetic materials, studies related to biomolecular condensates formed through liquid-liquid phase separation (LLPS) have emerged as a growing area of research. Despite valuable contributions of prior research, there is untapped potential in exploring the influence of phase separation on the conformational dynamics and enzymatic activities of native proteins. Herein, we investigate the LLPS of β-lactoglobulin (β-LG), a non-intrinsically disordered protein, under crowded conditions. In-depth characterization through spectroscopic and microscopic techniques revealed the formation of dynamic liquid-like droplets, distinct from protein aggregates, driven by hydrophobic interactions. Our analyses revealed that phase separation can alter structural flexibility and photophysical properties. Importantly, the phase-separated β-LG exhibited efficient enzymatic activity as an esterase; a characteristic seemingly exclusive to β-LG droplets. The droplets acted as robust catalytic crucibles, providing an ideal environment for efficient ester hydrolysis. Further investigation into the catalytic mechanism suggested the involvement of specific amino acid residues, rather than general acid or base catalysis. Also, the alteration in conformational distribution caused by phase separation unveils the latent functionality. Our study delineates the understanding of protein phase separation and insights into the diverse catalytic strategies employed by proteins. It opens exciting possibilities for designing functional artificial compartments based on phase-separated biomolecules.
Collapse
Affiliation(s)
- Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| | - Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
18
|
Le NTK, Kang EJ, Park JH, Kang K. Catechol-Amyloid Interactions. Chembiochem 2023; 24:e202300628. [PMID: 37850717 DOI: 10.1002/cbic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
This review introduces multifaceted mutual interactions between molecules containing a catechol moiety and aggregation-prone proteins. The complex relationships between these two molecular species have previously been elucidated primarily in a unidirectional manner, as demonstrated in cases involving the development of catechol-based inhibitors for amyloid aggregation and the elucidation of the role of functional amyloid fibers in melanin biosynthesis. This review aims to consolidate scattered clues pertaining to catechol-based amyloid inhibitors, functional amyloid scaffold of melanin biosynthesis, and chemically designed peptide fibers for providing chemical insights into the role of the local three-dimensional orientation of functional groups in manifesting such interactions. These orientations may play crucial, yet undiscovered, roles in various supramolecular structures.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul, 03760, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| |
Collapse
|
19
|
Sementa D, Dave D, Fisher RS, Wang T, Elbaum-Garfinkle S, Ulijn RV. Sequence-Tunable Phase Behavior and Intrinsic Fluorescence in Dynamically Interacting Peptides. Angew Chem Int Ed Engl 2023; 62:e202311479. [PMID: 37934145 DOI: 10.1002/anie.202311479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
A conceptual framework towards understanding biological condensed phases is emerging, derived from biological, biomimetic, and synthetic sequences. However, de novo peptide condensate design remains a challenge due to an incomplete understanding of the structural and interactive complexity. We designed peptide modules based on a simple repeat motif composed of tripeptide spacers (GSG, SGS, GLG) interspersed with adhesive amino acids (R/H and Y). We show, using sequence editing and a combination of computation and experiment, that n→π* interactions in GLG backbones are a dominant factor in providing sufficient backbone structure, which in turn regulates the water interface, collectively promoting liquid droplet formation. Moreover, these R(GLG)Y and H(GLG)Y condensates unexpectedly display sequence-dependent emission that is a consequence of their non-covalent network interactions, and readily observable by confocal microscopy.
Collapse
Affiliation(s)
- Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Dhwanit Dave
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| | - Rachel S Fisher
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Tong Wang
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Shana Elbaum-Garfinkle
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
21
|
Owyong TC, Zhao J, Hong Y. Small molecule fluorescent probes for the study of protein phase separation. Curr Opin Chem Biol 2023; 76:102354. [PMID: 37364418 DOI: 10.1016/j.cbpa.2023.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Liquid-liquid phase separation (LLPS) and liquid-solid phase transitions (LSPT) play crucial roles in biological systems, including sorting biomolecules, facilitate the transport of substrates for assembly, and accelerate the formation of metabolic and signaling complexes. Efforts towards improved characterization and quantification of phase separated species remain of outstanding interest and priority. In this review, we cover recent advances and the strategies used with small molecule fluorescent probes for the study of phase separation.
