1
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Jiang YL, Xun Y. Molecular Mechanism of Salvia miltiorrhiza in the Treatment of Colorectal Cancer Based on Network Pharmacology and Molecular Docking Technology. Drug Des Devel Ther 2024; 18:425-441. [PMID: 38370566 PMCID: PMC10873149 DOI: 10.2147/dddt.s443102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose This study aimed to investigate the effect of Salvia miltiorrhiza on colorectal cancer, as well as the mechanisms involved. Methods The active compounds of Salvia miltiorrhiza and the associated genes in colorectal cancer were sourced from publicly available databases. Targets associated with colorectal cancer were identified by searching the GeneCards and OMIM databases. Subsequently, the Cytoscape 3.6.0 software was employed to create a regulatory network that illustrates the relationships among active ingredients, colorectal cancer, and their corresponding targets. The String database was utilized to generate a PPI network. Molecular docking studies, conducted with AutoDock Vina, verified the binding capabilities of these active components to core targets. The findings from network pharmacology analysis were corroborated through in vitro experiments. Results In this study, we identified 39 active components derived from Salvia miltiorrhiza that are predicted to target 544 genes associated with colorectal cancer through network pharmacology. Through a combined analysis of network pharmacology, we isolated three key targets: SRC, IL6, and INS. Molecular docking results convincingly demonstrated Salvia miltiorrhiza's strong binding affinity to these targets. Additionally, in vitro experiments confirmed that Salvia miltiorrhiza effectively inhibited the progression of colorectal cancer via regulating the INS/SRC/IL6 pathway. Conclusion Salvia miltiorrhiza emerges as a compelling herbal intervention for colorectal cancer. This study lays the foundation for potential future clinical trials assessing the efficacy of Salvia miltiorrhiza in the management of colorectal cancer.
Collapse
Affiliation(s)
- Yi-Ling Jiang
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Yi Xun
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Upadhyay PK, Singh S, Vishwakarma VK. Natural Polyphenols in Cancer Management: Promising Role, Mechanisms, and Chemistry. Curr Pharm Biotechnol 2024; 25:694-712. [PMID: 37608669 DOI: 10.2174/1389201024666230822090318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Although cancers emerge rapidly and cancer cells divide aggressively, which affects our vital organ systems. Recently, cancer treatments are targeted immune systems mediating intrinsic cellular mechanisms. Natural efficacious polyphenols have been exhibited to help prevent most cancers and reverse the progression of cancers. METHODS Many resources have been used to know the promising role of polyphenols in preventing and treating cancers. The electronic databases include Science Direct, Google, Google Scholar, PubMed, and Scopus. The search was limited to the English language only. RESULTS Polyphenols have been reported as anti-metastatic agents that explore the promising role of these compounds in cancer prevention. Such agents act through many signaling pathways, including PI3K/Akt and TNF-induced signaling pathways. The chemical modifications of polyphenols and the structure-activity relationships (SARs) between polyphenols and anticancer activities have also been discussed. CONCLUSION Many research papers were reported to explain the anti-cancer potential of Polyphenols, The SARs between polyphenols and anti-cancer activities, which correlate structures of polyphenols with significant chemotherapeutic action. The mechanism of anti-cancer potential is to be added for searching for new anti-cancer natural products.
