1
|
Liu Y, Liu Y, Cheng F, Gao C, Yang H, Wei W, He Q, Li B, Bu W. Mechanochromic Phosphorescence of Rhodium(I) Isocyanide Complexes in the NIR-II Window. Inorg Chem 2025. [PMID: 40351266 DOI: 10.1021/acs.inorgchem.5c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Luminescent mechanochromic compounds that cover the second near-infrared (NIR-II, 950-1700 nm) window would provide an interesting type of mechanoresponsive materials and can be applicable in various fields. In this work, we report the synthesis of amino acid-functionalized tetrakis(phenylisocyano)rhodium(I) complexes and their phosphorescent mechanochromism in the entire NIR-II region. Grinding the pristine yellow polycrystalline complexes leads to the formation of green amorphous phases, and correspondingly, the emission wavelength was redshifted from 976 to 1220-1290 nm. Both of the NIR-II emission bands have large Stokes shifts and microsecond luminescence lifetimes, indicative of their phosphorescent nature. Upon successive solvent fumigation, the green amorphous powders convert back to the yellow polycrystalline complexes with an emission wavelength of 976 nm. Such reversible phosphorescence changes were found to arise from the reversible formation of trimeric aggregates via close Rh(I)···Rh(I) contacts. To the best of our knowledge, this research demonstrates unexplored examples of luminescent mechanochromic materials in the NIR-II window before or after exposure to mechanical stimulus.
Collapse
Affiliation(s)
- Yujia Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yilin Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Cheng
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chenxiang Gao
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hanrui Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wenxuan Wei
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Cui FH, Gao LH, Ruan K, Li F, Meng M, Ma K, Lu Z, Fei J, Tian H, Liu LL, Lin YM, Xia H. Fusion of Four Aromatic Rings via an Atom-Mutual-Embedding Strategy to Form a Tetrahexacyclic System. J Am Chem Soc 2025; 147:13601-13609. [PMID: 40227147 DOI: 10.1021/jacs.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Skeletal manipulation of aromatic compounds has emerged as a potent tool in synthetic chemistry, but simultaneous multiring manipulation remains largely unexplored due to the inherent complexities of ring and site selectivity. Herein, we report an unprecedented multiring skeletal manipulation that fuses four 5-membered aromatic rings, comprising two organic and two metal-containing aromatic systems, into a novel metal-bridged 6/6/6/6-membered ring scaffold. The sequential ring fusion is accomplished through an atom-mutual-embedding strategy; this strategy entails the stepwise insertion of two nitrogen atoms into separate metal-carbon bonds and simultaneously integrates a metal atom as a bridge across two isoxazole moieties. The presence of a central metal atom is crucial for ensuring precise substrate alignment and enhancing both the ring and site specificity. The resulting tetrahexacyclic products exhibit remarkable stability and superior near-infrared (NIR) functional properties, surpassing those of the precursor compounds. This work not only establishes a conceptual foundation for designing versatile substrate molecules amenable to intricate editing but also contributes to the rational and performance-targeted manipulation of molecular architectures.
Collapse
Affiliation(s)
- Fei-Hu Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Le-Han Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Meng Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kexin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Wei W, Du Y, Kang X, Liu Y, Liu Y, Guo Q, He Q, Wang J, Zhu S, Zhou JY, Bu W. Nanoscale Rhodium(I) Based Metal-Organic Framework Demonstrating Intense NIR-II Luminescence for Bioimaging. NANO LETTERS 2025; 25:4613-4620. [PMID: 40052801 DOI: 10.1021/acs.nanolett.5c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Although luminescent metal-organic frameworks (MOFs) have been widely reported, rare examples were found to emit in the second near-infrared (NIR-II, 1000-1700 nm) window. In this work, two nanoscale rhodium(I)-based MOFs (Rh-1@SDS and Rh-1@DSPE-PEG) have been controllably constructed in the aqueous dispersions of sodium dodecyl sulfate (SDS) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol) (DSPE-PEG), wherein micelle- and vesicle-like aggregates form, respectively, with high colloidal stability. The vesicular dispersion of Rh-1@DSPE-PEG exhibits intense NIR-II luminescence at 1125 (1245, shoulder) nm. Consequently, this nanoMOF was used as an NIR-II luminescence probe, indicative of high-resolution systemic and local vascular imaging, where the postoperative recovery process of flap transplantation was clearly visualized. Meanwhile, it also demonstrates superior tumor targeting in the NIR-II window. To the best of our knowledge, this research represents the first example of nanoMOFs having intense NIR-II luminescence and excellent imaging capabilities.