Collapse
Affiliation(s)
- Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia; ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, VIC, 3010, Australia
| | - Jiamin Zhao
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| |
Collapse
|
22
|
Mangiarotti A, Siri M, Tam NW, Zhao Z, Malacrida L, Dimova R. Biomolecular condensates modulate membrane lipid packing and hydration. Nat Commun 2023; 14:6081. [PMID: 37770422 PMCID: PMC10539446 DOI: 10.1038/s41467-023-41709-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Membrane wetting by biomolecular condensates recently emerged as a key phenomenon in cell biology, playing an important role in a diverse range of processes across different organisms. However, an understanding of the molecular mechanisms behind condensate formation and interaction with lipid membranes is still missing. To study this, we exploited the properties of the dyes ACDAN and LAURDAN as nano-environmental sensors in combination with phasor analysis of hyperspectral and lifetime imaging microscopy. Using glycinin as a model condensate-forming protein and giant vesicles as model membranes, we obtained vital information on the process of condensate formation and membrane wetting. Our results reveal that glycinin condensates display differences in water dynamics when changing the salinity of the medium as a consequence of rearrangements in the secondary structure of the protein. Remarkably, analysis of membrane-condensates interaction with protein as well as polymer condensates indicated a correlation between increased wetting affinity and enhanced lipid packing. This is demonstrated by a decrease in the dipolar relaxation of water across all membrane-condensate systems, suggesting a general mechanism to tune membrane packing by condensate wetting.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| | - Macarena Siri
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Nicky W Tam
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743, Jena, Germany
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| |
Collapse
|
23
|
Blazquez S, Sanchez‐Burgos I, Ramirez J, Higginbotham T, Conde MM, Collepardo‐Guevara R, Tejedor AR, Espinosa JR. Location and Concentration of Aromatic-Rich Segments Dictates the Percolating Inter-Molecular Network and Viscoelastic Properties of Ageing Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207742. [PMID: 37386790 PMCID: PMC10477902 DOI: 10.1002/advs.202207742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/03/2023] [Indexed: 07/01/2023]
Abstract
Maturation of functional liquid-like biomolecular condensates into solid-like aggregates has been linked to the onset of several neurodegenerative disorders. Low-complexity aromatic-rich kinked segments (LARKS) contained in numerous RNA-binding proteins can promote aggregation by forming inter-protein β-sheet fibrils that accumulate over time and ultimately drive the liquid-to-solid transition of the condensates. Here, atomistic molecular dynamics simulations are combined with sequence-dependent coarse-grained models of various resolutions to investigate the role of LARKS abundance and position within the amino acid sequence in the maturation of condensates. Remarkably, proteins with tail-located LARKS display much higher viscosity over time than those in which the LARKS are placed toward the center. Yet, at very long timescales, proteins with a single LARKS-independently of its location-can still relax and form high viscous liquid condensates. However, phase-separated condensates of proteins containing two or more LARKS become kinetically trapped due to the formation of percolated β-sheet networks that display gel-like behavior. Furthermore, as a work case example, they demonstrate how shifting the location of the LARKS-containing low-complexity domain of FUS protein toward its center effectively precludes the accumulation of β-sheet fibrils in FUS-RNA condensates, maintaining functional liquid-like behavior without ageing.
Collapse
Affiliation(s)
- Samuel Blazquez
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Ignacio Sanchez‐Burgos
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Jorge Ramirez
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Tim Higginbotham
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Maria M. Conde
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Rosana Collepardo‐Guevara
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of GeneticsUniversity of CambridgeCambridgeCB2 3EH, UK
| | - Andres R. Tejedor
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Jorge R. Espinosa
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
24
|
Patel CK, Rani C, Kumar R, Mukherjee TK. Macromolecular Crowding Promotes Re-entrant Liquid-Liquid Phase Separation of Human Serum Transferrin and Prevents Surface-Induced Fibrillation. Biomacromolecules 2023; 24:3917-3928. [PMID: 37503577 DOI: 10.1021/acs.biomac.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein aggregation and inactivation upon surface immobilization are major limiting factors for analytical applications in biotechnology-related fields. Protein immobilization on solid surfaces often requires multi-step surface passivation, which is time-consuming and inefficient. Herein, we have discovered that biomolecular condensates of biologically active human serum transferrin (Tf) can effectively prevent surface-induced fibrillation and preserve the native-like conformation of phase-separated Tf over a period of 30 days. It has been observed that macromolecular crowding promotes homotypic liquid-liquid phase separation (LLPS) of Tf through enthalpically driven multivalent hydrophobic interactions possibly via the involvement of its low-complexity domain (residues 3-20) containing hydrophobic amino acids. The present LLPS of Tf is a rare example of salt-mediated re-entrant phase separation in a broad range of salt concentrations (0-3 M) solely via the involvement of hydrophobic interactions. Notably, no liquid-to-solid-like phase transition has been observed over a period of 30 days, suggesting the intact conformational integrity of phase-separated Tf, as revealed from single droplet Raman, circular dichroism, and Fourier transform infrared spectroscopy measurements. More importantly, we discovered that the phase-separated condensates of Tf completely inhibit the surface-induced fibrillation of Tf, illustrating the protective role of these liquid-like condensates against denaturation and aggregation of biomolecules. The cell mimicking compact aqueous compartments of biomolecular condensates with a substantial amount of interfacial water preserve the structure and functionality of Tf. Our present study highlights an important functional aspect of biologically active protein condensates and may have wide-ranging implications in cell physiology and biotechnological applications.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Chanchal Rani
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
25
|
Yang S, Yu H, Xu X, Yang T, Wei Y, Zan R, Zhang X, Ma Q, Shum HC, Song Y. AIEgen-Conjugated Phase-Separating Peptides Illuminate Intracellular RNA through Coacervation-Induced Emission. ACS NANO 2023; 17:8195-8203. [PMID: 37093110 DOI: 10.1021/acsnano.2c12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Intrinsically disordered peptides drive dynamic liquid-liquid phase separation (LLPS) in membraneless organelles and encode cellular functions in response to environmental stimuli. Engineering design on phase-separating peptides (PSPs) holds great promise for bioimaging, vaccine delivery, and disease theranostics. However, recombinant PSPs are devoid of robust luminogen or suitable cell permeability required for intracellular applications. Here, we synthesize a peptide-based RNA sensor by covalently connecting tetraphenylethylene (TPE), an aggregation-induced emission luminogen (AIEgens), to tandem peptide repeats of (RRASL)n (n = 1, 2, 3). Interestingly, the conjugation of TPE luminogen promotes liquid-liquid phase separation of the peptide repeats, and the minimum coacervation concentration (MCC) of TPE-(RRASL)n is decreased by an order of magnitude, compared to that of the untagged, TPE-free counterparts. Moreover, the luminescence of TPE-(RRASL)n is enhanced by up to 700-fold with increasing RNA concentration, which is attributed to the constricted rotation of the TPE moiety as a result of peptide/RNA coacervates within the droplet phase. Besides, at concentrations above MCC, TPE-(RRASL)n can efficiently penetrate through human gallbladder carcinoma cells (SGC-996), translocate into the cell nucleus, and colocalize with intracellular RNA. These observations suggest that AIEgen-conjugated PSPs can be used as droplet-based biosensors for intracellular RNA imaging through a regime of coacervation-induced emission.
