1
|
Zhang X, Liao Z, Wang X, Ruan X, Gong H, He G, Zhang X. Agarose modification on PDMS/PES composite membrane for improved hemocompatibility and anti-fouling performance. Int J Biol Macromol 2025; 308:142316. [PMID: 40120914 DOI: 10.1016/j.ijbiomac.2025.142316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/27/2024] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Agarose, the natural hydrophilic polysaccharide with good biocompatibility, low immunogenicity and low cost which has been widely used in tissue engineering and regenerative medicine but not in biomedical equipment, was employed to modify the potential oxygenation membrane, the core component for blood oxygenation ex vivo in the artificial lung machine. The oxidized agarose was successfully coated onto the hydrophobic polydimethylsiloxane (PDMS) surface forming a hydrophilic layer via intermolecular chemical bonding as well as physical interactions based on characterization and analyses from SEM, HNMR, FTIR, XPS and water contact angle measurement. The agarose modification significantly improved the hemocompatibility, reducing protein adsorption by 50-60 % and hemolysis rate from ∼0.45 % to ∼0.2 %, elongating the plasma recalcification time and blood clotting time, as well as alleviating platelet adhesion, and the antibacterial performance of the membrane, which would reduce the contamination of the membrane thus prolonging the membrane service life as well as blood clotting, blood damage and blood fouling. Meanwhile, the CO2/O2 gas selectivity was promoted to ∼9, an 64 % increase in comparison to that of unmodified membranes, which would significantly enhance the gas exchange efficiency of the oxygenation membrane. Moreover, the membrane modified with agarose exhibited long-term stability against platelet adhesion and blood leakage. This agarose modification strategy is simple yet effective, providing new ideas for oxygenation membrane synthesis and improvement.
Collapse
Affiliation(s)
- Xinlu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin 124221, China; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zelin Liao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin 124221, China; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaokun Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin 124221, China; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin 124221, China; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiujuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin 124221, China; R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Yang G, Huang J, Gu W, Lin Z, Wang Q, Kang R, Liu JY, Sun Z, Zheng X, Jiao L, Jiang HL. In situ generated hydrogen-bonding microenvironment in functionalized MOF nanosheets for enhanced CO 2 electroreduction. Proc Natl Acad Sci U S A 2025; 122:e2419434122. [PMID: 40208948 PMCID: PMC12012543 DOI: 10.1073/pnas.2419434122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/12/2025] [Indexed: 04/12/2025] Open
Abstract
The microenvironment around catalytic sites plays crucial roles in enzymatic catalysis while its precise control in heterogeneous catalysts remains challenging. Herein, the coordinatively unsaturated metal nodes of Hf-based metal-organic framework nanosheets are simultaneously codecorated with catalytically active Co(salen) units and adjacent pyridyl-substituted alkyl carboxylic acids via a post modification route. By varying pyridyl-substituted alkyl carboxylic acids, the spatial positioning of the N atom in pyridine group relative to adjacent Co(salen) can be precisely controlled. Notably, the 3-(pyridin-4-yl)propionic acid, with para-position pyridine N atom, maximally improves the electrocatalytic CO2 reduction performance of Co(salen) unit, far superior to other counterparts. Mechanism investigations reveal that the pyridine unit of 3-(pyridin-4-yl)propionic acid is optimally positioned relative to Co(salen) and undergoes in situ reduction to pyridinyl radical under working potentials. This greatly facilitates the stabilization of *COOH intermediate via hydrogen-bonding interaction, lowering the formation energy barrier of *COOH and therefore boosting CO2 electroreduction.
Collapse
Affiliation(s)
- Ge Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Jiajia Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Weizhi Gu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Qingyu Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, People’s Republic of China
| | - Rong Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Jing-Yao Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130023, People’s Republic of China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, People’s Republic of China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, People’s Republic of China
| | - Long Jiao
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| |
Collapse
|
3
|
Feng X, Yang P, Wang Y, Cao J, Gao J, Shi S, Vlachos DG. Tailoring the Selective Oxidation of Hydroxyl-Containing Compounds via Precisely Tuning the Hydrogen-Bond Strength of Catalyst H-Bond Acceptors. JACS AU 2025; 5:1359-1366. [PMID: 40151249 PMCID: PMC11938016 DOI: 10.1021/jacsau.4c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/29/2025]
Abstract
The unique performance of the enzyme is mainly achieved via weak interactions between the "outer coordination sphere" and the substrate. Inspired by this process, we developed 3D encapsulated-structure catalysts with hydrogen-bond engineering on the shell, which mimics the "outer coordination sphere" of an enzyme. Various hydrogen bond acceptors (C=O, S=O, and N-O groups) are imparted in the shell. Concentration-dependent 1H NMR, inverse-phase gas Chromatography (IGC) measurements, and DFT calculations underscore that the hydrogen bond strength between the acceptor groups and alcohol follows the order of C=O < S=O < N-O. The hydroxyl compound oxidation rate vs the hydrogen bond strength follows a volcano behavior, reminiscent of Sabatier's principle. The performance variation among catalysts is attributed to the adsorption strength of the substrate. The proposed bioinspired design principle expands the scope of encapsulated catalysts, enabling fine regulation of catalytic activity through precise microenvironment control via weak interactions with substrates.