Collapse
Affiliation(s)
- Wenxuan Wei
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaomei Kang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yilin Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yujia Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Guo
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jin Yuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Shi B, Zhang L, Yan K, Ming J, Chen ZH, Chen Y, He H, Zhang H, Wang L, Wang S, Zhang F. Efficient and Stable NIR-II Phosphorescence of Metallophilic Molecular Oligomers for In Vivo Single-Cell Tracking and Time-Resolved Imaging. Angew Chem Int Ed Engl 2024; 63:e202410118. [PMID: 38997791 DOI: 10.1002/anie.202410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Molecular phosphorescence in the second near-infrared window (NIR-II, 1000-1700 nm) holds promise for deep-tissue optical imaging with high contrast by overcoming background fluorescence interference. However, achieving bright and stable NIR-II molecular phosphorescence suitable for biological applications remains a formidable challenge. Herein, we report a new series of symmetric isocyanorhodium(I) complexes that could form oligomers and exhibit bright, long-lived (7-8 μs) phosphorescence in aqueous solution via metallophilic interaction. Ligand substituents with enhanced dispersion attraction and electron-donating properties were explored to extend excitation/emission wavelengths and enhanced stability. Further binding the oligomers with fetal bovine serum (FBS) resulted in NIR-II molecular phosphorescence with high quantum yields (up to 3.93 %) and long-term stability in biological environments, enabling in vivo tracking of single-macrophage dynamics and high-contrast time-resolved imaging. These results pave the way for the development of highly-efficient NIR-II molecular phosphorescence for biomedical applications.
Collapse
Affiliation(s)
- Ben Shi
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Ying Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Haisheng He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Lixin Wang
- Department of Vascular Surgery Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen municipal Vascular Disease Precise Diagnose & Treatment Lab, Xiamen, 361015, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Li W, Li S, Zhu M, Xu G, Man X, Zhang Z, Liang H, Yang F. Developing a Rhodium(III) Complex to Reprogram the Tumor Immune and Metabolic Microenvironments: Overcoming Multidrug Resistance and Metastasis in Non-Small Cell Lung Cancer. J Med Chem 2024; 67:17243-17258. [PMID: 39298516 DOI: 10.1021/acs.jmedchem.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
To effectively inhibit the growth and metastasis of non-small cell lung cancer (NSCLC) and overcome its multidrug resistance (MDR), we designed and synthesized a series of rhodium (Rh, III) 2-benzoylpyridine thiosemicarbazone complexes. Through studying their structure-activity relationships, we identified the Rh(III) complex (Rh4) with excellent cytotoxicity against multidrug-resistant lung cancer cells (A549/ADR cells). Additionally, we successfully constructed an apoferritin (AFt) nanoparticle (NP) delivery system (AFt-Rh4 NPs). Importantly, AFt-Rh4 NPs not only exhibited excellent antitumor and antimetastatic capabilities against multidrug-resistant NSCLC in vivo but also demonstrated enhanced targeting ability and reduced systemic toxicity and adverse effects. Furthermore, we confirmed and elucidated the mechanisms by which Rh4/AFt-Rh4 NPs inhibit tumor metastasis and reverse MDR in NSCLC. This was achieved by reprogramming the immune and metabolic tumor microenvironments through induction of immunogenic cell death and inhibition of dual-energy metabolism.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmaceutical Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
6
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
7
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
8
|
Gu YQ, Ma MX, Yang QY, Yang K, Li HQ, Hu MQ, Liang H, Chen ZF. In vitro and in vivo anticancer activity of novel Rh(III) and Pd(II) complexes with pyrazolopyrimidine derivatives. Bioorg Chem 2023; 141:106838. [PMID: 37717414 DOI: 10.1016/j.bioorg.2023.106838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Six pyrazolopyrimidine rhodium(III) or palladium(II) complexes, [Rh(L1)(H2O)Cl3] (1), [Rh(L2)(CH3OH)Cl3] (2), [Rh(L3)(H2O)Cl3] (3), [Rh2(L4)Cl6]·CH3OH (4), [Rh(L5)(CH3CN)Cl3]·0.5CH3CN (5), and [Pd(L5)Cl2] (6), were synthesized and characterized. These complexes showed high cytotoxicity against six tested cancer cell lines. Most of the complexes showed higher cytotoxicity to T-24 cells in vitro than cisplatin. Mechanism studies indicated that complexes 5 and 6 induced G2/M phase cell cycle arrest through DNA damage, and induced apoptosis via endoplasmic reticulum stress response. In addition, complex 5 also induced cell apoptosis via mitochondrial dysfunction. Complexes 5 and 6 showed low in vivo toxicity and high tumor growth inhibitory activity in mouse tumor models. The inhibitory effect of rhodium complex 5 on tumor growth in vivo was more pronounced than that of palladium complex 6.