Collapse
Affiliation(s)
- Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuli Xu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wei
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Zan
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Ye S, Latham AP, Tang Y, Hsiung CH, Chen J, Luo F, Liu Y, Zhang B, Zhang X. Micropolarity governs the structural organization of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534881. [PMID: 37034692 PMCID: PMC10081268 DOI: 10.1101/2023.03.30.534881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Microenvironment is critical to the function of cells and organisms. One example is provided by biomolecular condensates, whose microenvironment can be vastly different from the surrounding cellular environments to engage unique biological functions. How microenvironments of biomolecular condensates affect their structure and function remains unknown. Here, we show that the arrangements and partitioning of biomolecules are dictated by the differences between the micropolarity of each subcompartment. Sufficient difference in micropolarity results in layered structures with the exterior shell presenting a more polar microenvironment than the interior core. Accordingly, micropolarity inversion is accompanied by conversions of the layered structures. These findings demonstrated the central role of the previously overlooked microenvironment in regulating the structural organization and function of membraneless organelles.
Collapse
Affiliation(s)
- Songtao Ye
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study; Hangzhou 310030, Zhejiang Province, China
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology; Cambridge, MA 02139
| | - Yuqi Tang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study; Hangzhou 310030, Zhejiang Province, China
| | - Chia-Heng Hsiung
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study; Hangzhou 310030, Zhejiang Province, China
| | - Junlin Chen
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study; Hangzhou 310030, Zhejiang Province, China
| | - Feng Luo
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study; Hangzhou 310030, Zhejiang Province, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology; Cambridge, MA 02139
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study; Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine; Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
27
|
Tan C, Niitsu A, Sugita Y. Highly Charged Proteins and Their Repulsive Interactions Antagonize Biomolecular Condensation. JACS AU 2023; 3:834-848. [PMID: 37006777 PMCID: PMC10052238 DOI: 10.1021/jacsau.2c00646] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Biomolecular condensation is involved in various cellular processes; therefore, regulation of condensation is crucial to prevent deleterious protein aggregation and maintain a stable cellular environment. Recently, a class of highly charged proteins, known as heat-resistant obscure (Hero) proteins, was shown to protect other client proteins from pathological aggregation. However, the molecular mechanisms by which Hero proteins protect other proteins from aggregation remain unknown. In this study, we performed multiscale molecular dynamics (MD) simulations of Hero11, a Hero protein, and the C-terminal low-complexity domain (LCD) of the transactive response DNA-binding protein 43 (TDP-43), a client protein of Hero11, under various conditions to examine their interactions with each other. We found that Hero11 permeates into the condensate formed by the LCD of TDP-43 (TDP-43-LCD) and induces changes in conformation, intermolecular interactions, and dynamics of TDP-43-LCD. We also examined possible Hero11 structures in atomistic and coarse-grained MD simulations and found that Hero11 with a higher fraction of disordered region tends to assemble on the surface of the condensates. Based on the simulation results, we have proposed three possible mechanisms for Hero11's regulatory function: (i) In the dense phase, TDP-43-LCD reduces contact with each other and shows faster diffusion and decondensation due to the repulsive Hero11-Hero11 interactions. (ii) In the dilute phase, the saturation concentration of TDP-43-LCD is increased, and its conformation is relatively more extended and variant, induced by the attractive Hero11-TDP-43-LCD interactions. (iii) Hero11 on the surface of small TDP-43-LCD condensates can contribute to avoiding their fusion due to repulsive interactions. The proposed mechanisms provide new insights into the regulation of biomolecular condensation in cells under various conditions.