Collapse
Affiliation(s)
- Prabhat Kumar Upadhyay
- Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | | |
Collapse
|
4
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
5
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, Rashidian A, Hamblin MR, Chamanara M, Naghsh N, Mirzaei H. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother 2021; 142:112024. [PMID: 34399200 PMCID: PMC8458260 DOI: 10.1016/j.biopha.2021.112024] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Silymarin contains a group of closely-related flavonolignan compounds including silibinin, and is extracted from Silybum marianum species, also called milk thistle. Silymarin has been shown to protect the liver in both experimental models and clinical studies. The chemopreventive activity of silymarin has shown some efficacy against cancer both in vitro and in vivo. Silymarin can modulate apoptosis in vitro and survival in vivo, by interfering with the expression of cell cycle regulators and apoptosis-associated proteins. In addition to its anti-metastatic activity, silymarin has also been reported to exhibit anti-inflammatory activity. The chemoprotective effects of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various cancer types, especially in gastrointestinal cancers. This review examines the recent studies and summarizes the mechanistic pathways and down-stream targets of silymarin in the therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran; Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Navid Naghsh
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2021; 73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Raj Savla
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| |
Collapse
|
8
|
Mashhadi Akbar Boojar M, Mashhadi Akbar Boojar M, Golmohammad S. Overview of Silibinin anti-tumor effects. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Yang CY, Tsao CH, Hsieh CC, Lin CK, Lin CS, Li YH, Chang WC, Cheng JC, Lin GJ, Sytwu HK, Wang YL, Chen YW. Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS One 2020; 15:e0236101. [PMID: 32678829 PMCID: PMC7367477 DOI: 10.1371/journal.pone.0236101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of histone demethylase Jumonji-C domain-containing protein 5 (JMJD5) has been identified as a great effect on tumorigenesis. Silibinin is a commonly used anti-hepatotoxic drug and exhibits anticancer effect in various cancers. However, the antitumor mechanism between silibinin and JMJD5 in oral squamous cell carcinoma (OSCC) remains unclear. In this study, the clinical significance of JMJD5 on OSCC patients was assessed through tissue microarray. Furthermore, mice bearing patient-derived tumor xenografts (PDTXs) and tongue cancer cell lines were treated with silibinin and evaluated for tumor growth and JMJD5 expression. High expression of JMJD5 in oral cancer was significantly associated with tumor size (P = 0.0241), cervical node metastasis (P = 0.0001) and clinical stage (P = 0.0002), was associated with worse survival rate compared with that of the total cohort (P = 0.0002). Collectively the data indicate that JMJD5 expression may be suitable for detection of unfavorable prognosis in OSCC patients, based in part on its apparent role as a marker of metastasis. In addition, silibinin inhibits cancer growth in vitro and in PDTX models. Furthermore, metastasis-associated protein 1 (MTA1) could regulate the expression for JMJD5 and had a positive correlation with JMJD5. Moreover, silibinin could downregulate JMJD5 and MTA1 in oral cancer. Present study thus identifies that JMJD5 might be an essential prognostic indicator and therapeutic target against OSCC progression. In addition, silibinin is a potential candidate among novel chemotherapeutic agents or adjuvants for modulating JMJD5 in OSCC, through a mechanism likely involving MTA1/JMJD5 axis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Prognosis
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Silybin/pharmacology
- Survival Rate
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Cheng-Chih Hsieh
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, Taipei, Taiwan, R.O.C
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Yu-Hsuan Li
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Wei-Chin Chang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Jen-Chen Cheng
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, R.O.C
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan, R.O.C
| | - Yin-Lai Wang
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
10
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
11
|
Ung TT, Nguyen TT, Lian S, Li S, Xia Y, Kim NH, Jung YD. Nicotine stimulates IL‐6 expression by activating the AP‐1 and STAT‐3 pathways in human endothelial EA.hy926 cells. J Cell Biochem 2018; 120:5531-5541. [DOI: 10.1002/jcb.27837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School Gwangju Republic of Korea
| | - Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School Gwangju Republic of Korea
| | - Sen Lian
- Department of Biochemistry and Molecular Biology School of Basic Medical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shinan Li
- Department of Biochemistry, Chonnam National University Medical School Gwangju Republic of Korea
| | - Yong Xia
- Department of Urology New York University School of Medicine New York New York
| | - Nam Ho Kim
- Department of Internal Medicine Chonnam National University Medical School Gwangju Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School Gwangju Republic of Korea
| |
Collapse
|
12
|
Rajasinghe LD, Pindiprolu RH, Gupta SV. Delta-tocotrienol inhibits non-small-cell lung cancer cell invasion via the inhibition of NF-κB, uPA activator, and MMP-9. Onco Targets Ther 2018; 11:4301-4314. [PMID: 30100736 PMCID: PMC6065470 DOI: 10.2147/ott.s160163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Delta-tocotrienol (δT), an isomer of vitamin E, exhibits anticancer properties in different cancer types including non-small-cell lung cancer (NSCLC). Yet, anti-invasive effects of δT and its underlying cellular mechanism in NSCLC have not been fully explored. Matrix metalloproteinase 9 (MMP-9)-based cell migration and invasion are critical cellular mechanisms in cancer development. The current evidence indicates that MMP-9 is upregulated in most patients, and the inhibition of MMPs is involved in decreasing invasion and metastasis in NSCLC. Therefore, its suppression is a promising strategy for attenuating cell invasion and metastasis processes in NSCLC. Purpose The aim of this study was to evaluate the possibility of MMP-9 inhibition as the underlying mechanism behind the antimetastatic properties of δT on NSCLC cells. Methods The effects of δT on cell proliferation, migration, invasion, adhesion, and aggregation capabilities were investigated using different cell-based assays. An inhibitory effect of MMP-9 enzyme activity with δT was also identified using gel zymography. Using real-time PCR and Western blot analysis, a number of cellular proteins, regulatory genes, and miRNA involved in the Notch-1 and urokinase-type plasminogen activator (uPA)-mediated MMP-9 pathways were examined. Results The study found that δT inhibited cell proliferation, cell migration, invasion, aggregation, and adhesion in a concentration-dependent manner and reduced MMP-9 activities. Real-time PCR and Western blot analysis data revealed that δT increased miR-451 expressions and downregulated Notch-1-mediated nuclear factor-κB (NF-κB), which led to the repressed expression of MMP-9 and uPA proteins. Conclusion δT attenuated tumor invasion and metastasis by the repression of MMP-9/uPA via downregulation of Notch-1 and NF-κB pathways and upregulation of miR-451. The data suggest that δT may have potential therapeutic benefit against NSCLC metastasis.