Collapse
Affiliation(s)
- Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Meng-Xue Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qi-Yuan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Kun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huan-Qing Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mei-Qi Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
9
|
Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 2023; 7:800-812. [PMID: 37749285 DOI: 10.1038/s41570-023-00536-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
10
|
Wei W, Wang J, Kang X, Li H, He Q, Chang G, Bu W. Synthesis, supramolecular aggregation, and NIR-II phosphorescence of isocyanorhodium(i) zwitterions. Chem Sci 2023; 14:11490-11498. [PMID: 37886099 PMCID: PMC10599467 DOI: 10.1039/d3sc03508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Development of new second near-infrared (NIR-II, 1000-1700 nm) luminophores is highly desirable, and d8 square-planar metal complexes with NIR-II phosphorescence have been rarely reported. Herein, we explore an asymmetric coordination paradigm to achieve the first creation of NIR-II phosphorescent isocyanorhodium(i) zwitterions. They show a strong tendency for aggregation in solution, arising from close Rh(i)⋯Rh(i) contacts that are further intensified by π-π stacking interactions and the hydrophilic-hydrophobic effect. Based on such supramolecular aggregation, zwitterions 2 and 5 are found to yield NIR-II phosphorescence emissions centered at 1005 and 1120 (1210, shoulder) nm in methanol-water mixed solvents, respectively. These two bands show red shifts to 1070 and 1130 (1230, shoulder) nm in the corresponding polymer nanoparticles in water. The resulting polymer nanoparticles can brighten in vivo tumor issues in the NIR-II region with a long-circulating time. In view of the synthetic diversity established by the asymmetric coordination paradigm, this work provides an extraordinary opportunity to explore NIR-II luminophores.
Collapse
Affiliation(s)
- Wenxuan Wei
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang 421001 China
| | - Xiaomei Kang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Haoquan Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Guanjun Chang
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
11
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
12
|
Wang C, Xiao C, Chen Y, Li Y, Zhang Q, Shan W, Li Y, Bi S, Wang Y, Wang X, Ren L. Sequential administration of virus-like particle-based nanomedicine to elicit enhanced tumor chemotherapy. J Mater Chem B 2023; 11:2674-2683. [PMID: 36857702 DOI: 10.1039/d2tb02163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein cages have played a long-standing role in biomedicine applications, especially in tumor chemotherapy. Among protein cages, virus like particles (VLPs) have received attention for their potential applications in vaccine development and targeted drug delivery. However, most of the existing protein-based platform technologies are plagued with immunological problems that may limit their systemic delivery efficiency as drug carriers. Here, we show that using immune-orthogonal protein cages sequentially and modifying the dominant loop epitope can circumvent adaptive immune responses and enable effective drug delivery using repeated dosing. We genetically modified three different hepadnavirus core protein derived VLPs as delivery vectors for doxorubicin (DOX). These engineered VLPs have similar assembly characteristics, particle sizes, and immunological properties. Our results indicated that there was negligible antibody cross-reactivity in either direction between these three RGD-VLPs in mice that were previously immunized against HBc VLPs. Moreover, the sequential administration of multiple RGD-VLP-based nanomedicine (DOX@RGD-VLPs) could effectively reduce immune clearance and inhibited tumor growth. Hence, this study could provide an attractive protein cage-based platform for therapeutic drug delivery.
