1
|
Hossain MA, Brahme RR, Miller BC, Amin J, de Barros M, Schneider JL, Auclair JR, Mattos C, Wang Q, Agar NYR, Greenblatt DJ, Manetsch R, Agar JN. Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development. Nat Commun 2025; 16:1777. [PMID: 39971904 PMCID: PMC11839910 DOI: 10.1038/s41467-025-56985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an intact protein PK/PD model (iPK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the iPK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates.
Collapse
Affiliation(s)
- Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | - Rutali R Brahme
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Brandon C Miller
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jakal Amin
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Marcela de Barros
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jaime L Schneider
- Massachusetts General Hospital Cancer Center, Harvard Medical School;Boston, Massachusetts, 02114, USA
| | - Jared R Auclair
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Qingping Wang
- Sanofi US, Drug Metabolism and Pharmacokinetics;Cambridge, Massachusetts, 02141, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School;Boston, Massachusetts, 02115, USA
| | | | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University;Boston, Massachusetts, 02115, USA.
- Barnett Institute of Chemical and Biological Analysis;Boston, Massachusetts, 02115, USA.
- Department of Pharmaceutical Sciences, Northeastern University;Boston, Massachusetts, 02115, USA.
| |
Collapse
|
2
|
Oh MJ, Seo Y, Seo N, An HJ. MS-Based Glycome Characterization of Biotherapeutics With N- and O-Glycosylation. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39871420 DOI: 10.1002/mas.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
With the increasing FDA approvals of glycoprotein-based biotherapeutics including monoclonal antibodies, cytokines, and enzyme treatments, the significance of glycosylation in modulating drug efficacy and safety becomes central. This review highlights the crucial role of mass spectrometry (MS) in elucidating the glycome of biotherapeutics that feature N- and O-glycosylation, directly addressing the challenges posed by glycosylation complexity and heterogeneity. We have detailed the advancements and application of MS technologies including MALDI-TOF MS, LC-MS, and tandem MS in the precise characterization of glycoprotein therapeutics. Emphasizing MS-based strategies for detecting immunogenic glycans and ensuring batch-to-batch consistency, this review highlights targeted approaches for glycoprotein, glycopeptide, and glycan analysis tailored to meet the stringent analytical and regulatory demands of biopharmaceutical development.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Youngsuk Seo
- Life Science Institute, Institute for Basic Science, Daejeon, Korea
| | - Nari Seo
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
3
|
van den Wildenberg SH, Genet SAAM, Broeren MAC, van Dongen JLJ, van den Oetelaar MC, Brunsveld L, Scharnhorst V, van de Kerkhof D. Immunoaffinity Intact Top-Down Mass Spectrometry for Quantification of Neuron-Specific Enolase Gamma, a Low-Abundance Protein Biomarker. Anal Chem 2025; 97:516-525. [PMID: 39710932 PMCID: PMC11740178 DOI: 10.1021/acs.analchem.4c04677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/12/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Quantification of intact proteins in serum by liquid chromatography high-resolution mass spectrometry (HRMS) may be a useful alternative to bottom-up LC-MS or conventional ligand binding assays, due to reduced assay complexity and by providing additional information, such as isoform differentiation or detection of post-translational modifications. The 47.2 kDa lung cancer tumor marker neuron-specific enolase γ (NSEγ) was quantified in a clinically relevant concentration range of 6.25 to 100 ng/mL in NSE-depleted human serum using magnetic bead immunoprecipitation coupled to LC-high-resolution quadrupole-time-of-flight MS. The novelty of the described approach is in the combined setup of immunoaffinity extraction and the use of a full-length NSEγ calibrator and labeled NSEγ internal standard (IS) to reliably quantify the post-translationally acetylated form of this protein tumor marker in a top-down proteomics workflow. Isolation parameters and quantification using deconvolution and reconstructed extracted ion chromatograms were evaluated, and the development of a suitable liquid chromatography method was demonstrated. Various validation parameters were determined using both quantification methods, both showing acceptable performance. Additionally, deconvolution-based quantification enabled an accurate mass determination. The developed method was compared to a commercially available ECLIA and showed good correlation in sera of patients suspected of lung cancer. This assay may form the starting point for the development of a reference method for the standardization of immunoassays.