Collapse
Affiliation(s)
| | - Rohini H Pindiprolu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| | - Smiti Vaid Gupta
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
13
|
Liu L, Yang C, Shen J, Huang L, Lin W, Tang H, Liang W, Shao W, Zhang H, He J. GABRA3 promotes lymphatic metastasis in lung adenocarcinoma by mediating upregulation of matrix metalloproteinases. Oncotarget 2017; 7:32341-50. [PMID: 27081042 PMCID: PMC5078017 DOI: 10.18632/oncotarget.8700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Tumor metastasis is the main reason for the poor prognosis of lung cancer patients. The GABAA receptor subunit GABRA3 is reportedly upregulated in lung cancer. Herein, we show that high GABRA3 protein expression in lung adenocarcinoma correlated positively with disease stage, lymphatic metastasis status and poor patient survival. In addition, GABRA3 induced MMP-2 and MMP-9 expression through activation of the JNK/AP-1 signaling pathway, which enhanced lymphatic metastasis by lung adenocarcinoma both in vitro and in vivo. These results indicate that GABRA3 promotes lymph node metastasis and may thus be an effective therapeutic target for anticancer treatment.
Collapse
Affiliation(s)
- Liping Liu
- The Translational Medicine Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenglin Yang
- Southern Medical University, Guangzhou, China.,Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfei Shen
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liyan Huang
- The Translational Medicine Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weixuan Lin
- The Translational Medicine Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hailing Tang
- The Translational Medicine Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenlong Shao
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhang
- The Translational Medicine Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Department of Anesthesia, Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jianxing He
- Southern Medical University, Guangzhou, China.,Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Miethe C, Nix H, Martin R, Hernandez AR, Price RS. Silibinin Reduces the Impact of Obesity on Invasive Liver Cancer. Nutr Cancer 2017; 69:1272-1280. [DOI: 10.1080/01635581.2017.1367935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C. Miethe
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| | - H. Nix
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| | - R. Martin
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| | - A. R. Hernandez
- Medicine Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - R. S. Price
- School of Consumer Sciences, Nutrition and Foods Program, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
15
|
Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 2017; 10:36. [PMID: 28143526 PMCID: PMC5286803 DOI: 10.1186/s13045-017-0408-0] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The macrophage, one of the several key immune cell types, is believed to be involved in tumorigenesis. However, the mechanism of macrophages promoting tumor progression is largely unknown. METHODS The differentially secreted proteins of M1 and M2 macrophages were analyzed by mass spectrometry. We performed GST pull-down assay for the identification of cell-membrane receptors that interact with chitinase 3-like protein 1 (CHI3L1) protein. The mouse model was used to validate the function of CHI3L1 in cancer metastasis in vivo. Protein phosphorylation and gene expression were performed to study the signaling pathway activation of cancer cells after CHI3L1 treatment. RESULTS M2 macrophage-secreted CHI3L1 promoted the metastasis of gastric and breast cancer cells in vitro and in vivo. The CHI3L1 protein functioned by interacting with interleukin-13 receptor α2 chain (IL-13Rα2) molecules on the plasma membranes of cancer cells. Activation of IL-13Rα2 by CHI3L1 triggered the activation of the mitogen-activated protein kinase signaling pathway, leading to the upregulated expression of matrix metalloproteinase genes, which promoted tumor metastasis. The results of this study indicated that the level of CHI3L1 protein in the sera of patients with gastric or breast cancer was significantly elevated compared with those of healthy donors. CONCLUSIONS Our study revealed a novel aspect of macrophages with respect to cancer metastasis and showed that CHI3L1 could be a marker of metastatic gastric and breast cancer in patients.