Collapse
Affiliation(s)
- Chufan Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Cheng Xiao
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Yurong Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China
| | - Yao Li
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Qiang Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, P. R. China
| | - Yulin Li
- Henan Bioengineering Research Center, Zhengdong New District, Zhengzhou, China
| | - Shengli Bi
- Chinese Center for Disease Control & Prevention, Institute Viral Disease Control & Prevention, Beijing, P. R. China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengdong New District, Zhengzhou, China
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
13
|
Xie FL, Wang Y, Zhu JW, Xu HH, Guo QF, Wu Y, Liu SH. Anticancer mechanism studies of iridium(III) complexes inhibiting osteosarcoma HOS cells proliferation. J Inorg Biochem 2022; 237:112011. [PMID: 36252336 DOI: 10.1016/j.jinorgbio.2022.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
Three iridium (III) polypyridine complexes [Ir(bzq)2(maip)](PF6) (Ir1,bzq = benzo[h]quinoline, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(bzq)2(apip)](PF6) (Ir2, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(bzq)2(paip)](PF6) (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The cytotoxic activities of the three complexes against human osteosarcoma HOS, U2OS, MG63 and normal LO2 cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The results showed that Ir1-3 exhibited moderate antitumor activity against HOS with IC50 of 21.8 ± 0. 4 μM,10.5 ± 1.8 μM and 7.4 ± 0.4 μM, respectively. We found that Ir1-3 can effectively inhibit HOS cells growth and blocked the cell cycle at the G0/G1 phase. Further studies revealed that complexes can increase intracellular reactive oxygen species (ROS) and Ca2+, which accompanied by mitochondria-mediated intrinsic apoptosis pathway. In addition, autophagy was also investigated. Taken together, the complexes induce HOS apoptosis through a ROS-mediated mitochondrial dysfunction pathway and inhibition of the PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) signaling pathway. This study provides useful help for understanding the anticancer mechanism of iridium (III) complexes toward osteosarcoma treatment.
Collapse
Affiliation(s)
- Fu-Li Xie
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Yan Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Jian-Wei Zhu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Hui-Hua Xu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China
| | - Qi-Feng Guo
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Yong Wu
- Department of Oncology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| | - Si-Hong Liu
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, PR China; Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, PR China.
| |
Collapse
|
14
|
Geng B, Hu J, Li Y, Feng S, Pan D, Feng L, Shen L. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy. Nat Commun 2022; 13:5735. [PMID: 36175446 PMCID: PMC9523047 DOI: 10.1038/s41467-022-33474-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Theranostic sonosensitizers with combined sonodynamic and near infrared (NIR) imaging modes are required for imaging guided sonodynamic therapy (SDT). It is challenging, however, to realize a single material that is simultaneously endowed with both NIR emitting and sonodynamic activities. Herein, we report the design of a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 μs), two of which can enhance SDT as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively. The NIR-phosphorescent CDs are identified as bipolar quantum dots containing both p- and n-type surface functionalization regions that can drive spatial separation of e−–h+ pairs and fast transfer to reaction sites. Importantly, the cancer-specific targeting and high-level intratumor enrichment of the theranostic CDs are achieved by cancer cell membrane encapsulation for precision SDT with complete eradication of solid tumors by single injection and single irradiation. These results will open up a promising approach to engineer phosphorescent materials with long-lived triplet excited states for sonodynamic precision tumor therapy. Combining sonodynamic properties and NIR fluorescence into a single material is desired for deep tissue applications. Here, the authors report on carbon dot sono-sensitizers engineered with a narrow bandgap and coated with cancer cell membrane for targeted NIR guided sonodynamic cancer therapy.