Collapse
Affiliation(s)
- Sebastian
A. H. van den Wildenberg
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Sylvia A. A. M. Genet
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Maarten A. C. Broeren
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Máxima Medical Center Eindhoven, Veldhoven 5504 DB, The Netherlands
| | - Joost L. J. van Dongen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Maxime C.M. van den Oetelaar
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Volkher Scharnhorst
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| | - Daan van de Kerkhof
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Clinical
Laboratory, Catharina Hospital Eindhoven, Eindhoven 5623 EJ, The Netherlands
- Expert Center
Clinical Chemistry Eindhoven, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
4
|
Meldrum KL, Swansiger AK, Koscho J, Miller L, Sausen J, Maus AD, Ladwig PM, Willrich MAV, Prell JS. Gábor Transform-Based Antibody Quantitation in Serum: An Interlaboratory Liquid Chromatography/High-Resolution Mass Spectrometry Investigation. Anal Chem 2024; 96:17413-17422. [PMID: 39412157 DOI: 10.1021/acs.analchem.4c04470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Therapeutic monoclonal antibodies (t-mAbs) are crucial for treating various conditions, including cancers and autoimmune disorders. Accurate quantitation and pharmacokinetic monitoring of t-mAbs in serum are essential, but current methods like ligand binding assays (LBAs) and bottom-up peptide liquid chromatography-tandem mass spectrometry (LC-MS/MS) can lack the sensitivity and specificity needed to meet clinical demands. Emerging techniques using high-resolution mass spectrometry (HRMS) in top-down and middle-up approaches offer improved ability to accurately quantify mAb proteoforms apart from degradation products by keeping the sample proteins intact or minimizing digestion. This study describes the first use of Gábor transform (GT)-based iFAMS Quant+ software to quantify a t-mAb (vedolizumab) from ∼400 samples using an Agilent 6545XT AdvanceBio Q-TOF at the University of Oregon. These results are compared to a previously validated laboratory-developed test (LDT) from Mayo Clinic utilizing a Thermo Q Exactive Plus Orbitrap. The Mayo method used conventional extracted ion chromatograms (XICs) of select charge states for quantitation, while the iFAMS Quant+ method utilized GT-based charge state deconvolution, background subtraction, and signal integration. Calibration and quality control (QC) analyses and Passing-Bablok regression of 351 subject samples demonstrated excellent agreement between the two methods. The iFAMS Quant+ workflow exhibited unique advantages for characterizing interferents and analyte signal anomalies due to its deconvolution-based approach.
Collapse
Affiliation(s)
- Kayd L Meldrum
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Andrew K Swansiger
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Jacob Koscho
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lily Miller
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - John Sausen
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - Anthony D Maus
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Paula M Ladwig
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
5
|
Li Y, Wang Y, Shenoy VM, Niu S, Jenkins GJ, Sarvaiya H. Intact quantitation of cysteine-conjugated antibody-drug conjugates using native mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9774. [PMID: 38812280 DOI: 10.1002/rcm.9774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE A common strategy for antibody-drug conjugate (ADC) quantitation from in vivo study samples involves measurement of total antibody, conjugated ADC, and free payload concentrations using multiple reaction monitoring (MRM) mass spectrometry. This not only provides a limited picture of biotransformation but can also involve lengthy method development. Quantitation of ADCs directly at the intact protein level in native conditions using high-resolution mass spectrometers presents the advantage of measuring exposure readout as well as monitoring the change in average drug-to-antibody ratio (DAR) and in vivo stability of new linker payloads with minimal method development. Furthermore, site-specific cysteine-conjugated ADCs often rely on non-covalent association to retain their quaternary structure, which highlights the unique capabilities of native mass spectrometry (nMS) for intact ADC quantitation. METHODS We developed an intact quantitation workflow involving three stages: automated affinity purification, nMS analysis, and data processing in batch fashion. The sample preparation method was modified to include only volatile ion-pairing reagents in the buffer systems. A capillary size-exclusion chromatography (SEC) column was coupled to a quadrupole time-of-flight high-resolution mass spectrometer for high-throughput nMS analysis. Samples from two mouse pharmacokinetic (PK) studies were analyzed using both intact quantitation workflow and the conventional MRM-based approach. RESULTS A linear dynamic range of 5-100 μg/mL was achieved using 20 μL of serum sample volume. The results of mouse in vivo PK measurement using the intact quantitation workflow and the MRM-based approach were compared, revealing excellent method agreement. CONCLUSIONS We demonstrated the feasibility of utilizing nMS for the quantitation of ADCs at the intact protein level in preclinical PK studies. Our results indicate that this intact quantitation workflow can serve as an alternative generic method for high-throughput analysis, enabling an in-depth understanding of ADC stability and safety in vivo.