Collapse
Affiliation(s)
- Xiao Feng
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Piaoping Yang
- Department
of Chemical and Biomolecular Engineering and Catalysis Center for
Energy Innovation (CCEI), University of
Delaware, Newark, Delaware 19716, United States
| | - Yinwei Wang
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieqi Cao
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Song Shi
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dionisios G. Vlachos
- Department
of Chemical and Biomolecular Engineering and Catalysis Center for
Energy Innovation (CCEI), University of
Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Miao G, Zhou Y, Yang S, He L, Xu F. A green and fast semi-liquefaction strategy: One-step preparation of high-yield nanocellulose particles. Carbohydr Polym 2025; 347:122694. [PMID: 39486935 DOI: 10.1016/j.carbpol.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 11/04/2024]
Abstract
The complexity and cost of the biorefinery industry hinder the high-value utilization of lignocellulose. Herein, we propose a green, fast, and economical oxygen-alkali-ethanol (OAE) semi-liquefaction strategy for achieving one-step preparation of hemp stalk material (HSM) biomass into nanocellulose particles (NCPs). Oxygen, alkali, and ethanol have obvious synergistic effects during the semi-liquefaction process, which jointly promote the opening and depolymerization of the crystalline regions of cellulose. The presence of hemicellulose in HSM affects the preparation of NCPs, and the removal of hemicellulose in advance can significantly increase the yield of NCPs. The results showed that the yield of NCPs was as high as 90.14 % with 92.30 % purity after treatment at 120 °C for 2 h. The conversion of rod-shaped nanocellulose to NCPs was successfully captured, and Van der Waals forces were hypothesized to play a dominant role in the formation of NCPs by molecular dynamics simulations. Moreover, the semi-liquefaction can simultaneously fractionate uncondensed lignin with a yield of 46.52 %. With ethanol as a hydrogen donor, the residual lignin was effectively converted to aromatic monomers, predominantly vanillin and syringaldehyde.
Collapse
Affiliation(s)
- Guohua Miao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yan Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shibo Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Chen X, Zhao S, Yuan A, Chen S, Liao Y, Lei Y, Fu X, Lei J, Jiang L. Enabling High Strength and Toughness Polyurethane through Disordered-Hydrogen Bonds for Printable, Recyclable, Ultra-Fast Responsive Capacitive Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405941. [PMID: 39401406 PMCID: PMC11615776 DOI: 10.1002/advs.202405941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Indexed: 12/06/2024]
Abstract
The rapid advancement of smart, flexible electronic devices has paralleled a surge in electronic waste (e-waste), exacerbating massive resource depletion and serious environmental pollution. Recyclable materials are extensively investigated to address these challenges. Herein, this study designs a unique polyurethane (SPPUs) with ultra-high strength up to 60 MPa and toughness of 360 MJ m-3. This synthetic SPPUs can be fully recycled at room temperature by using green solvents of ethanol. Accordingly, the resultant SPPU-Ni composites, created by mixing the ethanol-dissolved SPPUs solution with nickel (Ni) powder, effectively combine the flexibility and recyclability of SPPUs with the electrical conductivity of the nickel filler. Notably, this work develops the printable capacitive sensors (PCBS) through transcribing the paste of SPPUs-Ni slurry onto PET film and paper using screen-printing technology. The devised PCBS have fast response time ≈50 ms, high resolution, and multiple signal recognition capabilities. Remarkably, SPPUs and Ni powder can be fully recycled by only dissolving the waste PCBS in ethanol. This work offers a sustainable solution to the growing e-waste problem in recyclable flexible electronics.
Collapse
Affiliation(s)
- Xingbao Chen
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Shiwei Zhao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Anqian Yuan
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Silong Chen
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yansheng Liao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Yuan Lei
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengdu610065China
| |
Collapse
|
6
|
Yu J, Yang G, Gao ML, Wang H, Jiang HL. Chiral Ligand-Decorated Rhodium Nanoparticles Incorporated in Covalent Organic Framework for Asymmetric Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412643. [PMID: 39101718 DOI: 10.1002/anie.202412643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
While metal nanoparticles (NPs) have demonstrated their great potential in catalysis, introducing chiral microenvironment around metal NPs to achieve efficient conversion and high enantioselectivity remains a long-standing challenge. In this work, tiny Rh NPs, modified by chiral diene ligands (Lx) bearing diverse functional groups, are incorporated into a covalent organic framework (COF) for the asymmetric 1,4-addition reactions between arylboronic acids and nitroalkenes. Though Rh NPs hosted in the COF are inactive, decorating Rh NPs with Lx creates the active Rh-Lx interface and induces high activity. Moreover, chiral microenvironment modulation around Rh NPs by altering the groups on chiral diene ligands greatly optimizes the enantioselectivity (up to 95.6 % ee). Mechanistic investigations indicate that the formation of hydrogen-bonding interaction between Lx and nitroalkenes plays critical roles in the resulting enantioselectivity. This work highlights the significance of chiral microenvironment modulation around metal NPs by chiral ligand decoration for heterogeneous asymmetric catalysis.
Collapse
Affiliation(s)
- Jiangtao Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ge Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - He Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Guo J, He J, Zhang S. In situ self-assembly of pulp microfibers and nanofibers into a transparent, high-performance and degradable film. Int J Biol Macromol 2024; 277:134294. [PMID: 39102925 DOI: 10.1016/j.ijbiomac.2024.134294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Despite the significant properties of fossil plastics, the current unsustainable methods employed in production, usage and disposal present a grave threat to both energy and environment. The development of degradable biomass materials as substitutes for fossil plastics can effectively address the energy-environment paradox at the source. Here, we prepared novel micro-nano multiscale composite films through assembling and crosslinking nanocellulose with coniferous wood pulp microfibers. The composite film combines the advantages of microfibers and nanocellulose, achieving a maximum transmittance of 91 %, foldability, excellent mechanical properties (tensile strength: 51.3 MPa, elongation at break: 4 %, young's modulus: 3.4 GPa), high thermal stability and complete degradation within 40 days. The composite film exhibits mechanochemical self-healing and retains properties even after fracture. Such exceptional performance fully meets the requirements for substituting petroleum plastics. By incorporating CaAlSiN3:Eu2+ into the composite film, it enables dual emission of red and blue light, thereby being able to promote plant growth and presenting potential as a novel sustainable alternative for agricultural films. By assembling microfiber and nanocellulose, such novel strategy is presented for the fabrication of high-quality biomass materials, thereby offering a promising avenue towards environment-friendly resource-sustainable new materials.