Collapse
Affiliation(s)
- Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuan Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
15
|
Zhao S, Chen L, Yang Y, Liu X. Research progress of phosphorescent probe for biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Wang ZF, Nai XL, Xu Y, Pan FH, Tang FS, Qin QP, Yang L, Zhang SH. Cell nucleus localization and high anticancer activity of quinoline-benzopyran rhodium(III) metal complexes as therapeutic and fluorescence imaging agents. Dalton Trans 2022; 51:12866-12875. [PMID: 35861361 DOI: 10.1039/d2dt01929a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel rhodium(III) complexes, [RhIII(QB1)Cl3(DMSO)] (RhN1), [RhIII(QB2)Cl3(CH3OH)]·CH3OH (RhN2), [RhIII(QB3)Cl3(CH3OH)]·CH3OH (RhS), and [RhIII(QB4)Cl3(DMSO)] (RhQ), bearing quinoline-benzopyran ligands (QB1-QB4) were synthesized and used to develop highly anticancer therapeutic and fluorescence imaging agents. Compared with the QB1-QB4 ligands (IC50 > 89.2 ± 1.7 μM for A549/DDP), RhN1, RhN2, RhS and RhQ exhibit selective cytotoxicity against lung carcinoma cisplatin-resistant A549/DDP (A549CDDP) cancer cells, with IC50 values in the range of 0.08-2.7 μM. The fluorescent imaging agent RhQ with the more extended planar QB4 ligand exhibited high anticancer activity in A549CDDP cells and was found in the cell nucleus fraction, whereas RhS had no fluorescence properties. RhQ and RhS may trigger cell apoptosis by causing DNA damage and initiating the mitochondrial dysfunction pathway. Furthermore, RhQ has a higher antitumor efficacy (ca. 55.3%) than RhS (46.4%) and cisplatin (CDDP, 33.1%), and RhQ demonstrated significantly lower toxicity in vivo than CDDP, making it a promising Rh(III)-based anticancer therapeutic and fluorescence imaging agent.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| | - Xiao-Ling Nai
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yue Xu
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Feng-Hua Pan
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Fu-Shun Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China.
| | - Qi-Pin Qin
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Lin Yang
- College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P R China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P R China
| |
Collapse
|
17
|
Cui M, Dai P, Ding J, Li M, Sun R, Jiang X, Wu M, Pang X, Liu M, Zhao Q, Song B, He Y. Millisecond-Range Time-Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes. Angew Chem Int Ed Engl 2022; 61:e202200172. [PMID: 35098631 DOI: 10.1002/anie.202200172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Probes featuring room-temperature phosphorescence (RTP) are promising tools for time-resolved imaging. It is worth noting that the time scale of time-resolved bioimaging generally ranges around the microsecond level, because of the short-lived emission. Herein, the first example of millisecond-range time-resolved bioimaging is illustrated, which is enabled through a kind of ultralong aqueous phosphorescence probes (i.e., cyclo-(Arg-Gly-AspD-Tyr-Cys)-conjugated zinc-doped silica nanospheres), with a RTP emission lasting for ≈5 s and a lifetime as long as 743.7 ms. We demonstrate that live cells and deep tumor tissue in mice can be specifically targeted through immune-phosphorescence imaging, with a high signal-to-background ratio (SBR) value of ≈69 for in vitro imaging, and ≈627 for in vivo imaging, respectively. We further show that, compared to that of fluorescence imaging, the SBR enhancement of millisecond-range time-resolved in vivo bioimaging is up to 105 times.
