1
|
Weaver AA, Shrout JD. Use of analytical strategies to understand spatial chemical variation in bacterial surface communities. J Bacteriol 2025; 207:e0040224. [PMID: 39873490 PMCID: PMC11841061 DOI: 10.1128/jb.00402-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes. We highlight the use of confocal Raman Microscopy, surface-enhanced Raman spectroscopy, matrix-assisted laser desorption/ionization, secondary ion mass spectrometry, desorption electrospray ionization, and electrochemical imaging that have been applied to assess two-dimensional chemical profiles of bacteria. We specifically discuss the use of these tools to study rhamnolipids, alkylquinolones, and phenazines of the bacterium Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Eisenberg SM, Joignant AN, Knizner KT, Manni JG, Muddiman DC. Obtaining 20 μm Spatial Resolution with a 2940 nm Laser by IR-MALDESI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39513655 DOI: 10.1021/jasms.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
High spatial resolution is a key parameter in mass spectrometry imaging (MSI), enabling a greater understanding of system biology and cellular processes. Using a novel IR laser with good Gaussian beam quality (M2 = 4) coupled with spatial filtering and a reflective objective, 20 μm spatial resolution was obtained by IR-MALDESI. The optical train was optimized on burn paper before demonstrating feasibility for imaging of liver tissue. Finally, a mouse brain was analyzed using nested regions of interest at 20 and 140 μm spatial resolution, detecting neurotransmitters and lipids with high spatial resolution on the corpus callosum and surrounding brain tissue.
Collapse
Affiliation(s)
- Seth M Eisenberg
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alena N Joignant
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kevan T Knizner
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jeffrey G Manni
- JGM Associates, Inc., Burlington, Massachusetts 01803, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
van Hoogstraten SWG, Kuik C, Arts JJC, Cillero-Pastor B. Molecular imaging of bacterial biofilms-a systematic review. Crit Rev Microbiol 2024; 50:971-992. [PMID: 37452571 PMCID: PMC11523921 DOI: 10.1080/1040841x.2023.2223704] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
The formation of bacterial biofilms in the human body and on medical devices is a serious human health concern. Infections related to bacterial biofilms are often chronic and difficult to treat. Detailed information on biofilm formation and composition over time is essential for a fundamental understanding of the underlying mechanisms of biofilm formation and its response to anti-biofilm therapy. However, information on the chemical composition, structural components of biofilms, and molecular interactions regarding metabolism- and communication pathways within the biofilm, such as uptake of administered drugs or inter-bacteria communication, remains elusive. Imaging these molecules and their distribution in the biofilm increases insight into biofilm development, growth, and response to environmental factors or drugs. This systematic review provides an overview of molecular imaging techniques used for bacterial biofilm imaging. The techniques included mass spectrometry-based techniques, fluorescence-labelling techniques, spectroscopic techniques, nuclear magnetic resonance spectroscopy (NMR), micro-computed tomography (µCT), and several multimodal approaches. Many molecules were imaged, such as proteins, lipids, metabolites, and quorum-sensing (QS) molecules, which are crucial in intercellular communication pathways. Advantages and disadvantages of each technique, including multimodal approaches, to study molecular processes in bacterial biofilms are discussed, and recommendations on which technique best suits specific research aims are provided.
Collapse
Affiliation(s)
- S. W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C. Kuik
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - J. J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - B. Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, The MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, the Netherlands
| |
Collapse
|
5
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Kuik C, van Hoogstraten SWG, Arts JJC, Honing M, Cillero-Pastor B. Matrix-assisted laser desorption/ionization mass spectrometry imaging for quorum sensing. AMB Express 2024; 14:45. [PMID: 38662284 PMCID: PMC11045684 DOI: 10.1186/s13568-024-01703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Quorum sensing (QS) is a complex communication system in bacteria, directing their response to the environment. QS is also one of the main regulators of bacterial biofilms' formation, maturation and dispersion. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) is a molecular imaging technique that allows the mapping of QS molecules in bacterial biofilms. Here, we highlight the latest advances in MALDI-MSI in recent years and how this technology can improve QS understanding at the molecular level.
Collapse
Affiliation(s)
- Christel Kuik
- Maastricht MultiModal Molecular Imaging institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Sanne W G van Hoogstraten
- Department of Orthopaedic Surgery, Laboratory for Experimental Orthopaedics, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jacobus J C Arts
- Department of Orthopaedic Surgery, Laboratory for Experimental Orthopaedics, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Maarten Honing
- Maastricht MultiModal Molecular Imaging institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging institute (M4i), Maastricht University, Maastricht, the Netherlands.