Collapse
Affiliation(s)
- Cheng Tan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Ai Niitsu
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
28
|
Li Y, Chen T, You K, Peng T, Li T. Sequence determinants and solution conditions underlying liquid to solid phase transition. Am J Physiol Cell Physiol 2023; 324:C236-C246. [PMID: 36503242 DOI: 10.1152/ajpcell.00280.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Life consists of numberless functional biomolecules that exist in various states. Besides well-dissolved phases, biomolecules especially proteins and nucleic acids can form liquid droplets through liquid-liquid phase separation (LLPS). Stronger interactions promote a solid-like state of biomolecular condensates, which are also formerly referred to as detergent-insoluble aggregates. Solid-like condensates exist in vivo physiologically and pathologically, and their formation has not been fully understood. Recently, more and more research has proven that liquid to solid phase transition (LST) is an essential way to form solid condensates. In this review, we summarized the regions in the sequence that have different impacts on phase transition and emphasized that the LST is affected by its sequence characteristics. Moreover, increasing evidence unveiled that LST is affected by various solution conditions. We discussed solution conditions like protein concentration, pH, ATP, ions, and small molecules in a solution. Methods have been established to study these solid phase components. Here, we summarized low-throughput experimental techniques and high-throughput omics methods in the study of the LST.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Taoyu Chen
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Kaiqing You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Happy Life Technology, Beijing, China
| | - Tao Peng
- Happy Life Technology, Beijing, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
29
|
Saini B, Mukherjee TK. Biomolecular Condensates Regulate Enzymatic Activity under a Crowded Milieu: Synchronization of Liquid-Liquid Phase Separation and Enzymatic Transformation. J Phys Chem B 2023; 127:180-193. [PMID: 36594499 DOI: 10.1021/acs.jpcb.2c07684] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular crowding plays a key role in regulating the enzymatic reactivity in physiological conditions, which is challenging to realize in the dilute phase. Enzymes drive a wide range of complex metabolic reactions with high efficiency and selectivity under extremely heterogeneous and crowded cellular environments. However, the molecular interpretation behind the enhanced enzymatic reactivity under a crowded milieu is poorly understood. Herein, using the horseradish peroxidase (HRP) and glucose oxidase (GOx) cascade pair, we demonstrate for the first time that macromolecular crowding induces liquid-liquid phase separation (LLPS) via the formation of liquid-like condensates/droplets and thereby increases the intrinsic catalytic efficiencies of HRP and GOx. Both these enzymes undergo crowding induced homotypic LLPS via enthalpically driven multivalent electrostatic as well as hydrophobic interactions. Using a set of kinetic and microscopic experiments, we show that precise synchronization of spontaneous LLPS and enzymatic transformations is key to realize the enhanced enzymatic activity under the crowded environments. Our findings reveal an unprecedented enhancement (91- to 205-fold) in the catalytic efficiency (kcat/Km) of HRP at pH 4.0 within the droplet phase relative to that in the bulk aqueous phase in the presence of different crowders. In addition, we have shown that other enzymes also undergo spontaneous LLPS under macromolecular crowding, signifying the generality of this phenomenon under the crowded environments. More importantly, coalescence driven highly regulated GOx/HRP cascade reactions within the fused droplets have been demonstrated with enhanced activity and specificity under the crowded environments. The present discovery highlights the active role of membraneless condensates in regulating the enzymatic efficacy for complex metabolic reactions under the crowded cellular environments and may find significant importance in the field of biocatalysis.
Collapse
Affiliation(s)
- Bhawna Saini
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore453552Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore453552Madhya Pradesh, India
| |
Collapse
|
30
|
Li X, der Gucht J, Erni P, Vries R. Active Microrheology of Protein Condensates Using Colloidal Probe-AFM. J Colloid Interface Sci 2022; 632:357-366. [DOI: 10.1016/j.jcis.2022.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
31
|
Baidya L, Reddy G. pH Induced Switch in the Conformational Ensemble of Intrinsically Disordered Protein Prothymosin-α and Its Implications for Amyloid Fibril Formation. J Phys Chem Lett 2022; 13:9589-9598. [PMID: 36206480 DOI: 10.1021/acs.jpclett.2c01972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aggregation of intrinsically disordered proteins (IDPs) can lead to neurodegenerative diseases. Although there is experimental evidence that acidic pH promotes IDP monomer compaction leading to aggregation, the general mechanism is unclear. We studied the pH effect on the conformational ensemble of prothymosin-α (proTα), which is involved in multiple essential functions, and probed its role in aggregation using computer simulations. We show that compaction in the proTα dimension at low pH is due to the protein's collapse in the intermediate region (E41-D80) rich in glutamic acid residues, enhancing its β-sheet content. We observed by performing dimer simulations that the conformations with high β-sheet content could act as aggregation-prone (N*) states and nucleate the aggregation process. The simulations initiated using N* states form dimers within a microsecond time scale, whereas the non-N* states do not form dimers within this time scale. This study contributes to understanding the general principles of pH-induced IDP aggregation.