Collapse
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Manjing Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Rong Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xin Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Mingzhu Liu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| |
Collapse
|
18
|
Cui M, Dai P, Ding J, Li M, Sun R, Jiang X, Wu M, Pang X, Liu M, Zhao Q, Song B, He Y. Millisecond‐Range Time‐Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Manjing Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Rong Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xin Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Mingzhu Liu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| |
Collapse
|
19
|
Microwave assisted synthesis of rhodium(+Ⅰ) N-heterocyclic carbene complexes and their cytotoxicity against tumor cell lines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
21
|
Zhao S, Yang Z, Jiang G, Huang S, Bian M, Lu Y, Liu W. An overview of anticancer platinum N-heterocyclic carbene complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Wu J, Yang T, Wang X, Li W, Pang M, Sun H, Liang H, Yang F. Development of a multi-target anticancer Sn(ii) pyridine-2-carboxaldehyde thiosemicarbazone complex. Dalton Trans 2021; 50:10909-10921. [PMID: 34313274 DOI: 10.1039/d1dt01272j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we proposed to design effective multi-target anticancer agents based on the chelation of nontoxic metals with ligands that possess anticancer activity. In total, five Sn(ii) pyridine-2-carboxaldehyde thiosemicarbazone complexes are synthesized and their activities are tested. Among these complexes, C5 is found to show the highest cytotoxicity on investigating their structure-activity relationships. In addition, C5 not only exhibits an effective inhibitory effect against tumor growth in vivo, but also suppresses angiogenesis and restricts the metastasis of cancer cells in vitro. Multiple mechanisms underlie the antitumor effect of C5, and they include acting against DNA, inducing apoptosis, and inhibiting the activities of anti-apoptotic Bcl-xL protein, metalloproteinase MMP2 and topoisomerase II.
Collapse
Affiliation(s)
- Junmiao Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Xiaojun Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Min Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
23
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. Endogenous reactive oxygen species burst induced and spatiotemporally controlled multiple drug release by traceable nanoparticles for enhancing antitumor efficacy. Biomater Sci 2021; 9:4968-4983. [PMID: 34085682 DOI: 10.1039/d1bm00668a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are not only used as a therapeutic reagent in chemodynamic therapy (CDT), to stimulate the release of antineoplastic drugs, they can also be used to achieve a combined effect of CDT and chemotherapy to enhance anticancer effects. Herein, we synthesized a pH-responsive prodrug (PEG2k-NH-N-DOX), ROS-responsive prodrug (PEG2k-S-S-CPT-ROS), organic CDT agents (TPP-PEG2k-LND, TPP-PEG2k-TOS), and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), and used them to encapsulate combrestatinA4 (CA4) to prepare traceable pH/ROS dual-responsive multifunctional nanoparticles (TLDCAG NPs) with endogenous ROS burst and spatiotemporally controlled multiple drug release ability. Firstly, TLDCAG NPs were accumulated in the tumor cell microenvironment via an enhanced permeability and retention (EPR) effect. Secondly, CA4 was released and specifically destroyed angiogenesis to facilitate the interaction between the tumor and the remaining TLDCG NPs. After accumulating in tumor cells, the TLDCG NPs could be destroyed under acidic conditions to quickly release doxorubicin (DOX), TPP-PEG2k-LND, and TPP-PEG2k-TOS. Thirdly, TPP-PEG2k-LND and TPP-PEG2k-TOS quickly targeted mitochondria, induced endogenous ROS bursts, reduced the mitochondrial membrane potential, and induced tumor cell apoptosis. Endogenous ROS can not only be used as a therapeutic reagent for CDT, but also can cut off the thioketal bond in PEG2k-S-S-CPT-ROS and release camptothecin (CPT). Finally, TLDCAG NPs were traced by magnetic resonance imaging (MRI). Furthermore, in vitro and vivo results indicate that the TLDCAG NPs have vigorous antitumor activity and negligible systemic toxicity. Therefore, the TLDCAG NPs provide an efficient strategy for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
24
|
Zhen X, Qu R, Chen W, Wu W, Jiang X. The development of phosphorescent probes for in vitro and in vivo bioimaging. Biomater Sci 2021; 9:285-300. [PMID: 32756681 DOI: 10.1039/d0bm00819b] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphorescence is a process that slowly releases the photoexcitation energy after the removal of the excitation source. Although transition metal complexes and purely organic room-temperature phosphorescence (RTP) materials show excellent phosphorescence property, their applications in in vitro and in vivo bioimaging are limited due to their poor solubility in water. To overcome this issue, phosphorescent materials are modified with amphiphilic or hydrophilic polymers to endow them with biocompatibility. This review focuses on recent advances in the development of phosphorescent probes for in vitro and in vivo bioimaging. The photophysical mechanism and the design principles of transition metal complexes and purely organic RTP materials for the stabilization of the triplet excited state for enhanced phosphorescence are first discussed. Then, the applications in in vitro and in vivo bioimaging using transition metal complexes including iridium(iii) complexes, platinum(ii) complexes, rhodium(i) complexes, and purely organic RTP materials are summarized. Finally, the current challenges and perspectives for these emerging materials in bioimaging are discussed.