Collapse
Affiliation(s)
- Jianrong Guo
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shuyu Zhang
- School of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
8
|
Wang X, Niu Z, Li Q, Scheiner S. Strong Triel Bonds with Be as Electron Donor. Inorg Chem 2024; 63:14656-14664. [PMID: 39034471 DOI: 10.1021/acs.inorgchem.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A systematic theoretical study was conducted on the triel bonds (TrBs) within the TrX3···Be(CO)3 complexes (Tr = B, Al, Ga, In, Tl; X = H, F, Cl, Br, I). The interaction energies of these systems range between 4 and 38 kcal/mol. The TrB weakens as X becomes more electronegative in the B and Al systems, while the opposite pattern of stronger bonds is observed in the In and Tl analogues. The dominant component of the TrB is polarization energy, which arises from charge transfer from Be(CO)3 to TrX3. The source of the density is a confluence of CO π-bonding orbitals at the Be center that resembles a Be lone pair, and which makes the molecular electrostatic potential above the Be somewhat negative. This π-lump is paired with the highly positive π-hole above the Tr, and a large amount of charge is transferred to the empty pz orbital of Tr. These factors, when considered in conjunction with large AIM measures, confer on this TrB a certain degree of covalency.
Collapse
Affiliation(s)
- Xin Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Zhihao Niu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
9
|
Wei J, Long Y, Li T, Gao H, Nie Y. Exploring hydrogen-bond structures in cellulose during regeneration with anti-solvent through two-dimensional correlation infrared spectroscopy. Int J Biol Macromol 2024; 267:131204. [PMID: 38556242 DOI: 10.1016/j.ijbiomac.2024.131204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Cellulose, renowned for its excellent biocompatibility, finds extensive applications in both industrial and laboratory settings. However, few studies have specifically addressed the mechanistic evolution of hydrogen bond networks in cellulose during the dissolution and regeneration processes. In this research, the regeneration mechanism of cellulose in water and ethanol is investigated through molecular dynamics simulations. The results indicate that the ability of water molecules to disrupt hydrogen bonds between cellulose and ionic liquids is stronger than that of ethanol, which is more conducive to promoting the regeneration of cellulose. Besides, the Fourier transform infrared spectroscopy coupled with two-dimensional correlation infrared spectroscopy techniques are employed to unveil the evolution sequence of hydrogen bonds during dissolution and regeneration: ν(OH) (absorbed water) → ν(O3-H3···O5) (intrachain) → ν(O6-H6···O3') (interchain) → ν(O2-H2···O6) (intrachain) → ν(OH) (free). This study not only enhances our understanding of the intricate hydrogen bond dynamics in cellulose dissolution and regeneration but also provides a foundation for the expanded application of cellulose in diverse fields.
Collapse
Affiliation(s)
- Jia Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Long
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tiancheng Li
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| |
Collapse
|
10
|
Chen Y, Huang C, Miao Z, Gao Y, Dong Y, Tam KC, Yu HY. Tailoring Hydronium ion Driven Dissociation-Chemical Cross-Linking for Superfast One-Pot Cellulose Dissolution and Derivatization to Build Robust Cellulose Films. ACS NANO 2024; 18:8754-8767. [PMID: 38456442 DOI: 10.1021/acsnano.3c11335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Concepts of sustainability must be developed to overcome the increasing environmental hazards caused by fossil resources. Cellulose derivatives with excellent properties are promising biobased alternatives for petroleum-derived materials. However, a one-pot route to achieve cellulose dissolution and derivatization is very challenging, requiring harsh conditions, high energy consumption, and complex solubilizing. Herein, we design a one-pot tailoring hydronium ion driven dissociation-chemical cross-linking strategy to achieve superfast cellulose dissolution and derivatization for orderly robust cellulose films. In this strategy, there is a powerful driving force from organic acid with a pKa below 3.75 to dissociate H+ and trigger the dissolution and derivatization of cellulose under the addition of H2SO4. Nevertheless, the driving force can only trigger a partial swelling of cellulose but without dissolution when the pKa of organic acid is above 4.26 for the dissociation of H+ is inhibited by the addition of inorganic acid. The cellulose film has high transmittance (up to ∼90%), excellent tensile strength (∼122 MPa), and is superior to commercial PE film. Moreover, the tensile strength is increased by 400% compared to cellulose film prepared by the ZnCl2 solvent. This work provides an efficient solvent, which is of great significance for emerging cellulose materials from renewable materials.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengling Huang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhouyu Miao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youjie Gao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Chu F, Lu B, Zhao G, Zhu Z, Yang K, Su T, Zhang Q, Chen C, Lü H. Aerobic Oxidation of 5-Hydroxymethylfurfural via Hydrogen Bonds Reconstruction with Ternary Deep Eutectic Solvents. CHEMSUSCHEM 2024; 17:e202301385. [PMID: 37994243 DOI: 10.1002/cssc.202301385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Hydrogen bonding effect exists widely in various chemical and biochemical systems, primarily stabilizing the molecular structure as a positive factor. However, the presence of intermolecular hydrogen bonds among biomass molecules results in a formidable challenge for the efficient utilization of biomass resources. Here in, a novel strategy of "hydrogen bonds reconstruction" was developed by a series of ternary deep eutectic solvent (DESs) as molecular scissors, which disrupting the initial intermolecular hydrogen bonds and reconstructing the new ones to increase the reactivity of the biomass-based compound. The DESs played a crucial role in enhancing the reactivity of 5-hydroxymethylfurfural (HMF) and promoting its oxidation through reconstructing the hydrogen bonds interactions. Furthermore, DESs was also found to activate the Anderson-type catalyst Na5IMo6O24 (IMo6) through an electron-transfer mechanism, which facilitated the generation of oxygen vacancies and significantly enhances its ability to activate molecular oxygen. With this novel catalytic system, oxidation of HMF exhibited remarkable efficiency as HMF was almost entirely converted into FFCA with an impressive yield of 98 % under the optimized conditions. This finding offers novel insights into the utilization of biomass resources and endows the solvent with new functions in the chemical reaction.