Collapse
Affiliation(s)
- Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India
| |
Collapse
|
32
|
Biological colloids: Unique properties of membranelles organelles in the cell. Adv Colloid Interface Sci 2022; 310:102777. [DOI: 10.1016/j.cis.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
33
|
Wang B, Fang H, Zhu W, Xu Y, Yang Y, Qian X. Dynamic Compartmentalization of Peptide-Oligonucleotide Conjugates with Reversible Nanovesicle-Microdroplet Phase Transition Behaviors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36998-37008. [PMID: 35925804 DOI: 10.1021/acsami.2c05268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide-oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP-ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP-ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP-ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglong Fang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
34
|
Garg DK, Bhat R. Modulation of assembly of TDP-43 low-complexity domain by heparin: From droplets to amyloid fibrils. Biophys J 2022; 121:2568-2582. [PMID: 35644946 PMCID: PMC9300664 DOI: 10.1016/j.bpj.2022.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/03/2021] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA-regulating protein that carries out many cellular functions through liquid-liquid phase separation (LLPS). The LLPS of TDP-43 is mediated by its C-terminal low-complexity domain (TDP43-LCD) corresponding to the region 267-414. In neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia, pathological inclusions of the TDP-43 are found that are rich in the C-terminal fragments of ∼25 and ∼35 kDa, of which TDP43-LCD is a part. Thus, understanding the assembly process of TDP43-LCD is essential, given its involvement in the formation of both functional liquid-like assemblies and solid- or gel-like pathological aggregates. Here, we show that the solution pH and salt modulate TDP43-LCD LLPS. A gradual reduction in the pH below its isoelectric point of 9.8 results in a monotonic decrease of TDP43-LCD LLPS due to charge-charge repulsion between monomers, while at pH 6 and below no LLPS was observed. The addition of heparin to TDP43-LCD solution at pH 6, at a 1:2 heparin-to-TDP43-LCD molar ratio, promotes TDP43-LCD LLPS, while at higher concentration, it disrupts LLPS through a reentrant phase transition. Upon incubation at pH 6, TDP43-LCD undergoes gelation without phase separation. However, in the reentrant regime in the presence of a high heparin concentration, it forms thick amyloid aggregates that are significantly more SDS resistant than the gel. The results indicate that the material nature of the TDP43-LCD assembly products can be modulated by heparin which is significant in the context of liquid-to-solid phase transition observed in TDP-43 proteinopathies. Our findings are also crucial in relation to similar transitions that could occur due to alteration in the molecular level interactions among various multivalent biomolecules involving other LCDs and RNAs.
Collapse
Affiliation(s)
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
35
|
Patel CK, Singh S, Saini B, Mukherjee TK. Macromolecular Crowding-Induced Unusual Liquid-Liquid Phase Separation of Human Serum Albumin via Soft Protein-Protein Interactions. J Phys Chem Lett 2022; 13:3636-3644. [PMID: 35435684 DOI: 10.1021/acs.jpclett.2c00307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macromolecular crowding has a profound impact on the conformational dynamics and intermolecular interactions of biological macromolecules. In this context, the role of inert synthetic crowders in the protein-protein interactions of globular proteins is poorly understood. Here, using native human serum albumin (HSA) under physiological conditions, we show that macromolecular crowding induces liquid-liquid phase separation (LLPS) via liquid-like membrane-less droplet formation in a concentration- and time-dependent manner. Circular dichroism measurements reveal significant alteration in the secondary structure of HSA inside the droplet during aging. In contrast, at a high protein concentration, a liquid-to-solid-like phase transition has been observed upon maturation. Our findings reveal that the LLPS of HSA is mainly driven by enthalpically controlled intermolecular protein-protein interactions via hydrophobic contacts involving aromatic and/or nonaromatic residues. Moreover, modulation of LLPS of HSA has been demonstrated upon denaturation and ligand binding. This study highlights the importance of soft protein-protein interactions of globular proteins in a crowded cellular environment in driving the LLPS.
Collapse
Affiliation(s)
- Chinmaya Kumar Patel
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| | - Shivendra Singh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| | - Bhawna Saini
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Simrol, Madhya Pradesh, India
| |
Collapse
|
36
|
Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Sci Rep 2022; 12:4390. [PMID: 35293386 PMCID: PMC8924231 DOI: 10.1038/s41598-022-08130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed by the process of liquid-liquid phase separation (LLPS) play diverse roles inside cells, from spatiotemporal compartmentalisation to speeding up chemical reactions. Upon maturation, the liquid-like properties of condensates, which underpin their functions, are gradually lost, eventually giving rise to solid-like states with potential pathological implications. Enhancement of inter-protein interactions is one of the main mechanisms suggested to trigger the formation of solid-like condensates. To gain a molecular-level understanding of how the accumulation of stronger interactions among proteins inside condensates affect the kinetic and thermodynamic properties of biomolecular condensates, and their shapes over time, we develop a tailored coarse-grained model of proteins that transition from establishing weak to stronger inter-protein interactions inside condensates. Our simulations reveal that the fast accumulation of strongly binding proteins during the nucleation and growth stages of condensate formation results in aspherical solid-like condensates. In contrast, when strong inter-protein interactions appear only after the equilibrium condensate has been formed, or when they accumulate slowly over time with respect to the time needed for droplets to fuse and grow, spherical solid-like droplets emerge. By conducting atomistic potential-of-mean-force simulations of NUP-98 peptides-prone to forming inter-protein [Formula: see text]-sheets-we observe that formation of inter-peptide [Formula: see text]-sheets increases the strength of the interactions consistently with the loss of liquid-like condensate properties we observe at the coarse-grained level. Overall, our work aids in elucidating fundamental molecular, kinetic, and thermodynamic mechanisms linking the rate of change in protein interaction strength to condensate shape and maturation during ageing.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
37
|
Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022; 122:6719-6748. [PMID: 35179885 PMCID: PMC8949871 DOI: 10.1021/acs.chemrev.1c00774] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Motions in biomolecules
are critical for biochemical reactions.
In cells, many biochemical reactions are executed inside of biomolecular
condensates formed by ultradynamic intrinsically disordered proteins.