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Parmar D, Rosado-Rosa JM, Shrout JD, Sweedler JV. Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms. Methods 2024; 224:21-34. [PMID: 38295894 PMCID: PMC11149699 DOI: 10.1016/j.ymeth.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.
Collapse
Affiliation(s)
- Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joenisse M Rosado-Rosa
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
8
|
Steven RT, Burton A, Taylor AJ, Robinson KN, Dexter A, Nikula CJ, Bunch J. Evaluation of Inlet Temperature with Three Sprayer Designs for Desorption Electrospray Ionization Mass Spectrometry Tissue Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:224-233. [PMID: 38181191 DOI: 10.1021/jasms.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Mass spectrometry imaging (MSI) allows for the spatially resolved detection of endogenous and exogenous molecules and atoms in biological samples, typically prepared as thin tissue sections. Desorption electrospray ionization (DESI) is one of the most commonly utilized MSI modalities in preclinical research. DESI ion source technology is still rapidly evolving, with new sprayer designs and heated inlet capillaries having recently been incorporated in commercially available systems. In this study, three iterations of DESI sprayer designs are evaluated: (1) the first, and until recently only, commercially available Waters sprayer; (2) a developmental desorption electro-flow focusing ionization (DEFFI)-type sprayer; and (3) a prototype of the newly released Waters commercial sprayer. A heated inlet capillary is also employed, allowing for controlled inlet temperatures up to 500 °C. These three sprayers are evaluated by comparative tissue imaging analyses of murine testes across this temperature range. Single ion intensity versus temperature trends are evaluated as exemplar cases for putatively identified species of interest, such as lactate and glutamine. A range of trends are observed, where intensities follow either increasing, decreasing, bell-shaped, or other trends with temperature. Data for all sprayers show approximately similar trends for the ions studied, with the commercial prototype sprayer (sprayer version 3) matching or outperforming the other sprayers for the ions investigated. Finally, the mass spectra acquired using sprayer version 3 are evaluated by uniform manifold approximation and projection (UMAP) and k-means clustering. This approach is shown to provide valuable insight that is complementary to the presented univariate evaluation for reviewing the parameter space in this study. Full spectral temperature optimization data are provided as supporting data to enable other researchers to design experiments that are optimal for specific ions.
Collapse
Affiliation(s)
- Rory T Steven
- National Physical Laboratory Teddington TW11 0LW, U.K
| | - Amy Burton
- National Physical Laboratory Teddington TW11 0LW, U.K
| | - Adam J Taylor
- National Physical Laboratory Teddington TW11 0LW, U.K
| | | | - Alex Dexter
- National Physical Laboratory Teddington TW11 0LW, U.K
| | | | - Josephine Bunch
- National Physical Laboratory Teddington TW11 0LW, U.K
- Imperial College London, Department of Metabolism, Digestion and Reproduction, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
9
|
Kotowska AM, Zhang J, Carabelli A, Watts J, Aylott JW, Gilmore IS, Williams P, Scurr DJ, Alexander MR. Toward Comprehensive Analysis of the 3D Chemistry of Pseudomonas aeruginosa Biofilms. Anal Chem 2023; 95:18287-18294. [PMID: 38044628 PMCID: PMC10719885 DOI: 10.1021/acs.analchem.3c04443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Bacterial biofilms are structured communities consisting of cells enmeshed in a self-generated extracellular matrix usually attached to a surface. They contain diverse classes of molecules including polysaccharides, lipids, proteins, nucleic acids, and diverse small organic molecules (primary and secondary metabolites) which are organized to optimize survival and facilitate dispersal to new colonization sites. In situ characterization of the chemical composition and structure of bacterial biofilms is necessary to fully understand their development on surfaces relevant to biofouling in health, industry, and the environment. Biofilm development has been extensively studied using confocal microscopy using targeted fluorescent labels providing important insights into the architecture of biofilms. Recently, cryopreparation has been used to undertake targeted in situ chemical characterization using Orbitrap secondary ion mass spectrometry (OrbiSIMS), providing a label-free method for imaging biofilms in their native state. Although the high mass resolution of OrbiSIMS enables more confident peak assignments, it is still very challenging to assign most of the peaks in the spectra due to complexity of SIMS spectra and lack of automatic peak assignment methods. Here, we analyze the same OrbiSIMS depth profile data generated from the frozen-hydrated biofilm, but employ a new untargeted chemical filtering process utilizing mass spectral databases to assign secondary ions to decipher the large number of fragments present in the SIMS spectra. To move towards comprehensive analysis of different chemistries in the sample, we apply a molecular formula prediction approach which putatively assigns 81% of peaks in the 3D OrbiSIMS depth profile analysis. This enables us to catalog over 1000 lipids and their fragments, 3500 protein fragments, 71 quorum sensing-related molecules (2-alkyl-4-quinolones and N-acylhomoserine lactones), 150 polysaccharide fragments, and glycolipids simultaneously from one data set and map these separated molecular classes spatially through a Pseudomonas aeruginosa biofilm. Assignment of different chemistries in this sample facilitates identification of differences between biofilms grown on biofilm-promoting and biofilm-resistant polymers.