Collapse
Affiliation(s)
- Yulei Chen
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Siyuan Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
16
|
Koosha S, Alshawsh MA, Looi CY, Seyedan A, Mohamed Z. An Association Map on the Effect of Flavonoids on the Signaling Pathways in Colorectal Cancer. Int J Med Sci 2016; 13:374-85. [PMID: 27226778 PMCID: PMC4879672 DOI: 10.7150/ijms.14485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer in the world, causing thousands of deaths annually. Although chemotherapy is known to be an effective treatment to combat colon cancer, it produces severe side effects. Natural products, on the other hand, appear to generate fewer side effects than do chemotherapeutic drugs. Flavonoids are polyphenolic compounds found in various fruits and vegetables known to possess antioxidant activities, and the literature shows that several of these flavonoids have anti-CRC propertiesFlavonoids are classified into five main subclasses: flavonols, flavanones, flavones, flavan-3-ols, and flavanonols. Of these subclasses, the flavanonols have a minimum effect against CRC, whereas the flavones play an important role. The main targets for the inhibitory effect of flavonoids on CRC signaling pathways are caspase; nuclear factor kappa B; mitogen-activated protein kinase/p38; matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9; p53; β-catenin; cyclin-dependent kinase (CDK)2 and CDK4; and cyclins A, B, D, and E. In this review article, we summarize the in vitro and in vivo studies that have been performed since 2000 on the anti-CRC properties of flavonoids. We also describe the signaling pathways affected by flavonoids that have been found to be involved in CRC. Some flavonoids have the potential to be an effective alternative to chemotherapeutic drugs in the treatment of colon cancer; well-controlled clinical studies should, however, be conducted to support this proposal.
Collapse
Affiliation(s)
| | - Mohammed A. Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Raina K, Kumar S, Dhar D, Agarwal R. Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy. J Biomed Res 2015; 30:452-465. [PMID: 27476880 PMCID: PMC5138577 DOI: 10.7555/jbr.30.20150111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/12/2015] [Indexed: 02/06/2023] Open
Abstract
Globally, the risk of colorectal cancer (CRC) as well as the incidence of mortality associated with CRC is increasing. Thus, it is imperative that we look at alternative approaches involving intake of non-toxic natural dietary/non-dietary agents, for the prevention of CRC. The ultimate goal of this approach is to reduce the incidence of pre-neoplastic adenomatous polyps and prevent their progression to more advanced forms of CRC, and use these natural agents as a safe intervention strategy during the clinical course of this deadly malignancy. Over the years, pre-clinical studies have shown that silibinin (a flavonolignan isolated from the seeds of milk thistle, Silybum marianum) has strong preventive and therapeutic efficacy against various epithelial cancers, including CRC. The focus of the present review is to provide a comprehensive tabular summary, categorically for an easy accessibility and referencing, pertaining to the efficacy and associated mechanisms of silibinin against CRC growth and progression.
Collapse
Affiliation(s)
- Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
18
|
Dong YQ, Lu CW, Zhang L, Yang J, Hameed W, Chen W. Toll-like receptor 4 signaling promotes invasion of hepatocellular carcinoma cells through MKK4/JNK pathway. Mol Immunol 2015; 68:671-83. [PMID: 26589455 DOI: 10.1016/j.molimm.2015.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR) 4-mediated signaling has been shown to be important to cell survival, invasion and metastasis in a variety of cancers. The present study aimed to explore the role and downstream pathways of TLR4 signaling in the invasion of hepatocellular carcinoma (HCC) cell lines. We found that LPS, the agonist of TLR4, notably enhanced the invasiveness of HCC cells and the expression of MMP2 and MMP9, as well as the production of IL-6 and TNFα. LPS treatment dramatically increased the TLR4 expression on HCC cells surface and MKK4/JNK activation, while knockdown of TLR4 inhibited the LPS-induced invasion and the phosphorylation of MKK4 and JNK. Furthermore, silencing of MKK4 or inhibition of JNK activity led to impaired invasiveness of HCCs, low expression level of MMPs and TLR4, as well as limited production of cytokines. However, LPS stimulation only triggered moderate activation of NF-кB. Silencing of NF-кB or NF-кB inhibitor had no obvious effect on the invasive ability of HCCs and TLR4 expression, but suppressed IL-6 and TNFα production. These findings suggested that LPS-TLR4 signaling enhanced the invasiveness of HCCs mainly through MKK4/JNK pathway.