A deep understanding of the conformational dynamics of intrinsically
disordered proteins in biomolecular condensates is therefore of utmost
importance but is complicated by diverse obstacles. Here we review
emerging data on the motions of intrinsically disordered proteins
inside of liquidlike condensates. We discuss how liquid–liquid
phase separation modulates internal motions across a wide range of
time and length scales. We further highlight the importance of intermolecular
interactions that not only drive liquid–liquid phase separation
but appear as key determinants for changes in biomolecular motions
and the aging of condensates in human diseases. The review provides
a framework for future studies to reveal the conformational dynamics
of intrinsically disordered proteins in the regulation of biomolecular
condensate chemistry.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin Blackledge
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.,CEA, DSV, IBS, 38044 Grenoble, France.,CNRS, IBS, 38044 Grenoble, France
| | - Markus Zweckstetter
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
38
|
Dogra P, Arya S, Singh AK, Datta A, Mukhopadhyay S. Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein. J Phys Chem B 2022; 126:443-452. [PMID: 34986640 DOI: 10.1021/acs.jpcb.1c09304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The conformational plasticity of intrinsically disordered proteins (IDPs) allows them to adopt a range of conformational states that can be important for their biological functions. The driving force for the conformational preference of an IDP emanates from an intricate interplay between chain-chain and chain-solvent interactions. Using ultrafast femtosecond and picosecond time-resolved fluorescence measurements, we characterized the conformational and solvation dynamics around the N- and C-terminal segments of a disordered repeat domain of a melanosomal protein Pmel17 that forms functional amyloid responsible for melanin biosynthesis. Our time-resolved fluorescence anisotropy results revealed slight compaction and slower rotational dynamics around the amyloidogenic C-terminal segment when compared to the proline-rich N-terminal segment of the repeat domain. The compaction of the C-terminal region was also associated with the restrained mobility of hydration water as indicated by our solvation dynamics measurements. Our findings indicate that sequence-dependent chain-solvent interactions govern both the conformational and solvation dynamics that are crucial in directing the conversion of a highly dynamic IDP into an ordered amyloid assembly. Such an interplay of amino acid composition-dependent conformational and solvation dynamics might have important physicochemical consequences in specific water-protein, ion-protein, and protein-protein interactions involved in amyloid formation and phase transitions.
Collapse
Affiliation(s)
| | | | - Avinash K Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | | |
Collapse
|
39
|
Agarwal A, Rai SK, Avni A, Mukhopadhyay S. An intrinsically disordered pathological prion variant Y145Stop converts into self-seeding amyloids via liquid-liquid phase separation. Proc Natl Acad Sci U S A 2021; 118:e2100968118. [PMID: 34737230 PMCID: PMC8609423 DOI: 10.1073/pnas.2100968118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Biomolecular condensation via liquid-liquid phase separation of intrinsically disordered proteins/regions (IDPs/IDRs) along with other biomolecules is proposed to control critical cellular functions, whereas aberrant phase transitions are associated with a range of neurodegenerative diseases. Here, we show that a disease-associated stop codon mutation of the prion protein (PrP) at tyrosine 145 (Y145Stop), resulting in a truncated, highly disordered, N-terminal IDR, spontaneously phase-separates into dynamic liquid-like droplets. Phase separation of this highly positively charged N-terminal segment is promoted by the electrostatic screening and a multitude of weak, transient, multivalent, intermolecular interactions. Single-droplet Raman measurements, in conjunction with an array of bioinformatic, spectroscopic, microscopic, and mutagenesis studies, revealed a highly mobile internal organization within the liquid-like condensates. The phase behavior of Y145Stop is modulated by RNA. Lower RNA:protein ratios promote condensation at a low micromolar protein concentration under physiological conditions. At higher concentrations of RNA, phase separation is abolished. Upon aging, these highly dynamic liquid-like droplets gradually transform into ordered, β-rich, amyloid-like aggregates. These aggregates formed via phase transitions display an autocatalytic self-templating characteristic involving the recruitment and binding-induced conformational conversion of monomeric Y145Stop into amyloid fibrils. In contrast to this intrinsically disordered truncated variant, the wild-type full-length PrP exhibits a much lower propensity for both condensation and maturation into amyloids, hinting at a possible protective role of the C-terminal domain. Such an interplay of molecular factors in modulating the protein phase behavior might have much broader implications in cell physiology and disease.
Collapse
Affiliation(s)
- Aishwarya Agarwal
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research Mohali, Punjab 140306, India;
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali 140306 Punjab, India
| |
Collapse
|
40
|
Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci 2021; 4:307-329. [PMID: 33078839 DOI: 10.1042/etls20190164] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) - regions that do not fold into a fixed three-dimensional structure but instead exist in a heterogeneous ensemble of conformations - have recently entered mainstream cell biology in the context of liquid-liquid phase separation (LLPS). IDRs are frequently found to be enriched in phase-separated compartments. Due to this observation, the presence of an IDR in a protein is frequently assumed to be diagnostic of its ability to phase separate. In this review, we clarify the role of IDRs in biological assembly and explore the physical principles through which amino acids can confer the attractive molecular interactions that underlie phase separation. While some disordered regions will robustly drive phase separation, many others will not. We emphasize that rather than 'disorder' driving phase separation, multivalency drives phase separation. As such, whether or not a disordered region is capable of driving phase separation will depend on the physical chemistry encoded within its amino acid sequence. Consequently, an in-depth understanding of that physical chemistry is a prerequisite to make informed inferences on how and why an IDR may be involved in phase separation or, more generally, in protein-mediated intermolecular interactions.