Collapse
Affiliation(s)
- Yihan Li
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| | - Yuting Wang
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, Massachusetts, USA
| | - Vikram M Shenoy
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| | - Shuai Niu
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, Massachusetts, USA
| | - Gary J Jenkins
- Department of Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, Illinois, USA
| | - Hetal Sarvaiya
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| |
Collapse
|
6
|
van den Wildenberg SAH, Genet SAAM, Broeren MAC, van Dongen JLJ, Brunsveld L, Scharnhorst V, van de Kerkhof D. Immunoaffinity Intact-Mass Spectrometry for the Detection of Endogenous Concentrations of the Acetylated Protein Tumor Biomarker Neuron Specific Enolase. J Proteome Res 2024; 23:3726-3730. [PMID: 39013105 DOI: 10.1021/acs.jproteome.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Intact-mass spectrometry has huge potential for clinical application, as it enables both quantitative and qualitative analysis of intact proteins and possibly unlocks additional pathophysiological information via, e.g., detection of specific post-translational modifications (PTMs). Such valuable and clinically useful selectivity is typically lost during conventional bottom-up mass spectrometry. We demonstrate an innovative immunoprecipitation protein enrichment assay coupled to ultrahigh performance liquid chromatography quadrupole time-of-flight high resolution mass spectrometry (UPLC-QToF-HRMS) for the fast and simple identification of the protein tumor marker Neuron Specific Enolase Gamma (NSEγ) at low endogenous concentrations in human serum. Additionally, using the combination of immunoaffinity purification with intact mass spectrometry, the presence of NSEγ in an acetylated form in human serum was detected. This highlights the unique potential of immunoaffinity intact mass spectrometry in clinical diagnostics.
Collapse
Affiliation(s)
- Sebastian A H van den Wildenberg
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Sylvia A A M Genet
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Maarten A C Broeren
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Máxima Medical Center, 5504 DB Veldhoven, The Netherlands
| | - Joost L J van Dongen
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Volkher Scharnhorst
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| | - Daan van de Kerkhof
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Clinical Laboratory, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
7
|
Dhenin J, Lafont V, Dupré M, Krick A, Mauriac C, Chamot-Rooke J. Monitoring mAb proteoforms in mouse plasma using an automated immunocapture combined with top-down and middle-down mass spectrometry. Proteomics 2024; 24:e2300069. [PMID: 37480175 DOI: 10.1002/pmic.202300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi R&D, Chilly-Mazarin, France
| | | | | | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
| |
Collapse
|
8
|
Shi RL, Dillon MA, Compton PD, Sawyer WS, Thorup JR, Kwong M, Chan P, Chiu CPC, Li R, Yadav R, Lee GY, Gober JG, Li Z, ElSohly AM, Ovacik AM, Koerber JT, Spiess C, Josephs JL, Tran JC. High-Throughput Analyses of Therapeutic Antibodies Using High-Field Asymmetric Waveform Ion Mobility Spectrometry Combined with SampleStream and Intact Protein Mass Spectrometry. Anal Chem 2023; 95:17263-17272. [PMID: 37956201 DOI: 10.1021/acs.analchem.3c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intact protein mass spectrometry (MS) coupled with liquid chromatography was applied to characterize the pharmacokinetics and stability profiles of therapeutic proteins. However, limitations from chromatography, including throughput and carryover, result in challenges with handling large sample numbers. Here, we combined intact protein MS with multiple front-end separations, including affinity capture, SampleStream, and high-field asymmetric waveform ion mobility spectrometry (FAIMS), to perform high-throughput and specific mass measurements of a multivalent antibody with one antigen-binding fragment (Fab) fused to an immunoglobulin G1 (IgG1) antibody. Generic affinity capture ensures the retention of both intact species 1Fab-IgG1 and the tentative degradation product IgG1. Subsequently, the analytes were directly loaded into SampleStream, where each injection occurs within ∼30 s. By separating ions prior to MS detection, FAIMS further offered improvement in signal-overnoise by ∼30% for denatured protein MS via employing compensation voltages that were optimized for different antibody species. When enhanced FAIMS transmission of 1Fab-IgG1 was employed, a qualified assay was established for spiked-in serum samples between 0.1 and 25 μg/mL, resulting in ∼10% accuracy bias and precision coefficient of variation. Selective FAIMS transmission of IgG1 as the degradation surrogate product enabled more sensitive detection of clipped species for intact 1Fab-IgG1 at 5 μg/mL in serum, generating an assay to measure 1Fab-IgG1 truncation between 2.5 and 50% with accuracy and precision below 20% bias and coefficient of variation. Our results revealed that the SampleStream-FAIMS-MS platform affords high throughput, selectivity, and sensitivity for characterizing therapeutic antibodies from complex biomatrices qualitatively and quantitatively.