Collapse
Affiliation(s)
- Yu-Qing Dong
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China; Department of Clinical Laboratory, the Chinese Medicine Hospital of Hangzhou, Hangzhou 310007, China
| | - Chuan-Wei Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lu Zhang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia Yang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Waqaar Hameed
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Chao R, Chow JM, Hsieh YH, Chen CK, Lee WJ, Hsieh FK, Yu NY, Chou MC, Cheng CW, Yang SF, Chien MH. Tricetin suppresses the migration/invasion of human glioblastoma multiforme cells by inhibiting matrix metalloproteinase-2 through modulation of the expression and transcriptional activity of specificity protein 1. Expert Opin Ther Targets 2015; 19:1293-306. [PMID: 26245494 DOI: 10.1517/14728222.2015.1075509] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Glioblastoma multiforme (GBM) is a severely invasive tumor that can be fatal because it is difficult to treat. Tricetin, a natural flavonoid, was demonstrated to inhibit the growth of various cancers, but the effect of tricetin on cancer motility is largely unknown. RESEARCH DESIGN AND METHODS In the present study, we examined the anti-invasive properties of tricetin in huwman GBM cells. RESULTS Our results showed that tricetin inhibited the migration/invasion of two GBM cell lines. We found that tricetin inhibited MMP-2 expression in the GBM cells. Real-time polymerase chain reaction and promoter activity assays indicated that tricetin inhibited MMP-2 expression at the transcriptional level. Such inhibitory effects were associated with the suppression of specificity protein-1 (SP-1) DNA-binding activity. An examination of clinical samples revealed a positive correlation between SP-1 and MMP-2 in glioma specimens, and higher expression levels were correlated with a worse probability of survival. Moreover, blocking the extracellular signal-regulated kinase (ERK) pathway also inhibited MMP-2-mediated cell motility, and further enhanced the anti-invasive ability of tricetin in GBM cells. CONCLUSIONS SP-1 is an important target of tricetin for suppressing MMP-2-mediated cell motility in GBM cells, and a combination of tricetin and an ERK inhibitor may be a good strategy for preventing GBM invasion.
Collapse
Affiliation(s)
- Rockey Chao
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan
| | - Jyh-Ming Chow
- b 2 Taipei Medical University, Wan Fang Hospital, Department of Internal Medicine , Taipei, Taiwan
| | - Yi-Hsien Hsieh
- c 3 Chung Shan Medical University, School of Medicine, Department of Biochemistry , Taichung, Taiwan
| | - Chi-Kuan Chen
- d 4 Genomics Research Center, Academia Sinica , Taipei, Taiwan.,e 5 National Taiwan University, Graduate Institute of Toxicology, College of Medicine , Taipei, Taiwan
| | - Wei-Jiunn Lee
- f 6 Taipei Medical University, Wan Fang Hospital, Department of Urology , Taipei, Taiwan
| | - Feng-Koo Hsieh
- g 7 Ludwig-Maximilians University, Department of Surgery, Experimental Surgery and Regenerative Medicine , Munich, Germany
| | - Nuo-Yi Yu
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan
| | - Ming-Chih Chou
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan
| | - Chao-Wen Cheng
- h 8 Taipei Medical University, Graduate Institute of Clinical Medicine , 250 Wu-Hsing Street, Taipei, Taiwan +886 2 2736 1661 ; +886 2 2739 0500 ;
| | - Shun-Fa Yang
- a 1 Chung Shan Medical University, Institute of Medicine , Taichung, Taiwan.,i 9 Chung Shan Medical University Hospital, Department of Medical Research , Taichung, Taiwan
| | - Ming-Hsien Chien
- h 8 Taipei Medical University, Graduate Institute of Clinical Medicine , 250 Wu-Hsing Street, Taipei, Taiwan +886 2 2736 1661 ; +886 2 2739 0500 ; .,j 10 Taipei Medical University, Wan Fang Hospital, Department of Medical Research , Taipei, Taiwan
| |
Collapse
|
20
|
Barletta E, Ramazzotti M, Fratianni F, Pessani D, Degl'Innocenti D. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion. Cell Adh Migr 2015; 9:422-31. [PMID: 26176658 PMCID: PMC4955962 DOI: 10.1080/19336918.2015.1008330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression.