Collapse
Affiliation(s)
- Fuhao Chu
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| | - Bo Lu
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| | - Guiyi Zhao
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| | - Zhiguo Zhu
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| | - Kaixuan Yang
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| | - Ting Su
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| | - Qiaohong Zhang
- School of Material Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, 315211, Ningbo, China
| | - Chen Chen
- School of Material Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, 315211, Ningbo, China
| | - Hongying Lü
- College of Chemistry and Chemical Engineering, Yantai University, 264005, Yantai, Shandong, China
| |
Collapse
|
12
|
Zhang X, Huo D, Wei J, Wang J, Zhang Q, Yang Q, Zhang F, Fang G, Zhu H, Si C. Synthesis of amino-functionalized nanocellulose by guanidine based deep eutectic solvent and its application in fine fibers retention. Int J Biol Macromol 2024; 260:129473. [PMID: 38242405 DOI: 10.1016/j.ijbiomac.2024.129473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
A guanidine-based Deep Eutectic Solvent (DES) consisting of 1,3-diaminoguanidine monohydrochloride and glycerol was utilized to prepare C-CNC from dissolving pulp. The pulp fibers were oxidized to dialdehyde cellulose by periodate, then fibrillated through the hydrogen bonds shear of DES and aminocationized through Schiff base effect of the amino groups in the DES solvent to obtain C-CNC. The results revealed that the characterization of the DES (such as viscosity, polarity, and pH) was related to the molar ratio of glycerol/guanidine-salts. The hydrogen bond network structure of DES solvent with optimal system was simulated by DFT and its damage to fiber hydrogen bond network was predicted. The C-CNC produced under the optimal reaction conditions (molar ratio of 1:2, 90 °C for 2 h) was highly dispersible with an average length and diameter of 85 ± 35 nm and 5.0 ± 1.2 nm, a charge density of 2.916 mol/g. C-CNC exhibited excellent flocculation when added to fine fiber suspensions of chemomechanical slurries, achieving rapid flocculation and settling onto fibers in <1 min. The DES solvent maintained its reactivity after 5 cycles. This study lays the foundation for the batch preparation of nanocellulose in an environmentally friendly manner and its application as a green additive in paper industry.
Collapse
Affiliation(s)
- Xipeng Zhang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Huo
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 275335, China; Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jiaxin Wei
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhua Wang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiulin Yang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 275335, China
| | - Guigan Fang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chuangling Si
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
13
|
Chai M, Xu G, Yang R, Sun H, Wang Q. Degradation Product-Promoted Depolymerization Strategy for Chemical Recycling of Poly(bisphenol A carbonate). Molecules 2024; 29:640. [PMID: 38338384 PMCID: PMC10856637 DOI: 10.3390/molecules29030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The accumulation of waste plastics has a severe impact on the environment, and therefore, the development of efficient chemical recycling methods has become an extremely important task. In this regard, a new strategy of degradation product-promoted depolymerization process was proposed. Using N,N'-dimethyl-ethylenediamine (DMEDA) as a depolymerization reagent, an efficient chemical recycling of poly(bisphenol A carbonate) (BPA-PC or PC) material was achieved under mild conditions. The degradation product 1,3-dimethyl-2-imidazolidinone (DMI) was proven to be a critical factor in facilitating the depolymerization process. This strategy does not require catalysts or auxiliary solvents, making it a truly green process. This method improves the recycling efficiency of PC and promotes the development of plastic reutilization.
Collapse
Affiliation(s)
- Maoqing Chai
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Rulin Yang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hongguang Sun
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Qinggang Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
14
|
Wang W, Xu Y, Zhu B, Ge H, Wang S, Li B, Xu H. Exploration of the interaction mechanism of lignocellulosic hybrid systems based on deep eutectic solvents. BIORESOURCE TECHNOLOGY 2023:129401. [PMID: 37380035 DOI: 10.1016/j.biortech.2023.129401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
The interactions of three deep eutectic solvents (DES) choline chloride-glycerol (ChCl-GLY), ChCl-lactic acid (ChCl-LA) and ChCl-urea (ChCl-U) with cellulose-hemicellulose and cellulose-lignin hybrid systems were investigated using the simulated computational approach. Aiming to simulate DES pretreatment of real lignocellulosic biomass in nature. DES pretreatment could disrupt the original hydrogen bonding network structure among the lignocellulosic components and reconstruct the new DES-lignocellulosic hydrogen bonding network structure. ChCl-U had the highest intensity of action on the hybrid systems, removing 78.3% of the hydrogen bonds between cellulose-4-O-methyl Gluconic acid xylan (cellulose-Gxyl) and 68.4% of the hydrogen bonds between cellulose-Veratrylglycerol-b-guaiacyl ether (cellulose-VG), respectively. The increase of urea content facilitated the interaction between DES and lignocellulosic blend system. Finally, the addition of appropriate water (DES:H2O = 1:5) and DES formed the new DES-water hydrogen bonding network structure more favorable for the interaction of DES with lignocellulose.