Collapse
Affiliation(s)
- Rachel Liuqing Shi
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Michael A Dillon
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Philip D Compton
- Integrated Protein Technologies, Evanston, Illinois 60201, United States
| | - William S Sawyer
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - John R Thorup
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Mandy Kwong
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - Cecilia P C Chiu
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Ran Li
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California 94080, United States
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California 94080, United States
| | - Genee Y Lee
- Department of Molecular Oncology, Genentech Inc., South San Francisco, California 94080, United States
| | - Joshua G Gober
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Zhiyu Li
- The DMPK Service Department, WuXi AppTec Inc., Shanghai 200131, China
| | - Adel M ElSohly
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Ayse Meric Ovacik
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, California 94080, United States
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California 94080, United States
| | - Jonathan L Josephs
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| | - John C Tran
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
9
|
Kline JT, Melani RD, Fornelli L. Mass spectrometry characterization of antibodies at the intact and subunit levels: from targeted to large-scale analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 492:117117. [PMID: 38855125 PMCID: PMC11160972 DOI: 10.1016/j.ijms.2023.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antibodies are one of the most formidable molecular weapons available to our immune system. Their high specificity against a target (antigen) and capability of triggering different immune responses (e.g., complement system activation and antibody-dependent cell-mediated cytotoxicity) make them ideal drugs to fight many different human diseases. Currently, both monoclonal antibodies and more complex molecules based on the antibody scaffold are used as biologics. Naturally, such highly heterogeneous molecules require dedicated analytical methodologies for their accurate characterization. Mass spectrometry (MS) can define the presence and relative abundance of multiple features of antibodies, including critical quality attributes. The combination of small and large variations within a single molecule can only be determined by analyzing intact antibodies or their large (25 to 100 kDa) subunits. Hence, top-down (TD) and middle-down (MD) MS approaches have gained popularity over the last decade. In this Young Scientist Feature we discuss the evolution of TD and MD MS analysis of antibodies, including the new frontiers that go beyond biopharma applications. We will show how this field is now moving from the "quality control" analysis of a known, single antibody to the high-throughput investigation of complex antibody repertoires isolated from clinical samples, where the ultimate goal is represented by the complete gas-phase sequencing of antibody molecules without the need of any a priori knowledge.
Collapse
Affiliation(s)
- Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rafael D. Melani
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Massonnet P, Grifnée E, Farré-Segura J, Demeuse J, Huyghebaert L, Dubrowski T, Dufour P, Schoumacher M, Peeters S, Le Goff C, Cavalier E. Concise review on the combined use of immunocapture, mass spectrometry and liquid chromatography for clinical applications. Clin Chem Lab Med 2023; 61:1700-1707. [PMID: 37128992 DOI: 10.1515/cclm-2023-0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Immunocapture is now a well-established method for sample preparation prior to quantitation of peptides and proteins in complex matrices. This short review will give an overview of some clinical applications of immunocapture methods, as well as protocols with and without enzymatic digestion in a clinical context. The advantages and limitations of both approaches are discussed in detail. Challenges related to the choice of mass spectrometer are also discussed. Top-down, middle-down, and bottom-up approaches are discussed. Even though immunocapture has its limitations, its main advantage is that it provides an additional dimension of separation and/or isolation when working with peptides and proteins. Overall, this short review demonstrates the potential of such techniques in the field of proteomics-based clinical medicine and paves the way for better personalized medicine.