Collapse
Affiliation(s)
- Emanuela Barletta
- a Dipartimento Scienze Biomediche Sperimentali e Cliniche ; Università degli Studi di Firenze ; Firenze , Italy.,e These authors equally contributed to this work
| | - Matteo Ramazzotti
- a Dipartimento Scienze Biomediche Sperimentali e Cliniche ; Università degli Studi di Firenze ; Firenze , Italy.,e These authors equally contributed to this work
| | - Florinda Fratianni
- b Istituto di Scienze dell'Alimentazione; Consiglio Nazionale delle Ricerche (ISA-CNR) ; Avellino , Italy
| | - Daniela Pessani
- c Laboratorio di Zoologia e Biologia Marina; Dipartimento di Biologia Animale e dell'Uomo ; Università degli Studi di Torino ; Torino , Italy.,d Centro Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM) ; Livorno , Italy
| | - Donatella Degl'Innocenti
- a Dipartimento Scienze Biomediche Sperimentali e Cliniche ; Università degli Studi di Firenze ; Firenze , Italy.,d Centro Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM) ; Livorno , Italy
| |
Collapse
|
21
|
Wang YX, Cai H, Jiang G, Zhou TB, Wu H. Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition. Asian Pac J Cancer Prev 2014; 15:6791-8. [DOI: 10.7314/apjcp.2014.15.16.6791] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Liang Z, Yang Y, Wang H, Yi W, Yan X, Yan J, Li Y, Feng Y, Yu S, Yang J, Jin Z, Duan W, Chen W. Inhibition of SIRT1 signaling sensitizes the antitumor activity of silybin against human lung adenocarcinoma cells in vitro and in vivo. Mol Cancer Ther 2014; 13:1860-72. [PMID: 24798868 DOI: 10.1158/1535-7163.mct-13-0942] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although silybin, a natural flavonolignan, has been shown to exhibit potent antitumor activities against various types of cancers, including lung cancer, the molecular mechanisms behind these activities remain unclear. Silent information regulator 1 (SIRT1) is a conserved NAD(+)-dependent deacetylase that has been implicated in the modulation of transcriptional silencing and cell survival. Furthermore, it plays a key role in carcinogenesis through the deacetylation of important regulatory proteins, including p53. In this study, we investigated the antitumor activity of silybin towards human lung adenocarcinoma cells in vitro and in vivo and explored the role of the SIRT1 signaling pathway in this process. Silybin treatment resulted in a dose- and time-dependent decrease in lung adenocarcinoma A549 cell viability. In addition, silybin exhibited strong antitumor activity illustrated by reductions in tumor cell adhesion, migratory capability, and glutathione levels and by increased apoptotic indices and reactive oxygen species levels. Silybin treatment also downregulated SIRT1 and upregulated p53 acetylation. SIRT1 siRNA (in vitro) or cambinol (a known SIRT1 inhibitor used for in vivo studies) further enhanced the antitumor activity of silybin. In summary, silybin is a potent inhibitor of lung adenocarcinoma cell growth that interferes with SIRT1 signaling, and this inhibition is a novel mechanism of silybin action that may be used for therapeutic intervention in lung adenocarcinoma treatment.
Collapse
Affiliation(s)
- Zhenxing Liang
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital
| | - Yang Yang
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital
| | - Haibin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Wei Yi
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital
| | | | - Juanjuan Yan
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an; and
| | - Yue Li
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital
| | | | - Shiqiang Yu
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital
| | - Jian Yang
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital
| | - Zhenxiao Jin
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital
| | - Weixun Duan
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital;
| | - Wensheng Chen
- Authors' Affiliations: Department of Cardiovascular Surgery, Xijing Hospital;
| |
Collapse
|
23
|
Gándara L, Sandes E, Di Venosa G, Prack Mc Cormick B, Rodriguez L, Mamone L, Batlle A, Eiján AM, Casas A. The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2014; 133:55-64. [PMID: 24705371 DOI: 10.1016/j.jphotobiol.2014.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/27/2022]
Abstract
Photodynamic Therapy (PDT) is an anticancer treatment based on photosensitisation of malignant cells. The precursor of the photosensitiser Protoporphyrin IX, 5-aminolevulinic acid (ALA), has been used for PDT of bladder cancer. Silybin is a flavonoid extracted from Silybum marianum, and it has been reported to increase the efficacy of several anticancer treatments. In the present work, we evaluated the cytotoxicity of the combination of ALA-PDT and silybin in the T24 and MB49 bladder cancer cell lines. MB49 cells were more sensitive to PDT damage, which was correlated with a higher Protoporphyrin IX production from ALA. Employing lethal light doses 50% (LD50) and 75% (LD75) and additional silybin treatment, there was a further increase of toxicity driven by PDT in both cell lines. Using the Chou-Talalay model for drug combination derived from the mass-action law principle, it was possible to identify the effect of the combination as synergic when using LD75, whilst the use of LD50 led to an additive effect on MB49 cells. On the other hand, the drug combination turned out to be nearly additive on T24 cells. Apoptotic cell death is involved both in silybin and PDT cytotoxicity in the MB49 line but there is no apparent correlation with the additive or synergic effect observed on cell viability. On the other hand, we found an enhancement of the PDT-driven impairment of cell migration on both cell lines as a consequence of silybin treatment. Overall, our results suggest that the combination of silybin and ALA-PDT would increase PDT outcome, leading to additive or synergistic effects and possibly impairing the occurrence of metastases.