Collapse
Affiliation(s)
- Weixian Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yang Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Baoping Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hanwen Ge
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shenglin Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Huanfei Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
15
|
Zhang Y, Wang S, Fang Z, Li H, Fang J. Molecular design and experimental study of deep eutectic solvent extraction of keratin derived from feathers. Int J Biol Macromol 2023; 241:124512. [PMID: 37086760 DOI: 10.1016/j.ijbiomac.2023.124512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Feather keratin has a complex structure, hard texture and must be treated to improve its bioavailability. In this paper, according to the designability of DES, some deep eutectic solvents (DESs) were prepared to degrade feathers and extract keratin. Calculations by quantum chemical methods showed that DESs were considered molecular scissors with the ability to break initial hydrogen bonds and form new bonds only when the Gibbs free energy change for the degradation process was ΔG < 0, i.e., hydrogen binding energy ΔE < -0.3038 kcal/mol. Then, the degradation mechanism was predicted to provide guidance for the molecular design of DES. Finally, experimental results showed that the same ratio of choline chloride-based DESs had higher catalytic performance, in which [ChCl][P][ZnCl2] 1:5:2 was used with a high yield of keratin of 85.46 %. DES had a high catalytic performance after multiple recycling cycles and this method has no H2S gas generation, which improves the atomic utilization.
Collapse
Affiliation(s)
- Yanhua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Shizhuo Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
16
|
Chen Q, Chen Y, Wu C. Probing the evolutionary mechanism of the hydrogen bond network of cellulose nanofibrils using three DESs. Int J Biol Macromol 2023; 234:123694. [PMID: 36801281 DOI: 10.1016/j.ijbiomac.2023.123694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Complex interactions between cellulose molecules and small molecules in Deep Eutectic Solvent (DES) systems can lead to dramatic changes in the structure of the hydrogen bond network in cellulose. However, the mechanism of interaction between cellulose and solvent molecules and the mechanism of evolution of hydrogen bond network are still unclear. In this study, cellulose nanofibrils (CNFs) were treated with DESs based on oxalic acid as hydrogen bond donors (HBD), and choline chloride, betaine, and N-methylmorpholine-N-oxide (NMMO) as hydrogen bond acceptors (HBA). The changes in the properties and microstructure of CNFs during treatment with the three types of solvents were investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results showed that the crystal structures of CNFs were not changed during the process, but the hydrogen bond network evolved, increasing the crystallinity and crystallite size. Further analysis of the fitted peaks of FTIR and generalized two-dimensional correlation spectra (2DCOS) revealed that all three hydrogen bonds were disrupted to different degrees, the relative content changed, and evolved strictly in a certain order. These findings indicate that the evolution of hydrogen bond networks in nanocellulose has certain regularity.
Collapse
Affiliation(s)
- Qinghui Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Yehong Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| | - Chaojun Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| |
Collapse
|
17
|
Shi S, Yang P, Dun C, Zheng W, Urban JJ, Vlachos DG. Selective hydrogenation via precise hydrogen bond interactions on catalytic scaffolds. Nat Commun 2023; 14:429. [PMID: 36702821 PMCID: PMC9879947 DOI: 10.1038/s41467-023-36015-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The active site environment in enzymes has been known to affect catalyst performance through weak interactions with a substrate, but precise synthetic control of enzyme inspired heterogeneous catalysts remains challenging. Here, we synthesize hyper-crosslinked porous polymer (HCPs) with solely -OH or -CH3 groups on the polymer scaffold to tune the environment of active sites. Reaction rate measurements, spectroscopic techniques, along with DFT calculations show that HCP-OH catalysts enhance the hydrogenation rate of H-acceptor substrates containing carbonyl groups whereas hydrophobic HCP- CH3 ones promote non-H bond substrate activation. The functional groups go beyond enhancing substrate adsorption to partially activate the C = O bond and tune the catalytic sites. They also expose selectivity control in the hydrogenation of multifunctional substrates through preferential substrate functional group adsorption. The proposed synthetic strategy opens a new class of porous polymers for selective catalysis.
Collapse
Affiliation(s)
- Song Shi
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Weiqing Zheng
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
18
|
Abdel Aal S. Metalloborospherenes as a potential promising high drug-loading capacity for anticancer 5-fluorouracil drug: A DFT mechanistic approach. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Zhu X, Zhang C, Ma H, Lu F. Stereo-Recognition of Hydrogen Bond and Its Implications for Lignin Biomimetic Synthesis. Biomacromolecules 2022; 23:4985-4994. [PMID: 36332059 DOI: 10.1021/acs.biomac.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hydrogen bond (H-bond) is essential to stabilizing the three-dimensional biological structure such as protein, cellulose, and lignin, which are integral parts of animal and plant cells; thus, stereo-recognition of the H-bond is extremely attractive. Herein, a methodology combining the variable-temperature 1H NMR technique with the density functional theory was established to recognize the underlying H-bonding patterns in lignin diastereomers. This method successfully classified the intramolecular and intermolecular H-bonds with slope values varying between 50.2-201.5 and 221.9-655.4, respectively, from the natural logarithm of the hydroxyl proton chemical shift versus the inverse of the temperature plot. Moreover, this slope was found to be correlated with the interaction distance between the H-bond donor and acceptor. Finally, it was proposed that the stereo-preferential formation of the β-O-4 structure (erythro vs threo form) during lignin biomimetic synthesis was probably influenced by their intramolecular H-bonding patterns, thus making it easier to reach thermodynamic equilibrium.
Collapse
Affiliation(s)
- Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| | - Cong Zhang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Haixia Ma
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| |
Collapse
|
20
|
Wu C, Shi S, Hou C, Luo Y, Byers S, Ma J. Design and Preparation of Novel Nitro-Oxide-Grafted Nanospheres with Enhanced Hydrogen Bonding Interaction for O-GlcNAc Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47482-47490. [PMID: 36240223 PMCID: PMC9938961 DOI: 10.1021/acsami.2c15039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an essential modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modulates the functions of many proteins. However, site-specific characterization of O-GlcNAcylated proteins remains challenging. Herein, an innovative material grafted with nitro-oxide (N→O) groups was designed for high affinity enrichment for O-GlcNAc peptides from native proteins. By testing with synthetic O-GlcNAc peptides and standard proteins, the synthesized material exhibited high affinity and selectivity. Based on the material prepared, we developed a workflow for site-specific analysis of O-GlcNAcylated proteins in complex samples. We performed O-GlcNAc proteomics with the PANC-1 cell line, a representative model for pancreatic ductal adenocarcinoma. In total 364 O-GlcNAc peptides from 267 proteins were identified from PANC-1 cells. Among them, 183 proteins were newly found to be O-GlcNAcylated in humans (with 197 O-GlcNAc sites newly reported). The materials and methods can be facilely applied for site-specific O-GlcNAc proteomics in other complex samples.
