1
|
Xue X, Quan Y, Gong L, Gong X, Li Y. A review of the processed Polygonum multiflorum (Thunb.) for hepatoprotection: Clinical use, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113121. [PMID: 32693115 DOI: 10.1016/j.jep.2020.113121] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum (Thunb.) (PMT) is a member of Polygonaceae. Traditional Chinese medicine considers that the processed PMT can tonify liver, nourish blood and blacken hair. In recent years, the processed PMT and its active ingredients have significant therapeutic effects on nonalcoholic fatty liver disease, alcoholic fatty liver disease, viral hepatitis, liver fibrosis and liver cancer. AIM OF THE STUDY The main purpose of this review is to provide a critical appraisal of the existing knowledge on the clinical application, hepatoprotective pharmacology and hepatotoxicity, it provides a comprehensive evaluation of the liver function of the processed PMT. MATERIALS AND METHODS A detailed literature search was conducted using various online search engines, such as Pubmed, Google Scholar, Mendeley, Web of Science and China National Knowledge Infrastructure (CNKI) database. The main active components of the processed PMT and the important factors in the occurrence and development of liver diseases are used as key words to carry out detailed literature retrieval. RESULTS In animal and cell models, the processed PMT and active components can treat various liver diseases, such as fatty liver induced by high-fat diet, liver injury and fibrosis induced by drugs, viral transfected hepatitis, hepatocellular carcinoma, etc. They can protect liver by regulating lipid metabolism related enzymes, resisting insulin resistance, decreasing the expression of inflammatory cytokines, inhibiting the activation of hepatic stellate cells, reducing generation of extracellular matrix, promoting cancer cell apoptosis and controlling the growth of tumor cells, etc. However, improperly using of the processed PMT can cause liver injury, which is associated with the standardization of processing, the constitution of the patients, the characteristics of the disease, and the administration of dosage and time. CONCLUSION The processed PMT can treat various liver diseases via reasonably using, and the active compounds (2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, etc.) are promising candidate drugs for developing new liver protective agents. However, some components have a "toxic-effective" bidirectional effect, which should be used cautiously.
Collapse
Affiliation(s)
- Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunyun Quan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
2
|
Balakrishnan R, Cho DY, Su-Kim I, Choi DK. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants (Basel) 2020; 9:antiox9100962. [PMID: 33049991 PMCID: PMC7601828 DOI: 10.3390/antiox9100962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Dendropanax genus is a kind of flowering plant in the family of Araliaceae that encompasses approximately 91 to 95 species. Several Dendropanax species are used as traditional medicinal plants, extensively used Korea and South America and other parts of the world. Almost every part of the plant, including the leaves, bark, roots, and stems, can be used as traditional medicine for the prevention and management of a broad spectrum of health disorders. This paper sought to summarizes the ethnopharmacological benefits, biological activities, and phytochemical investigations of plants from the genus Dendropanax, and perhaps to subsequently elucidate potential new perspectives for future pharmacological research to consider. Modern scientific literature suggests that plants of the Dendropanax genus, together with active compounds isolated from it, possess a wide range of therapeutic and pharmacological applications, including antifungal, anti-complement, antioxidant, antibacterial, insect antifeedant, cytotoxic, anti-inflammatory, neuroprotective, anti-diabetic, anti-cancer, and anti-hypouricemic properties. The botanical descriptions of approximately six to 10 species are provided by different scientific web sources. However, only six species, namely, D. morbiferus, D. gonatopodus, D. dentiger, D. capillaris, D. chevalieri, and D. arboreus, were included in the present investigation to undergo phytochemical evaluation, due to the unavailability of data for the remaining species. Among these plant species, a high concentration of variable bioactive ingredients was identified. In particular, D. morbifera is a traditional medicinal plant used for the multiple treatment purposes and management of several human diseases or health conditions. Previous experimental evidence supports that the D. morbifera species could be used to treat various inflammatory disorders, diarrhea, diabetes, cancer, and some microbial infections. It has recently been reported, by our group and other researchers, that D. morbifera possesses a neuroprotective and memory-enhancing agent. A total of 259 compounds have been identified among six species, with 78 sourced from five of these species reported to be bioactive. However, there is no up-to-date information concerning the D. morbifera, its different biological properties, or its prospective benefits in the enhancement of human health. In the present study, we set out to conduct a comprehensive analysis of the botany, traditional medicinal history, and medicinal resources of species of the Dendropanax genus. In addition, we explore several phytochemical constituents identified in different species of the Dendropanax genus and their biological properties. Finally, we offer comprehensive analysis findings of the phytochemistry, medicinal uses, pharmacological actions, and a toxicity and safety evaluation of the D. morbifera species and its main bioactive ingredients for future consideration.