Collapse
Affiliation(s)
- L Gándara
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - E Sandes
- Area Investigaciones, Instituto de Oncología Ángel H. Roffo, Argentina
| | - G Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | | | - L Rodriguez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - L Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - A Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - A M Eiján
- Area Investigaciones, Instituto de Oncología Ángel H. Roffo, Argentina
| | - A Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina.
| |
Collapse
|
24
|
Ruan M, Thorn K, Liu S, Li S, Yang W, Zhang C, Zhang C. The secretion of IL-6 by CpG-ODN-treated cancer cells promotes T-cell immune responses partly through the TLR-9/AP-1 pathway in oral squamous cell carcinoma. Int J Oncol 2014; 44:2103-10. [PMID: 24676671 DOI: 10.3892/ijo.2014.2356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/05/2014] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that communication between tumor and immune cells can alter the tumor microenvironment in ways that promote tumor development. The purpose of this study was to characterize the immune response elicited by TLR-9-activated OSCC cells, to identify the cytokines involved in the signaling pathway and to elucidate the molecular mechanism of this pathway in OSCC cells. MTS, flow cytometry and ELISA assay were used to evaluate T-cell immune responses, cancer cell proliferation and pro-inflammatory cytokine secretion, respectively. Western blot analysis, EMSA and ChIP assay were employed to detect the activity of the NF-κB and AP-1 signaling pathways. A marked response was observed when T-cells were co-cultured with supernatants from CpG-ODN-treated OSCC cells. This response was characterized by increased CD4+ and CD8+ T-cell proliferation and an increase in IFN-γ production by the CD4+ T-cell population. Treatment of OSCC cells with CpG-ODN resulted in an increase in IL-6 secretion as well as an increase in AP-1 binding activity to the IL-6 promoter. Moreover, blockage of the TLR-9/AP-1 pathway significantly decreased IL-6 expression and T-cell immune response. In human OSCC, the TLR-9 pathway, when stimulated by CpG-ODNs, promotes a T-cell immune response mediated by AP-1-activated IL-6 secretion. Although the complete molecular mechanism has yet to be understood, these findings provide evidence linking tumor cell activities to immune system responses. In addition, the TLR-9/AP-1/IL-6 pathway provides new therapeutic targets for the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Min Ruan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Katherine Thorn
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Shengwen Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Siyi Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Wenjun Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Chunye Zhang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Chenping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
25
|
Lin CM, Hou SW, Wang BW, Ong JR, Chang H, Shyu KG. Molecular mechanism of (-)-epigallocatechin-3-gallate on balloon injury-induced neointimal formation and leptin expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1213-1220. [PMID: 24410132 DOI: 10.1021/jf404479x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Leptin contributes to the pathogenesis of vascular repair and cardiovascular events. This study evaluated the molecular mechanism of EGCG in balloon injury-induced leptin expression. According to immunohistochemical and confocal analyses, leptin expression was increased and the aortic lumen exhibited narrowing after balloon injury. EGCG treatment attenuated leptin expression and diminished neointimal formation. The in vitro study showed that angiotensin II (Ang II) induced the migration and proliferation of cultured vascular smooth muscle cells (VSMCs), whereas treatment with EGCG, leptin siRNA, and c-Jun siRNA inhibited the migration and proliferation of VSMCs significantly. The EMSA shows that balloon injury increased AP-1-binding activity, and EGCG and c-Jun siRNA inhibited the AP-1-binding activity. Western blot and real-time RT-PCR analyses revealed similar results in intimal tissue samples. In summary, balloon injury induces leptin expression in the carotid artery of rats, and EGCG inhibits leptin expression through the JNK/AP-1 pathway and also attenuates neointimal formation.