Collapse
Affiliation(s)
- Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Song Shi
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE, USA 19716, USA
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Yang Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| |
Collapse
|
21
|
Liu S, Yu D, Chen Y, Shi R, Zhou F, Mu T. High-Resolution Thermogravimetric Analysis Is Required for Evaluating the Thermal Stability of Deep Eutectic Solvents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuzi Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Dongkun Yu
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China
| | - Yu Chen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China
| | - Ruifen Shi
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Fengyi Zhou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tiancheng Mu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
22
|
Wang F, Liu Y, Yan H, Wang D, Chu Z, Li K, Tong L, Chen M, Gong J. Revealing dissolution behavior and thermodynamic properties of Tinidazole in 12 mono-solvents based on experiments and molecular simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Abdel Aal S. DFT study of the therapeutic potential of borospherene and metalloborospherenes as a new drug-delivery system for the 5-fluorouracil anticancer drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Li Z, Li Y, Chen Y, Wang Q, Jadoon M, Yi X, Duan X, Wang X. Developing Dawson-Type Polyoxometalates Used as Highly Efficient Catalysts for Lignocellulose Transformation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zonghang Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yiming Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yuannan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qiwen Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Mehwish Jadoon
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaohu Yi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaohong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
25
|
Triptow J, Meijer G, Fielicke A, Dopfer O, Green M. Comparison of Conventional and Nonconventional Hydrogen Bond Donors in Au - Complexes. J Phys Chem A 2022; 126:3880-3892. [PMID: 35687835 PMCID: PMC9234979 DOI: 10.1021/acs.jpca.2c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although gold has become a well-known nonconventional hydrogen bond acceptor, interactions with nonconventional hydrogen bond donors have been largely overlooked. In order to provide a better understanding of these interactions, two conventional hydrogen bonding molecules (3-hydroxytetrahydrofuran and alaninol) and two nonconventional hydrogen bonding molecules (fenchone and menthone) were selected to form gas-phase complexes with Au-. The Au-[M] complexes were investigated using anion photoelectron spectroscopy and density functional theory. Au-[fenchone], Au-[menthone], Au-[3-hydroxyTHF], and Au-[alaninol] were found to have vertical detachment energies of 2.71 ± 0.05, 2.76 ± 0.05, 3.01 ± 0.03, and 3.02 ± 0.03 eV, respectively, which agree well with theory. The photoelectron spectra of the complexes resemble the spectrum of Au- but are blueshifted due to the electron transfer from Au- to M. With density functional theory, natural bond orbital analysis, and atoms-in-molecules analysis, we were able to extend our comparison of conventional and nonconventional hydrogen bonding to include geometric and electronic similarities. In Au-[3-hydroxyTHF] and Au-[alaninol], the hydrogen bonding comprised of Au-···HO as a strong, primary hydrogen bond, with secondary stabilization by weaker Au-···HN or Au-···HC hydrogen bonds. Interestingly, the Au-···HC bonds in Au-[fenchone] and Au-[menthone] can be characterized as hydrogen bonds, despite their classification as nonconventional hydrogen bond donors.
Collapse
Affiliation(s)
- Jenny Triptow
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - André Fielicke
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Mallory Green
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
26
|
Zhang M, Ma H, Liu X, Zhang S, Luo Y, Gao J, Xu J. Control in Local Coordination Environment Boosting Activating Molecular Oxygen with an Atomically Dispersed Binary Mn-Co Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18539-18549. [PMID: 35420407 DOI: 10.1021/acsami.2c01858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Activation of molecular oxygen plays a crucial role in natural organisms and the modern chemical industry. Herein, we report a Mn-Co dual-single-atom catalyst that exerts a specific synergy in boosting O2 activation by collaboration between two distinct types of activation sites. Taking the oxidative esterification of the biomass platform 5-hydroxymethylfurfural (HMF) as the model reaction, the activation of O2 is demonstrated through transforming O2 into a reactive superoxide anion radical (O2•-) on Co-N4 sites and, meanwhile, by reversible consumption and supplement of coordinated surface oxygen as a new type of reactive oxygen species (ROS) on N,O-coordinated single-atom Mn sites (Mn-NxOy). EXAFS analysis results show a longer average Mn-O bond distance at near 2.19 Å, which makes the breaking and formation of surface Mn-O bonds easier to cycle. Control experiments support that such Mn-O bonding conditions could facilitate H-elimination of C-H in HMF. The co-existence of two types of ROS effectively matches the oxidation of hydroxyl and aldehyde groups, and thus, the overall reaction is boosted in excellent yield of diester (95.8%) with an extremely high carbon balance. This study represents a rare example of taking advantage of the synergy of the diatomic catalyst for activating O2 by two types of activation pathways.
Collapse
Affiliation(s)
- Meiyun Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hong Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shujing Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
27
|
Lü H, Sun Y, Yang K, Zhu Z, Su T, Ren W. Deep eutectic solvents coupled with (NH4)3H6CoMo6O24 trigger aerobic oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancarboxylic acid. Chem Commun (Camb) 2022; 58:8105-8108. [DOI: 10.1039/d2cc02544b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Anderson-type polyoxometalate (NH4)3H6CoMo6O24 in deep eutectic solvents exhibited outstanding catalytic performance for the selective aerobic oxidation of HMF to FFCA. It is potentially a promising and highly environmentally friendly...