Collapse
Affiliation(s)
- Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
25
|
Sohrabi M, Saeedi M, Larijani B, Mahdavi M. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research. Eur J Med Chem 2021; 216:113308. [PMID: 33713976 DOI: 10.1016/j.ejmech.2021.113308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023]
Abstract
Unique structure, characteristic reactivity, and facile synthesis of metal complexes have made them efficient ligands in drug development research. Among them, rhodium complexes have a limited history and there are a few discussions about their biological activities documented in the literature. However, investigation of kinetically inert rhodium complexes has recently attracted lots of attention and especially there are various evidences on their anti-cancer activity. It seems that they can be investigated as a versatile surrogates or candidates for the existing drugs which do not affect selectively or suffer from various side effects. In recent years, there has been an increasing interest in the use of mononuclear rhodium (III) organometallo drugs due to its versatile structurally important aspects to inhibit various enzymes. It has been demonstrated that organometallic Rh complexes profiting from both organic and inorganic aspects have shown more potent biological activities than classical inorganic compartments. In this respect, smart design, use of the appropriate organic ligands, and efficient and user-friendly synthesis of organometallic Rh complexes have played crucial roles in the inducing desirable biological activities. In this review, we focused on the recent advances published on the bioactivity of Rh (III/II/I) complexes especially inhibitory activity, from 2013 till now. Accordingly, considering the structure-activity relationship (SAR), the effect of oxidation state (+1, +2, and +3) and geometry (dimer or monomer complexes with coordination number of 4 and 6) of Rh complexes as well as various ligands on in vitro and in vivo studies was comprehensively discussed.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zhou YY, Ding YM, Zhao W, Dong JH, Li LZ, Chen HY, Xu JJ. Efficient NIR electrochemiluminescent dyes based on ruthenium(II) complexes containing an N-heterocyclic carbene ligand. Chem Commun (Camb) 2021; 57:1254-1257. [PMID: 33427256 DOI: 10.1039/d0cc07595g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three new ruthenium(ii) complexes containing an N-heterocyclic carbene (NHC) ligand (RuNHC) have been successfully synthesized and proved to be efficient near-infrared (NIR) ECL (electrogenerated chemiluminescence) luminophores. In addition to the advantages of the lower-charge main motif (+1), the much lower oxidation potentials, and the longer metal to ligand charge transfer (MLCT) absorption bands, most importantly, these RuNHC complexes show higher, or at least comparable, ECL efficiency compared with Ru(bpy)32+ under the same experimental conditions; this demonstrates their great potential for applications in the NIR ECL imaging field in the future.
Collapse
Affiliation(s)
- Yu-Yang Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. and School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang-Ming Ding
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian-Hua Dong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liang-Zhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. and College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
27
|
Paul A, Singh P, Kuznetsov ML, Karmakar A, Guedes da Silva MFC, Koch B, Pombeiro AJL. Influence of anchoring moieties on new benzimidazole-based Schiff base copper(II) complexes towards estrogen dependent breast cancer cells. Dalton Trans 2021; 50:3701-3716. [PMID: 33634805 DOI: 10.1039/d0dt03873c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new benzimidazole Schiff base copper(ii) compounds [Cu(5-CH2PPh3-2-salmethylben)(NO3)(H2O)][BF4]·2/3(H2O)·1/3(MeOH) (1) and [Cu(5-CH2NEt3-2-salmethylben)(Cl)][BF4] (2) were synthesised by mixing 2-(1-methyl-1H-benzo[d]imidazol-2-yl)aniline, (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride or N,N-diethyl-N-(3-formyl-4-hydroxybenzyl)ethanaminium chloride and Cu(NO3)2·3H2O or CuCl2·2H2O in the presence of tetrafluoroborate in a binary mixture of MeOH : H2O under refluxing conditions. The structures of the compounds were established by elemental analysis, FT-IR, ESI-MS analytical techniques and, for 1, by single-crystal X-ray diffraction analysis. Absorption and fluorescence spectroscopic methods were performed to evaluate the calf thymus DNA interactions with the compounds. The calculated binding constants (Kb) of 3.14 × 105 M-1 for 1 and 3.20 × 105 M-1 for 2 were established. The intercalative DNA binding mode was also verified by molecular docking studies. Both compounds demonstrated a notable in vitro cytotoxic effect against human A-549 (lung carcinoma), MCF-7 (breast cancer) and HeLa (cervical cancer) cancer cell lines. A substantial repressive effect on the proliferation of MCF-7 cells (breast cancer cells) was observed for compound 1. The mechanism of action for the effective antiproliferative activity of 1 has additionally been confirmed by means of various biological studies such as morphological assessment through AO/EB, detection of apoptotic induction via Hoechst/PI dual staining, flow cytometry for detection of cell cycle arrest, quantitative analysis of apoptotic cells, DNA degradation, generation of reactive oxygen species (ROS) and by apoptotic induction through mitochondrial staining.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Priya Singh
- Departments of Zoology, Faculty of Science, Banaras Hindu University, Varanasi - 221 005, U.P., India.