Collapse
Affiliation(s)
- Anna M. Kotowska
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Junting Zhang
- National
Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K.
| | | | - Julie Watts
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Ian S. Gilmore
- National
Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K.
| | - Paul Williams
- National
Biofilms Innovation Centre, Biodiscovery Institute and School of Life
Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David J. Scurr
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | | |
Collapse
|
10
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Wang MF, Sohn AL, Samal J, Erning K, Segura T, Muddiman DC. Lipidomic Analysis of Mouse Brain to Evaluate the Efficacy and Preservation of Different Tissue Preparatory Techniques by IR-MALDESI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:869-877. [PMID: 36988291 DOI: 10.1021/jasms.2c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Numerous preparatory methods have been developed to preserve the cellular and structural integrity of various biological tissues for different -omics studies. Herein, two preparatory methods for mass spectrometry imaging (MSI) were evaluated, fresh-frozen and sucrose-embedded, paraformaldehyde (PFA) fixed, in terms of ion abundance, putative lipid identifications, and preservation of analyte spatial distributions. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)-MSI was utilized to compare the preparatory methods of interest with and without the use of the conventional ice matrix. There were 2.5-fold and 1.6-fold more lipid species putatively identified in positive- and negative-ion modes, respectively, for sucrose-embedded, PFA-fixed tissues without an ice matrix relative to the current IR-MALDESI-MSI gold-standard, fresh-frozen tissue preparation with an exogenous ice matrix. Furthermore, sucrose-embedded tissues demonstrated improved spatial distribution of ions resulting from the cryo-protective property of sucrose and paraformaldehyde fixation. Evidence from these investigations supports sucrose-embedding without ice matrix as an alternative preparatory technique for IR-MALDESI-MSI.
Collapse
Affiliation(s)
- Mary F Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexandria L Sohn
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Juhi Samal
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Kevin Erning
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Zhang C, Wu Z, Gao X, Wang X, Li H, Lin JM. Ion Addition by Electrolysis to Improve the Quantitative Analysis of Bacteria with MALDI-TOF MS. Anal Chem 2023; 95:739-746. [PMID: 36542088 DOI: 10.1021/acs.analchem.2c02813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is commonly applied to the identification of bacteria but rarely used for quantitative detection due to the inhomogeneous crystallization of the matrix leading to the unsatisfactory linear relationship between the sample amount and the mass spectrum signals. Herein, we proposed a noninterference ion addition (NIA) method by electrolysis to improve homogeneous crystallization during the evaporation progress of sample droplets on the target plates. The active metal wire was inserted in the droplet as the anode electrode, and metal ions were released through electrolysis. The directional migration of metal ions under the electric field can hinder the migration of matrix molecules to the boundary and homogenize the matrix crystals by forming spherical crystals. Simultaneously, trace cationic surfactant was added to the droplet for pinning the contact surface to define the circle crystallization region. The metal ions from the anode electrode wire were deposited on the surface of the target plates which served as the cathode. Therefore, ion addition has no interference effect on ionization during MALDI-MS detection. This NIA method benefits the homogeneous crystallization and so improves the quantitative analysis. NIA is suitable for biological samples with different matrices, and bacterial samples could be quantitatively analyzed.