Collapse
|
3
|
Yun JW, Kim SH, Kim YS, Choi EJ, You JR, Cho EY, Yoon JH, Kwon E, Kim HC, Jang JJ, Park JS, Che JH, Kang BC. Preclinical study of safety of Dendropanax morbifera Leveille leaf extract: General and genetic toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111874. [PMID: 30986520 DOI: 10.1016/j.jep.2019.111874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Dendropanax morbifera Leveille (DM) has been used in traditional medicines for infectious and skin diseases, and dysmenorrhea. It exhibits a diverse therapeutic potential including anti-cancer, anti-thrombotic, anti-diabetic, anti-oxidant, and anti-inflammatory activities. AIM OF THE STUDY Despite promising health benefits of DM, knowledge of its potential adverse effects is very limited. The current study focused on the investigation of subchronic toxicity and genotoxicity of extract obtained from DM according to the test guidelines published by the Organization for Economic Cooperation and Development. MATERIALS AND METHODS We conducted a toxicological evaluation of DM extracts using 14-day repeated-dose toxicity study and 13-week repeated-dose toxicity study in Sprague-Dawley rats administered orally at doses of 500, 1000, or 2000 mg/kg/day. The clastogenicity of DM extract was also evaluated by in vitro chromosome aberration assay and in vivo micronucleus assay. RESULTS Assessment of subchronic toxicity of DM extract by oral administration in rats revealed unremarkable treatment-related findings with respect to food/water consumption, body weight, mortality, urinalysis, hematology, serum biochemistry, necropsy, organ weight and histopathology at doses of 500, 1000, and 2000 mg/kg. Accordingly, the level of no-observed-adverse-effect for DM extract in 13-week subchronic toxicity study was considered to be 2000 mg/kg/day in rats. The data observed from in vitro chromosome aberration assay and in vivo micronucleus assay exclude any clastogenicity of DM extract. CONCLUSION The results suggest that the oral consumption of DM extract has no adverse effects in humans and represents a safe traditional medicine.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seung-Hyun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Soon Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Jin Choi
- Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jangheung-gun, Jeollanam-do, Republic of Korea
| | - Ji-Ran You
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Young Cho
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Hee Yoon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Ja-June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Sung Park
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea; Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
4
|
Ruan XH, Ma T, Fan Y. Ablation of TMEM126B protects against heart injury via improving mitochondrial function in high fat diet (HFD)-induced mice. Biochem Biophys Res Commun 2019; 515:636-643. [PMID: 31178133 DOI: 10.1016/j.bbrc.2019.05.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/11/2019] [Indexed: 01/13/2023]
Abstract
The mitochondrial dysfunction in the pathogenesis of myocardial damage associated with high fat diet (HFD)-induced obesity remains largely unknown. Transmembrane protein 126B (TMEM126B), as a complex I assembly factor, plays a key role in regulating mitochondrial function. In the present study, the effects of TMEM126B on mitochondrial function were investigated using genetic knockout approach in HFD-induced mouse models with obesity. We found that TMEM126B was significantly increased in HFD-treated cardiac samples. Genetic ablation of TMEM126B alleviated HFD-mediated metabolic disorder and heart injury. TEM results suggested that cardiac mitochondrial integrity was improved in TMEM126B knockout mice compared with the wild type (WT) mice after HFD challenge. Additionally, the mitochondrial dysfunction induced by HFD was alleviated in mice with TMEM126B knockout, as evidenced by the decreased protein expression levels of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and increased expression of mitofusin-1 (MFN1). The mitochondrial impairments were further confirmed in palmitic acid (PA)-incubated cardiomyocytes, as evidenced by the down-regulated membrane potential and ATP levels, and by the up-regulated mitochondrial reactive oxygen species (ROS) production and DNA damage, which were significantly reversed by TMEM126B knockdown in vitro. Finally, TMEM126B ablation suppressed mitochondrial-dependent apoptotic death in the hearts of HFD mice. Therefore, TMEM126B led to mitochondrial impairments, contributing to the pathogenesis of HFD-induced cardiac injury, and blockage of TMEM126B could inhibit mitochondrial dysfunction, paving the road to new therapeutic modalities for the prevention of obesity-associated heart injury.
Collapse
Affiliation(s)
- Xin-Hua Ruan
- Department of Cardiac Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Teng Ma
- Department of Cardiology, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, China
| | - Yue Fan
- Department of Cardiothoracic Surgery, Ruikang Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China.