Collapse
|
41
|
Disease-associated mutations affect TIA1 phase separation and aggregation in a proline-dependent manner. Brain Res 2021; 1768:147589. [PMID: 34310938 DOI: 10.1016/j.brainres.2021.147589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
T-cell restriction intracellular antigen 1 (TIA1) is an RNA-binding protein that is a major component of stress granules (SGs). The low complexity domain (LCD) of TIA1 plays a central role in facilitating SGs assembly through liquid-liquid phase separation (LLPS). Disruption of the LLPS process has been associated with several diseases. It has recently been shown that the proline-rich domain affects the LLPS process of some proteins (such as UBQLN2 and Tau). Thus, proline may regulate LLPS. The LCD of TIA1 contains 11 proline residues, and several proline-related mutations have been shown to cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we demonstrated that TIA1 can undergo phase separation in cells. Additionally, disease-associated proline-to-leucine (P-L) mutations, which altered droplet morphology, facilitated the liquid-to-solid phase transition of TIA1 into solid-like amyloid fibrils. The changes in the physical properties of the P-L mutation altered the behavior of TIA1 in vivo and led to abnormal SGs kinetics, resulting in the formation of the pathological inclusions of ALS. Prolines are the key residues for regulating the LLPS of TIA1.
Collapse
|
42
|
Rai SK, Savastano A, Singh P, Mukhopadhyay S, Zweckstetter M. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci 2021; 30:1294-1314. [PMID: 33930220 PMCID: PMC8197432 DOI: 10.1002/pro.4093] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Biomolecular condensation via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins/regions (IDPs/IDRs), with and without nucleic acids, has drawn widespread interest due to the rapidly unfolding role of phase-separated condensates in a diverse range of cellular functions and human diseases. Biomolecular condensates form via transient and multivalent intermolecular forces that sequester proteins and nucleic acids into liquid-like membrane-less compartments. However, aberrant phase transitions into gel-like or solid-like aggregates might play an important role in neurodegenerative and other diseases. Tau, a microtubule-associated neuronal IDP, is involved in microtubule stabilization, regulates axonal outgrowth and transport in neurons. A growing body of evidence indicates that tau can accomplish some of its cellular activities via LLPS. However, liquid-to-solid transition resulting in the abnormal aggregation of tau is associated with neurodegenerative diseases. The physical chemistry of tau is crucial for governing its propensity for biomolecular condensation which is governed by various intermolecular and intramolecular interactions leading to simple one-component and complex multi-component condensates. In this review, we aim at capturing the current scientific state in unveiling the intriguing molecular mechanism of phase separation of tau. We particularly focus on the amalgamation of existing and emerging biophysical tools that offer unique spatiotemporal resolutions on a wide range of length- and time-scales. We also discuss the link between quantitative biophysical measurements and novel biological insights into biomolecular condensation of tau. We believe that this account will provide a broad and multidisciplinary view of phase separation of tau and its association with physiology and disease.
Collapse
Affiliation(s)
- Sandeep K. Rai
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Adriana Savastano
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Priyanka Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Markus Zweckstetter
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department for NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
43
|
Wang Y, Li C, Ma L, Wang X, Wang K, Lu X, Cai Y. Interfacial Liquid–Liquid Phase Separation-Driven Polymerization-Induced Electrostatic Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ye Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Li
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kai Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
45
|
Liang CQ, Wang L, Luo YY, Li QQ, Li YM. Capturing protein droplets: label-free visualization and detection of protein liquid-liquid phase separation with an aggregation-induced emission fluorogen. Chem Commun (Camb) 2021; 57:3805-3808. [PMID: 33876127 DOI: 10.1039/d1cc00947h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed a new method for protein droplet visualization by means of a droplet probe (DroProbe) based on an aggregation-induced emission (AIE) fluorogen. A simple method for viscosity comparison of the protein condensed phase based on the lifetime of the DroProbe was also developed.
Collapse
Affiliation(s)
- Chu-Qiao Liang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University Beijing, 100084, P. R. China.
| | | | | | | | | |
Collapse
|
46
|
Argudo PG, Giner-Casares JJ. Folding and self-assembly of short intrinsically disordered peptides and protein regions. NANOSCALE ADVANCES 2021; 3:1789-1812. [PMID: 36133101 PMCID: PMC9417027 DOI: 10.1039/d0na00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 05/15/2023]
Abstract
Proteins and peptide fragments are highly relevant building blocks in self-assembly for nanostructures with plenty of applications. Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are defined by the absence of a well-defined secondary structure, yet IDPs/IDRs show a significant biological activity. Experimental techniques and computational modelling procedures for the characterization of IDPs/IDRs are discussed. Directed self-assembly of IDPs/IDRs allows reaching a large variety of nanostructures. Hybrid materials based on the derivatives of IDPs/IDRs show a promising performance as alternative biocides and nanodrugs. Cell mimicking, in vivo compartmentalization, and bone regeneration are demonstrated for IDPs/IDRs in biotechnological applications. The exciting possibilities of IDPs/IDRs in nanotechnology with relevant biological applications are shown.