Collapse
Affiliation(s)
- Chaoying Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zengnan Wu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Xinchang Gao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Xia Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Joignant AN, Bai H, Manni JG, Muddiman DC. Improved spatial resolution of infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging using a reflective objective. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9392. [PMID: 36057935 PMCID: PMC9643617 DOI: 10.1002/rcm.9392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The level of visual detail of a mass spectrometry image is dependent on the spatial resolution with which it is acquired, which is largely determined by the focal diameter in infrared laser ablation-based techniques. While the use of mid-IR light for mass spectrometry imaging (MSI) has advantages, it results in a relatively large focal diameter and spatial resolution. The continual advancement of infrared matrix-assisted electrospray ionization (IR-MALDESI) for MSI warranted novel methods to decrease laser ablation areas and thus improve spatial resolution. METHODS In this work, a Schwarzschild-like reflective objective was incorporated into the novel NextGen IR-MALDESI source and characterized on both burn paper and mammalian tissue using an ice matrix. Ablation areas, mass spectra, and annotations obtained using the objective were compared against the current optical train on the NextGen system without modification. RESULTS The effective resolution was determined to be 55 μm by decreasing the step size until oversampling was observed. Use of the objective improved the spatial resolution by a factor of three as compared against the focus lens. CONCLUSIONS A Schwarzschild-like reflective objective was successfully incorporated into the NextGen source and characterized on mammalian tissue using an ice matrix. The corresponding improvement in spatial resolution facilitates the future expansion of IR-MALDESI applications to include those that require fine structural detail.
Collapse
Affiliation(s)
- Alena N. Joignant
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNCUSA
| | - Hongxia Bai
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNCUSA
- Molecular Education, Technology and Research Innovation CenterNorth Carolina State UniversityRaleighNCUSA
| | | | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of ChemistryNorth Carolina State UniversityRaleighNCUSA
- Molecular Education, Technology and Research Innovation CenterNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
14
|
Feucherolles M, Frache G. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology. Cells 2022; 11:cells11233900. [PMID: 36497158 PMCID: PMC9738593 DOI: 10.3390/cells11233900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely implemented as the reference method for the swift and straightforward identification of microorganisms. However, this method is not flawless and there is a need to upgrade the current methodology in order to free the routine lab from incubation time and shift from a culture-dependent to an even faster independent culture system. Over the last two decades, mass spectrometry imaging (MSI) gained tremendous popularity in life sciences, including microbiology, due to its ability to simultaneously detect biomolecules, as well as their spatial distribution, in complex samples. Through this literature review, we summarize the latest applications of MALDI-MSI in microbiology. In addition, we discuss the challenges and avenues of exploration for applying MSI to solve current MALDI-TOF MS limits in routine and research laboratories.
Collapse
|
15
|
Schneemann J, Schäfer KC, Spengler B, Heiles S. IR-MALDI Mass Spectrometry Imaging with Plasma Post-Ionization of Nonpolar Metabolites. Anal Chem 2022; 94:16086-16094. [DOI: 10.1021/acs.analchem.2c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Julian Schneemann
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
16
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
17
|
Potthoff A, Minte O, Dreisewerd K, Soltwisch J. Effect of the Laser Pulse Width in MALDI-2: A Comparative Study of Picosecond versus Nanosecond Wide Pulses for Laser Postionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:315-321. [PMID: 35015547 DOI: 10.1021/jasms.1c00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MALDI-2 is a recently introduced technique for postionization (PI) in matrix-assisted laser desorption/ionization (MALDI). It is based on an initial photoionization of neutrally desorbed matrix molecules and subsequent charge-transfer reactions in a fine vacuum or atmospheric pressure ion source. MALDI-2 significantly increases the ion yields for numerous classes of analytes, including lipids, glycans, and a range of pharmaceuticals. To obtain insights into the ionization mechanisms underlying the primary step of PI in MALDI-2, we here conducted a set of experiments with two lasers at 266 nm wavelength and pulse durations of 28 ps and 6 ns, respectively, on a modified orthogonal-extracting time-of-flight mass spectrometer (QTOF, Synapt). 2,5-Dihydroxybenzoic acid (DHB) and 2,5-dihydroxyacetophenone (DHAP) were investigated as MALDI matrices in the positive-ion mode with standardized lipid samples. Analyte- and matrix-derived ion signals were recorded as a function of PI laser pulse energies. The ion signal intensity displays a quadratic dependency on PI-laser pulse energy for low to moderate intensities of up to ∼107 W/cm2. This behavior suggests the involvement of resonance enhanced two-photon ionization (REMPI) of neutral matrix molecules in the ionization pathways. Comparing nanosecond and picosecond pulses at the same PI laser pulse energy, higher photon density produced by the shorter pulses generally produced sizably higher ion signal intensities, also corroborating an involvement of REMPI-like processes. Based on a theoretical description of the MALDI-2 process derived from prevalent REMPI theory, comparative measurements allow us to determine the lifetime of the excited states of the employed matrices. Resulting values for both matrices are in good agreement with the literature and corroborate the REMPI-based approach.
Collapse
Affiliation(s)
| | - Olaf Minte
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster 48149, Germany
| |
Collapse
|