Collapse
Affiliation(s)
- Philippe Massonnet
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Elodie Grifnée
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Jordi Farré-Segura
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Justine Demeuse
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Loreen Huyghebaert
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Thomas Dubrowski
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Patrice Dufour
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | | | - Stéphanie Peeters
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Oh MJ, Kim U, Kim S, Cho DS, Seo JA, Seo N, An HJ. Equivalence assessment of biotherapeutics with N- and O-glycosylation sites by sequential intact glycoform mass spectrometry (IGMS). J Pharm Biomed Anal 2023; 234:115558. [PMID: 37393692 DOI: 10.1016/j.jpba.2023.115558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Glycosylation is a crucial attribute for biotherapeutics with significant impacts on quality, stability, safety, immunogenicity, pharmacokinetics, and efficacy. Therefore, to ensure consistent glycosylation, a systematic review of biotherapeutics is absolutely required including the variable glycan structure (micro-heterogeneity) and different occupancy at individual site (macro-heterogeneity) from drug design to upstream and downstream bioprocesses. Various methods have been used for glyco-characterization of biotherapeutics at the glycan, glycopeptide, and intact protein levels. In particular, intact protein analysis is considered a facile and rapid glycoform monitoring approach used throughout the product development lifecycle to determine suitable glycosylation lead candidates and reproducible product quality. However, intact glycoform characterization of diverse and complex biotherapeutics with multiple N- and O-glycosylation sites can be very challenging. To address this, a robust analytical platform that enables rapid and accurate characterization of a biotherapeutics with highly complex multiple glycosylation using two-step intact glycoform mass spectrometry has been developed. We used darbepoetin alfa, a second-generation EPO bearing multiple N- and O-glycosylation sites, as a model biotherapeutics to obtain integrated information on glycan heterogeneity and site occupancy through step-by-step MS of intact protein and enzyme-treated protein. In addition, we performed a comparative assessment of the heterogeneity from different products, confirming that our new method can efficiently evaluate glycosylation equivalence. This new strategy provides rapid and accurate information on the degree of glycosylation of a therapeutic glycoprotein with multiple glycosylation, which can be used to assess glycosylation similarity between batches and between biosimilar and reference during development and production.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Unyong Kim
- Biocomplete Co., Ltd., Seoul 08389, South Korea
| | - Sol Kim
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Dae Sik Cho
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Jung-A Seo
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Nari Seo
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
12
|
Phung W, Bakalarski CE, Hinkle TB, Sandoval W, Marty MT. UniDec Processing Pipeline for Rapid Analysis of Biotherapeutic Mass Spectrometry Data. Anal Chem 2023; 95:11491-11498. [PMID: 37478487 DOI: 10.1021/acs.analchem.3c02010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis workflows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec processing pipeline (UPP) for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that contains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure the correct pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody-drug conjugates. Moreover, because the software is free and open-source, users can easily build on this platform to create customized workflows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range of biotherapeutic applications.
Collapse
Affiliation(s)
- Wilson Phung
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Corey E Bakalarski
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Trent B Hinkle
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and the Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Moran AB, Domínguez-Vega E, Wuhrer M, Lageveen-Kammeijer GSM. Software-Assisted Data Processing Workflow for Intact Glycoprotein Mass Spectrometry. J Proteome Res 2023; 22:1367-1376. [PMID: 36857466 PMCID: PMC10088042 DOI: 10.1021/acs.jproteome.2c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Intact protein analysis by mass spectrometry is important for several applications such as assessing post-translational modifications and biotransformation. In particular, intact protein analysis allows the detection of proteoforms that are commonly missed by other approaches such as proteolytic digestion followed by bottom-up analysis. Two quantification methods are mainly used for intact protein data quantification, namely the extracted ion and deconvolution approaches. However, a consensus with regard to a single best practice for intact protein data processing is lacking. Furthermore, many data processing tools are not fit-for-purpose and, as a result, the analysis of intact proteins is laborious and lacks the throughput required to be implemented for the analysis of clinical cohorts. Therefore, in this study, we investigated the application of a software-assisted data analysis and processing workflow in order to streamline intact protein integration, annotation, and quantification via deconvolution. In addition, the assessment of orthogonal data sets generated via middle-up and bottom-up analysis enabled the cross-validation of cleavage proteoform assignments present in seminal prostate-specific antigen (PSA). Furthermore, deconvolution quantification of PSA from patients' urine revealed results that were comparable with manually performed quantification based on extracted ion electropherograms. Overall, the presented workflow allows fast and efficient processing of intact protein data. The raw data is available on MassIVE using the identifier MSV000086699.