Collapse
|
28
|
Yang Z, Li Y, Shen C, Chen Y, Li H, Zhou A, Liu K. Tuning Rheological Behaviors of Supramolecular Aqueous Gels via Charge Transfer Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14713-14723. [PMID: 34873907 DOI: 10.1021/acs.langmuir.1c02639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rheological properties are critical for determining real applications of supramolecular gels in various fields. Correspondingly, the modulation of gel rheology will be very important for meeting real requirements. In this aspect, a few strategies were applied to tune the rheological behaviors of supramolecular gels, but some specific interactions like charge transfer (CT) interactions were less explored at the molecular level. Herein, we report a pyrene-containing derivative of diphenylalanine as a donor gelator and naphthalenediimide or 3,5-dinitrobenzene as matching acceptor molecules. It was found that the viscoelastic properties and strength of the original gel could be tuned through addition of different acceptor molecules to the original gel with changing the ratios of the selected acceptor molecules. As a result, storage modulus was continuously adjusted over a wide range from 190,000 to 50,000 Pa by CT interactions. Furthermore, the mechanism of the CT-induced change in rheological properties was understood and clarified through relevant techniques (e.g., UV-Vis, fluorescence, and FT-IR spectroscopy and TEM). The findings in this work would provide a novel strategy to modulate the rheological properties of supramolecular gels for adaption to broader fields of real applications.
Collapse
Affiliation(s)
- Zonglin Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Chaowen Shen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yong Chen
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Huajing Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Anning Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
29
|
Selective tandem hydrogenation and rearrangement of furfural to cyclopentanone over CuNi bimetallic catalyst in water. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63842-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Meng J, Liu Y, Xia Q, Liu S, Tong Z, Chen W, Liu S, Li J, Dou S, Yu H. High-Loading, Well-Dispersed Phosphorus Confined on Nanoporous Carbon Surfaces with Enhanced Catalytic Activity and Cyclic Stability. SMALL METHODS 2021; 5:e2100964. [PMID: 34928025 DOI: 10.1002/smtd.202100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus-doped carbon materials are promising alternatives to noble metal-based catalysts for the highly selective oxidation of benzyl alcohol to benzaldehyde, but it is challenging to achieve high loadings of high-activity P dopants in metal-free catalysts. Here, the preparation of high-loading and well-dispersed P atoms confined to the surfaces of cellulose-derived carbon via a dissolving-doping strategy is reported. In this method, cellulose is dissolved in phosphoric acid to generate a cellulose-phosphoric supramolecular collosol, which is then directly carbonized. The as-prepared carbon possesses a high specific surface area of 1491 cm3 g-1 and a high P content of 8.8 wt%. The P-doped nanoporous carbon shows a superior catalytic activity and cyclic stability toward benzyl alcohol oxidation, with a high turnover frequency of 3.5 × 10-3 mol g-1 h-1 and a low activation energy of 35.6 kJ mol-1 . Experimental results and theoretical calculations demonstrate that the graphitic C3 PO species is the leading catalytic active center in this material. This study provides a novel strategy to prepare P dopants in nanoporous carbon materials with excellent catalytic performance.
Collapse
Affiliation(s)
- Juan Meng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Qinqin Xia
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shi Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhihan Tong
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shuo Dou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
31
|
Tong Z, Meng J, Liu S, Liu Y, Zeng S, Wang L, Xia Q, Yu H. Room temperature dissolving cellulose with a metal salt hydrate-based deep eutectic solvent. Carbohydr Polym 2021; 272:118473. [PMID: 34420732 DOI: 10.1016/j.carbpol.2021.118473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
Abundant and renewable cellulose is a potential candidate for petroleum-derived synthetic polymers. However, the efficient dissolution of this material is problematic because of the high cost, severe reaction condition (e.g., high temperature) and environmentally unfriendly (e.g., toxic reagents, and solvent recyclability). Herein, to realize the room temperature dissolution of cellulose with an inexpensive and eco-friendly solvent, we design a novel low-cost deep eutectic solvent that is composed of zinc chloride, water and phosphoric acid for the efficient dissolution of cellulose. This solvent is featured as having both the superior hydrogen bonding acidity and the hydrogen bonding basicity, and thus can act as a hydrogen bond molecular scissors to cleave the hydrogen bonds within cellulose. In this process, microcrystalline cellulose can be easily dissolved in the solvent at room temperature with a dissolution ratio up to 15 wt%. The dissolved cellulose can also be recovered without any derivatization. The universality, recyclability and pilot production of dissolving cellulose using this solvent are also demonstrated. This work provides a new strategy for the design of novel deep eutectic solvent capable of disrupting the hydrogen bonds of cellulose under mild conditions.