Collapse
Affiliation(s)
- Chiu-Mei Lin
- Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital , Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Dai JP, Wu LQ, Li R, Zhao XF, Wan QY, Chen XX, Li WZ, Wang GF, Li KS. Identification of 23-(s)-2-amino-3-phenylpropanoyl-silybin as an antiviral agent for influenza A virus infection in vitro and in vivo. Antimicrob Agents Chemother 2013; 57:4433-43. [PMID: 23836164 PMCID: PMC3754338 DOI: 10.1128/aac.00759-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/26/2013] [Indexed: 02/05/2023] Open
Abstract
It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Li-Qi Wu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiang-Feng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qian-Ying Wan
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Liu W, Otkur W, Zhang Y, Li Q, Ye Y, Zang L, He H, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Silibinin protects murine fibroblast L929 cells from UVB-induced apoptosis through the simultaneous inhibition of ATM-p53 pathway and autophagy. FEBS J 2013; 280:4572-84. [PMID: 23829351 DOI: 10.1111/febs.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
Abstract
Ultraviolet B (UVB) is a major cause of skin inflammation, leading to skin damage. Our previous in vivo study revealed that a natural flavonoid silibinin had marked anti-inflammatory effect on UVB-exposed murine skin. UVB exposure caused reduced autophagy in epidermis while it promoted autophagy in dermis. Nevertheless, silibinin inhibited the inflammatory flux in the skin epidermis as well as dermis through the modulation of autophagy. In order to elucidate the underlying protective mechanisms of silibinin for UVB damage on skin, separate studies on epidermis and dermis are helpful. Derived from the normal tissue of the mouse, L929 cells are capable of representing some characteristics of dermal cells. UVB irradiation caused L929 cell apoptosis in a time- and dose-dependent manner. Ataxia-telangiectasia-mutated (ATM) protein and p53 were activated to cause cell apoptosis, accompanying upregulation of the autophagic flux. The pharmacological inhibition of ATM, p53 and autophagy or the transfection with autophagy-associated protein-targeted small interfering RNAs showed that the UVB-activated ATM-p53 axis and autophagy formed a positive feedback loop, which synergistically promoted cell apoptosis. Silibinin treatment simultaneously repressed the activation of ATM-p53 and autophagy and thereby protected UVB-irradiated L929 cells from apoptotic death.
Collapse
Affiliation(s)
- Weiwei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Liaoning, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ting H, Deep G, Agarwal R. Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J 2013; 15:707-16. [PMID: 23588585 PMCID: PMC3691417 DOI: 10.1208/s12248-013-9486-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/02/2013] [Indexed: 02/08/2023] Open
Abstract
Despite advances in early detection, prostate cancer remains the second highest cancer mortality in American men, and even successful interventions are associated with enormous health care costs as well as prolonged deleterious effects on quality of patient life. Prostate cancer chemoprevention is one potential avenue to alleviate these burdens. It is a regime whereby long-term treatments are intended to prevent or arrest cancer development, in contrast to more direct intervention upon disease diagnosis. Based on this intention, cancer chemoprevention generally focuses on the use of nontoxic chemical agents which are well-tolerated for prolonged usage that is necessary to address prostate cancer's multistage and lengthy period of progression. One such nontoxic natural agent is the flavonoid silibinin, derived from the milk thistle plant (Silybum marianum), which has ancient medicinal usage and potent antioxidant activity. Based on these properties, silibinin has been investigated in a host of cancer models where it exhibits broad-spectrum efficacy against cancer progression both in vitro and in vivo without noticeable toxicity. Specifically in prostate cancer models, silibinin has shown the ability to modulate cell signaling, proliferation, apoptosis, epithelial to mesenchymal transition, invasion, metastasis, and angiogenesis, which taken together provides strong support for silibinin as a candidate prostate cancer chemopreventive agent.
Collapse
Affiliation(s)
- Harold Ting
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Gagan Deep
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Rajesh Agarwal
- />Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
- />Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Room V20-2118, Box C238, Aurora, Colorado 80045 USA
| |
Collapse
|
29
|
Derry MM, Raina K, Agarwal C, Agarwal R. Identifying molecular targets of lifestyle modifications in colon cancer prevention. Front Oncol 2013; 3:119. [PMID: 23675573 PMCID: PMC3653120 DOI: 10.3389/fonc.2013.00119] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/28/2013] [Indexed: 12/17/2022] Open
Abstract
One in four deaths in the United States is cancer-related, and colorectal cancer (CRC) is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; approximately 20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological, and behavioral processes that could influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.
Collapse
Affiliation(s)
- Molly M Derry
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | | | | | | |
Collapse
|