Collapse
Affiliation(s)
- Alan B Moran
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Guinevere S M Lageveen-Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
14
|
Kellie JF, Schneck NA, Causon JC, Baba T, Mehl JT, Pohl KI. Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:17-26. [PMID: 36459688 DOI: 10.1021/jasms.2c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Time-of-flight MS systems for biopharmaceutical and protein characterization applications may play an even more pivotal role in the future as biotherapeutics increase in drug pipelines and as top-down MS approaches increase in use. Here, a recently developed TOF MS system is examined for monoclonal antibody (mAb) characterization from serum samples. After immunocapture, purified drug material spiked into monkey serum or dosed for an in-life study is analyzed by top-down MS. While characterization aspects are a distinct advantage of the MS platform, MS system and software capabilities are also shown regarding intact protein quantitation. Such applications are demonstrated to help enable comprehensive protein molecule quantitation and characterization by use of TOF MS instrumentation.
Collapse
Affiliation(s)
- John F Kellie
- GSK, Collegeville, Pennsylvania 19426, United States
| | | | | | | | - John T Mehl
- GSK, Collegeville, Pennsylvania 19426, United States
| | | |
Collapse
|
15
|
Seeing the complete picture: proteins in top-down mass spectrometry. Essays Biochem 2022; 67:283-300. [PMID: 36468679 DOI: 10.1042/ebc20220098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Abstract
Top-down protein mass spectrometry can provide unique insights into protein sequence and structure, including precise proteoform identification and study of protein–ligand and protein–protein interactions. In contrast with the commonly applied bottom-up approach, top-down approaches do not include digestion of the protein of interest into small peptides, but instead rely on the ionization and subsequent fragmentation of intact proteins. As such, it is fundamentally the only way to fully characterize the composition of a proteoform. Here, we provide an overview of how a top-down protein mass spectrometry experiment is performed and point out recent applications from the literature to the reader. While some parts of the top-down workflow are broadly applicable, different research questions are best addressed with specific experimental designs. The most important divide is between studies that prioritize sequence information (i.e., proteoform identification) versus structural information (e.g., conformational studies, or mapping protein–protein or protein–ligand interactions). Another important consideration is whether to work under native or denaturing solution conditions, and the overall complexity of the sample also needs to be taken into account, as it determines whether (chromatographic) separation is required prior to MS analysis. In this review, we aim to provide enough information to support both newcomers and more experienced readers in the decision process of how to answer a potential research question most efficiently and to provide an overview of the methods that exist to answer these questions.
Collapse
|
16
|
Hecht ES, Obiorah EC, Liu X, Morrison L, Shion H, Lauber M. Microflow size exclusion chromatography to preserve micromolar affinity complexes and achieve subunit separations for native state mass spectrometry. J Chromatogr A 2022; 1685:463638. [DOI: 10.1016/j.chroma.2022.463638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
17
|
2021 White Paper on Recent Issues in Bioanalysis: Mass Spec of Proteins, Extracellular Vesicles, CRISPR, Chiral Assays, Oligos; Nanomedicines Bioanalysis; ICH M10 Section 7.1; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC & Part 1B - Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2022; 14:505-580. [PMID: 35578993 DOI: 10.4155/bio-2022-0078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.
Collapse
|
18
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
19
|
Sun L, Xu Y, Dube N, Anderson M, Breidinger S, Vaddady P, Thornton B, Morrow L, Matthews RP, Stoch SA, Woolf EJ. Incorporating protein precipitation to resolve hybrid IP-LC-MS assay interference for ultrasensitive quantification of intact therapeutic insulin dimer in human plasma. J Pharm Biomed Anal 2022; 212:114639. [DOI: 10.1016/j.jpba.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/15/2021] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
20
|
Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs. Curr Opin Chem Biol 2021; 66:102106. [PMID: 34968810 DOI: 10.1016/j.cbpa.2021.102106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
As natural proteins generally do not bind targets in a covalent mode, the therapeutic potential of covalent protein drugs remains largely unexplored. Recently, latent bioreactive amino acids have been incorporated into proteins through genetic code expansion, which selectively react with nearby natural residues via proximity-enabled reactivity, generating diverse covalent linkages for proteins in vitro and in cells. These new covalent linkages provide novel avenues for protein research and engineering. In addition, a general platform technology, proximity-enabled reactive therapeutics (PERx), has been established for the development of covalent protein drugs. The first covalent protein drug demonstrates advantageous features in cancer immunotherapy in mice. Selective introduction of covalent bonds into proteins will advance biological studies, synthetic biology, and biotherapeutics with the power of biocompatible covalent chemistries.