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Biplob Koch
- Departments of Zoology, Faculty of Science, Banaras Hindu University, Varanasi - 221 005, U.P., India.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
28
|
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent Advances in Nanomicelles Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E70. [PMID: 33396938 PMCID: PMC7823398 DOI: 10.3390/nano11010070] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The efficient and selective delivery of therapeutic drugs to the target site remains the main obstacle in the development of new drugs and therapeutic interventions. Up until today, nanomicelles have shown their prospective as nanocarriers for drug delivery owing to their small size, good biocompatibility, and capacity to effectively entrap lipophilic drugs in their core. Nanomicelles are formed via self-assembly in aqueous media of amphiphilic molecules into well-organized supramolecular structures. Molecular weights and structure of the core and corona forming blocks are important properties that will determine the size of nanomicelles and their shape. Selective delivery is achieved via novel design of various stimuli-responsive nanomicelles that release drugs based on endogenous or exogenous stimulations such as pH, temperature, ultrasound, light, redox potential, and others. This review summarizes the emerging micellar nanocarriers developed with various designs, their outstanding properties, and underlying principles that grant targeted and continuous drug delivery. Finally, future perspectives, and challenges for nanomicelles are discussed based on the current achievements and remaining issues.
Collapse
Affiliation(s)
- Salah M. Tawfik
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Surfactant Laboratory, Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Shavkatjon Azizov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Laboratory of Polysaccharide Chemistry, Institute of Bioorganic Chemistry, Uzbekistan Academy of Science, Tashkent 100125, Uzbekistan
| | - Mohamed R. Elmasry
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Mirkomil Sharipov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| |
Collapse
|
29
|
Tan Y, He K, Tang B, Chen H, Zhao Z, Zhang C, Lin L, Liu J. Precisely Regulated Luminescent Gold Nanoparticles for Identification of Cancer Metastases. ACS NANO 2020; 14:13975-13985. [PMID: 32865989 DOI: 10.1021/acsnano.0c06388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nanoprobes for identification of cancer metastases in the mononuclear phagocyte system (MPS) organs are of significant importance but are limited due to the long-standing challenge of low tumor-targeting specificity with inadequate targeting efficiency and high nonspecific accumulation. Here, we report a surface regulation strategy that integrates the tumor-acidity-activated charge-reversal behavior and precise control in both hydrodynamic diameter (HD) and surface charge on ultrasmall luminescent gold nanoparticles (AuNPs) to achieve significantly high tumor-targeting specificity. The precise regulation of AuNPs to a rational HD and surface charge could rapidly and selectively recognize small metastatic tumors (∼1 mm) in liver and lung with high signal-to-noise ratios of 4.6 and 4.5, respectively. These results help further understand the in vivo transport of nanoprobes and provide guidance for design of translatable nanosized nanomedicines in cancer metastasis theranostics.
Collapse
Affiliation(s)
- Yue Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kui He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bing Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huarui Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhipeng Zhao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chengqian Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|