Collapse
Affiliation(s)
- Pablo G Argudo
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO 16 Avenue Pey-Berland 33600 Pessac France
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO) Campus de Rabanales, Ed. Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
47
|
Yewdall NA, André AA, Lu T, Spruijt E. Coacervates as models of membraneless organelles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101416] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Mugnai ML, Thirumalai D. Molecular Transfer Model for pH Effects on Intrinsically Disordered Proteins: Theory and Applications. J Chem Theory Comput 2021; 17:1944-1954. [PMID: 33566618 DOI: 10.1021/acs.jctc.0c01316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a theoretical method to study how changes in pH shape the heterogeneous conformational ensemble explored by intrinsically disordered proteins (IDPs). The theory is developed in the context of coarse-grained models, which enable a fast, accurate, and extensive exploration of conformational space at a given protonation state. In order to account for pH effects, we generalize the molecular transfer model (MTM), in which conformations are re-weighted using the transfer free energy, which is the free energy necessary for bringing to equilibrium in a new environment a "frozen" conformation of the system. Using the semi-grand ensemble, we derive an exact expression of the transfer free energy, which amounts to the appropriate summation over all the protonation states. Because the exact result is computationally too demanding to be useful for large polyelectrolytes or IDPs, we introduce a mean-field (MF) approximation of the transfer free energy. Using a lattice model, we compare the exact and MF results for the transfer free energy and a variety of observables associated with the model IDP. We find that the precise location of the charged groups (the sequence), and not merely the net charge, determines the structural properties. We demonstrate that some of the limitations previously noted for MF theory in the context of globular proteins are mitigated when disordered polymers are studied. The excellent agreement between the exact and MF results poises us to use the method presented here as a computational tool to study the properties of IDPs and other biological systems as a function of pH.
Collapse
Affiliation(s)
- Mauro Lorenzo Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
49
|
Rani S, Dasgupta B, Bhati GK, Tomar K, Rakshit S, Maiti S. Superior Proton-Transfer Catalytic Promiscuity of Cytochrome c in Self-Organized Media. Chembiochem 2020; 22:1285-1291. [PMID: 33175409 DOI: 10.1002/cbic.202000768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Evolutionarily elderly proteins commonly feature greater catalytic promiscuity. Cytochrome c is among the first set of proteins in evolution to have known prospects in electron transport and peroxidative properties. Here, we report that cyt c is also a proficient proton-transfer catalyst and enhances the Kemp elimination (KE; model reaction to show proton transfer catalytic property) by ∼750-fold on self-organized systems like micelles and vesicles. The self-organized systems mimic the mitochondrial environment in vitro for cyt c. Using an array of biophysical and biochemical mutational assays, both acid-base and redox mechanistic pathways have been explored. The histidine moiety close to hemin group (His18) is mainly responsible for proton abstraction to promote the concerted E2 pathway for KE catalysis when cyt c is in its oxidized form; this has also been confirmed by a H18A mutant of cyt c. However, the redox pathway is predominant under reducing conditions in the presence of dithiothreitol over the pH range 6-7.4. Interestingly, we found almost 750-fold enhanced KE catalysis by cyt c compared to aqueous buffer. Overall, in addition to providing mechanistic insights, the data reveal an unprecedented catalytic property of cyt c that could be of high importance in an evolutionary perspective considering its role in delineating the phylogenic tree and also towards generating programmable designer biocatalysts.
Collapse
Affiliation(s)
- Sheetal Rani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Basundhara Dasgupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Gaurav Kumar Bhati
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Kalpana Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| |
Collapse
|
50
|
Mukhopadhyay S. The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and Phase Separation. J Phys Chem B 2020; 124:11541-11560. [PMID: 33108190 DOI: 10.1021/acs.jpcb.0c07598] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) or natively unfolded proteins do not undergo autonomous folding into a well-defined 3-D structure and challenge the conventional structure-function paradigm. They are involved in a multitude of critical physiological functions by adopting various structural states via order-to-disorder transitions or by maintaining their disordered characteristics in functional complexes. In recent times, there has been a burgeoning interest in the investigation of intriguing behavior of IDPs using highly multidisciplinary and complementary approaches due to the pivotal role of this unique class of protein chameleons in physiology and disease. Over the past decade or so, our laboratory has been actively investigating the unique physicochemical properties of this class of highly dynamic, flexible, rapidly interconverting proteins. We have utilized a diverse array of existing and emerging tools involving steady-state and time-resolved fluorescence, Raman spectroscopy, circular dichroism, light scattering, fluorescence microscopy, and atomic force microscopy coupled with site-directed mutagenesis and other biochemical and biophysical tools to study a variety of interesting and important aspects of IDPs. In this Feature Article, I describe our work on the conformational characteristics, solvation dynamics, binding-induced folding, amyloid formation, and liquid-liquid phase separation of a number of amyloidogenic IDPs. A series of these studies described here captures the role of conformational plasticity and dynamics in directing binding, folding, assembly, aggregation, and phase transitions implicated in physiology and pathology.
Collapse
Affiliation(s)
- Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| |
Collapse
|