Collapse
|
21
|
Smith LM, Agar JN, Chamot-Rooke J, Danis PO, Ge Y, Loo JA, Paša-Tolić L, Tsybin YO, Kelleher NL. The Human Proteoform Project: Defining the human proteome. SCIENCE ADVANCES 2021; 7:eabk0734. [PMID: 34767442 PMCID: PMC8589312 DOI: 10.1126/sciadv.abk0734] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 05/23/2023]
Abstract
Proteins are the primary effectors of function in biology, and thus, complete knowledge of their structure and properties is fundamental to deciphering function in basic and translational research. The chemical diversity of proteins is expressed in their many proteoforms, which result from combinations of genetic polymorphisms, RNA splice variants, and posttranslational modifications. This knowledge is foundational for the biological complexes and networks that control biology yet remains largely unknown. We propose here an ambitious initiative to define the human proteome, that is, to generate a definitive reference set of the proteoforms produced from the genome. Several examples of the power and importance of proteoform-level knowledge in disease-based research are presented along with a call for improved technologies in a two-pronged strategy to the Human Proteoform Project.
Collapse
Affiliation(s)
- Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Jeffrey N. Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Julia Chamot-Rooke
- Department of Structural Biology and Chemistry, Institut Pasteur, CNRS, Paris, France
| | - Paul O. Danis
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Neil L. Kelleher
- Departments of Chemistry, Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - The Consortium for Top-Down Proteomics
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Structural Biology and Chemistry, Institut Pasteur, CNRS, Paris, France
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- Spectroswiss, Lausanne, Switzerland
- Departments of Chemistry, Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| |
Collapse
|
22
|
Assessment of Antibody Stability in a Novel Protein-Free Serum Model. Pharmaceutics 2021; 13:pharmaceutics13060774. [PMID: 34067269 PMCID: PMC8224624 DOI: 10.3390/pharmaceutics13060774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Therapeutic proteins can degrade upon administration as they are subjected to a variety of stresses in human body compartments. In vivo degradation may cause undesirable pharmacokinetic/pharmacodynamic profiles. Pre-clinical in vitro models have gained scientific interest as they enable one to evaluate the in vivo stability of monoclonal antibodies (mAbs) and ultimately can improve patient safety. We used a novel approach by stripping serum of endogenous proteins, which interfere with analytical test methods. This enabled the direct analysis of the target protein without laborious sample work-up procedures. The developed model retained the osmolality, conductivity, temperature, and pH of serum. We compared the impact of human, bovine, and artificial serum to accelerated stability conditions in histidine buffer. Target mAbs were assessed in regard to visible and sub-visible particles, as well as protein aggregation and fragmentation. Both mAbs degraded to a higher extent under physiological conditions compared to accelerated stability conditions. No relevant stability differences between the tested mAbs were observed. Our results reinforced the importance of monitoring protein stability in biological fluids or fluids emulating these conditions closely. Models enabling analysis in fluids directly allow high throughput testing in early pre-clinical stages and help in selecting molecules with increased in vivo stability.
Collapse
|
23
|
Brown KA, Melby JA, Roberts DS, Ge Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev Proteomics 2020; 17:719-733. [PMID: 33232185 PMCID: PMC7864889 DOI: 10.1080/14789450.2020.1855982] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Introduction- A better understanding of the underlying molecular mechanism of diseases is critical for developing more effective diagnostic tools and therapeutics toward precision medicine. However, many challenges remain to unravel the complex nature of diseases. Areas covered- Changes in protein isoform expression and post-translation modifications (PTMs) have gained recognition for their role in underlying disease mechanisms. Top-down mass spectrometry (MS)-based proteomics is increasingly recognized as an important method for the comprehensive characterization of proteoforms that arise from alternative splicing events and/or PTMs for basic and clinical research. Here, we review the challenges, technological innovations, and recent studies that utilize top-down proteomics to elucidate changes in the proteome with an emphasis on its use to study heart diseases. Expert opinion- Proteoform-resolved information can substantially contribute to the understanding of the molecular mechanisms underlying various diseases and for the identification of novel proteoform targets for better therapeutic development . Despite the challenges of sequencing intact proteins, top-down proteomics has enabled a wealth of information regarding protein isoform switching and changes in PTMs. Continuous developments in sample preparation, intact protein separation, and instrumentation for top-down MS have broadened its capabilities to characterize proteoforms from a range of samples on an increasingly global scale.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|