Collapse
Affiliation(s)
- Zhihan Tong
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Juan Meng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Shi Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Suqing Zeng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Lei Wang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Qinqin Xia
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
32
|
Liu X, Luo Y, Ma H, Zhang S, Che P, Zhang M, Gao J, Xu J. Hydrogen‐Binding‐Initiated Activation of O−H Bonds on a Nitrogen‐Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Liu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yang Luo
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Hong Ma
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Shujing Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penghua Che
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
33
|
Liu X, Luo Y, Ma H, Zhang S, Che P, Zhang M, Gao J, Xu J. Hydrogen-Binding-Initiated Activation of O-H Bonds on a Nitrogen-Doped Surface for the Catalytic Oxidation of Biomass Hydroxyl Compounds. Angew Chem Int Ed Engl 2021; 60:18103-18110. [PMID: 34121299 DOI: 10.1002/anie.202103604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/31/2021] [Indexed: 11/11/2022]
Abstract
Hydrogen binding of molecules on solid surfaces is an attractive interaction that can be used as the driving force for bond activation, material-directed assembly, protein protection, etc. However, the lack of a quantitative characterization method for hydrogen bonds (HBs) on surfaces seriously limits its application. We measured the standard Gibbs free energy change (ΔG0 ) of on-surface HBs using NMR. The HB-accepting ability of the surface was investigated by comparing ΔG0 values employing the model biomass platform 5-hydroxymethylfurfural on a series of Co-N-C-n catalysts with adjustable electron-rich nitrogen-doped contents. Decreasing ΔG0 improves the HB-accepting ability of the nitrogen-doped surface and promotes the selectively initiated activation of O-H bonds in the oxidation of 5-hydroxymethylfurfural. As a result, the reaction kinetics is accelerated. In addition to the excellent catalytic performance, the turnover frequency (TOF) for this oxidation is much higher than for reported non-noble-metal catalysts.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Hong Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Shujing Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Penghua Che
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Meiyun Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
34
|
Abstract
Various eutectic systems have been proposed and studied over the past few decades. Most of the studies have focused on three typical types of eutectics: eutectic metals, eutectic salts, and deep eutectic solvents. On the one hand, they are all eutectic systems, and their eutectic principle is the same. On the other hand, they are representative of metals, inorganic salts, and organic substances, respectively. They have applications in almost all fields related to chemistry. Their different but overlapping applications stem from their very different properties. In addition, the proposal of new eutectic systems has greatly boosted the development of cross-field research involving chemistry, materials, engineering, and energy. The goal of this review is to provide a comprehensive overview of these typical eutectics and describe task-specific strategies to address growing demands.
Collapse
Affiliation(s)
- Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
35
|
Fan X, Jia X, Ma J, Gao M, Gao J, Xu J. Accelerating Selective Oxidation of Biomass-Based Hydroxyl Compounds with Hydrogen Bond Acceptors. J Phys Chem Lett 2021; 12:7041-7045. [PMID: 34288672 DOI: 10.1021/acs.jpclett.1c02114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen-bonding-initiated self-association makes the valorization of biomass-based hydroxyl compounds a formidable challenge at high concentration. Apart from enhancing the dehydration reaction of hydroxyl compounds with the noncovalent medium effects, insights into how these effects can be exploited to optimize the oxidative reactivity of concentrated hydroxyl compounds remain unclear. Herein, we elucidate that deaggregation of hydroxyl groups with a catalytic number of hydrogen bond acceptors is essential in improving the reactivity of the aerobic oxidation of biomass-based neat aromatic alcohols over the vanadium-based catalyst. The neat 5-hydroxymethylfurfural (HMF) deaggregated with 25 mol % N,N-dimethylformamide (DMF) shows a >7-fold increase in reactivity to produce corresponding aldehydes with excellent selectivity, in stark contrast to the contrary deactivation of reaction in excessive DMF.
Collapse
Affiliation(s)
- Xiaomeng Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuquan Jia
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jiping Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Mingxia Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
36
|
Luo X, Lu R, Jiang H, Si X, Xu J, Lu F. Catalytic Conversion of Sugar-Derived Polyhydroxy Acid to Trimellitate. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaolin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Huifang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaoqin Si
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
37
|
Chen B, Peng Z, Li C, Feng Y, Sun Y, Tang X, Zeng X, Lin L. Catalytic Conversion of Biomass to Furanic Derivatives with Deep Eutectic Solvents. CHEMSUSCHEM 2021; 14:1496-1506. [PMID: 33576193 DOI: 10.1002/cssc.202100001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Biomass is the only renewable organic carbon resource in nature, and the transformation of abundant biomass into various chemicals has received immense spotlight. As a novel generation of designer solvents, deep eutectic solvents (DESs) have been widely used in biorefinery due to their excellent properties including low cost, easy preparation, and biodegradability. Although there have been some reports summarizing the performance of DESs for the transformation of biomass into various chemicals, few Reviews illuminate the relationship between the functional structure of DESs and catalytic conversion of biomass. Hence, this Minireview comprehensively summarizes the effects of the types of functional groups in DESs on catalytic conversion of biomass into furanic derivatives, such as carboxylic acid-based hydrogen-bond donors (HBDs), carbohydrate-based HBDs, polyalcohol-based HBDs, amine/amide-based HBDs, spatial structure of HBDs, and various hydrogen-bond acceptors (HBAs). It also further summarizes the effects of adding different additives into the DESs on the synthesis of high value-added chemicals, including water, liquid inorganic acids, Lewis acids, heteropoly acids, and typical solid acids. Moreover, current challenges and prospects for the application of DESs in biomass conversion are provided.
Collapse
Affiliation(s)
- Binglin Chen
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Zhiqing Peng
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Chuang Li
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Yunchao Feng
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| |
Collapse
|
38
|
Robalo JR, Mendes de Oliveira D, Imhof P, Ben-Amotz D, Vila Verde A. Quantifying how step-wise fluorination tunes local solute hydrophobicity, hydration shell thermodynamics and the quantum mechanical contributions of solute–water interactions. Phys Chem Chem Phys 2020; 22:22997-23008. [DOI: 10.1039/d0cp04205f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Locally tuning solute–water interactions with fluorination.
Collapse
Affiliation(s)
- João R. Robalo
- Department of Theory & Bio-Systems
- Max Planck Institute for Colloids and Interfaces
- Science Park
- Potsdam 14476
- Germany
| | | | - Petra Imhof
- Institute for Theoretical Physics
- Free University of Berlin
- 14195 Berlin
- Germany
| | - Dor Ben-Amotz
- Purdue University
- Department of Chemistry
- West Lafayette
- USA
| | - Ana Vila Verde
- Department of Theory & Bio-Systems
- Max Planck Institute for Colloids and Interfaces
- Science Park
- Potsdam 14476
- Germany
| |
Collapse
|