| |
Collapse
|
5
|
Novel Rhodanine Derivative, 5-[4-(4-Fluorophenoxy) phenyl]methylene-3-{4-[3-(4-methylpiperazin-1-yl) propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride, Induces Apoptosis via Mitochondria Dysfunction and Endoplasmic Reticulum Stress in Human Colon Cancer Cells. Molecules 2018; 23:molecules23112895. [PMID: 30404185 PMCID: PMC6278386 DOI: 10.3390/molecules23112895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 01/29/2023] Open
Abstract
We previously reported that 5-[4-(4-fluorophenoxy) phenyl] methylene-3-{4-[3-(4-methylpiperazin-1-yl)propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride (KSK05104) has potent, selective and metabolically stable IKKβ inhibitory activities. However, the apoptosis-inducing of KSK05104 and its underlying mechanism have not yet been elucidated in human colon cancer cells. We show that KSK05104 triggered apoptosis, as indicated by externalization of Annexin V-targeted phosphatidylserine residues in HT-29 and HCT-116 cells. KSK05104 induced the activation of caspase-8, -9, and -3, and the cleavage of poly (ADP ribose) polymerase-1 (PARP-1). KSK05104-induced apoptosis was significantly suppressed by pretreatment with z-VAD-fmk (a broad caspase inhibitor). KSK05104 also induced release of cytochrome c (Cyt c), apoptosis inducing factor (AIF), and endonuclease G (Endo G) by damaging mitochondria, resulting in caspase-dependent and -independent apoptotic cell death. KSK05104 triggered endoplasmic reticulum (ER) stress and changed the intracellular calcium level ([Ca2+]i). Interestingly, treatment with KSK05104 activated not only ER stress marker proteins including inositol-requiring enzyme 1-alpha (IRE-1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), but also μ-calpain, and caspase-12 in a time-dependent manner. KSK05104-induced apoptosis substantially decreased in the presence of BAPTA/AM (an intracellular calcium chelator). Taken together, these results suggest that mitochondrial dysfunction and ER stress contribute to KSK05104-induced apoptosis in human colon cancer cells.
Collapse
|
6
|
Park JU, Kang BY, Kim YR. Ethyl Acetate Fraction from Dendropanax morbifera Leaves Increases T Cell Growth by Upregulating NF-AT-Mediated IL-2 Secretion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:453-467. [DOI: 10.1142/s0192415x18500234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendropanax morbifera Leveille (Araliaceae) is an endemic species that grows in Southwestern Korea and has been used as a folk medicine. Several studies reported that D. morbifera leaves have diverse therapeutic potentials. We found that the water extract of D. morbifera leaves increased the growth of EL-4 T cells. The water extract was divided into five fractions: [Formula: see text]-hexane, chloroform, ethyl acetate, [Formula: see text]-butanol, and water layers. The ethyl acetate (W-EA) fraction showed a more significant effect than the other fractions on the growth of EL-4 T cells, splenocytes, and isolated murine CD4[Formula: see text] T cells. We evaluated the W-EA fraction for its immunomodulatory effects focusing on T cell functions. First, we tested the effect of the W-EA fraction on the regulation of interleukin-2 (IL-2), a potent T cell growth factor. The W-EA fraction significantly increased IL-2 secretion in EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Io). In addition, the W-EA fraction increased interferon-gamma (IFN-[Formula: see text] production in isolated murine splenocytes activated with Concanavalin A (ConA). Next, we examined the effect of the W-EA fraction on the regulation of transcriptional factors related to IL-2 production in T cells. The W-EA fraction significantly increased PMA/Io-induced promoter activity of a nuclear factor of activated T cells (NF-AT) in EL-4 T cells, but did not show any significant effects on the promoters of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-[Formula: see text]B). These results indicate that the W-EA fraction from water extract of D. morbifera leaves enhances IL-2 production at the transcriptional levels via the up-regulation of NF-AT in PMA/Io-activated EL-4 T cells.
Collapse
Affiliation(s)
- Jung Up Park
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bok Yun Kang
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Luo J, Jin G, Zhang F, Liu Y, Chen L, Xie S, Zhao J. Three Types of Mixed Alkali‐Metal‐, Transition‐Metal‐, or Rare‐Earth‐Substituted Sandwich‐Type Arsenotungstates with Supporting Rare‐Earth Pendants. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Luo
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan China
| | - Guangfeng Jin
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan China
| | - Fang Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan China
| | - Yun Liu
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan China
| | - Songqiang Xie
- Pharmaceutical College Henan University 475004 Kaifeng Henan China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry Institute of Molecular and Crystal Engineering College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 350002 Fuzhou Fujian China
| |
Collapse
|
8
|
Kim M, Park YJ, Lim HS, Lee HH, Kim TH, Lee B. The Clinical Effects of Dendropanax Morbifera on Postmenopausal Symptoms: Review Article. J Menopausal Med 2017; 23:146-155. [PMID: 29354613 PMCID: PMC5770523 DOI: 10.6118/jmm.2017.23.3.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Postmenopausal women aged 50s generally experience gradual changes in body such as decline in antioxidant and estrogen levels as the body ages. To overcome these aging-associated changes, the needs for health functional foods are increasing. Dendropanax morbifera (DM) have antioxidant effects, anti-inflammatory against cancer cells, antidiabetic, and antiatherogenic effect which are associated with postmenopausal symptoms. We analyzed clinical effects of DM on aging-related symptoms by reporting their antioxidant, anticancer and inflammatory activity, etc. and their bioactivity. Data sources EMBASE, SCOPUS, PubMed, Web of Science, and Google Scholar databases were searched up to August 2016 for studies investigating medicinal plants in prevention and treatment of diabetes. The search terms were “Dendropanax morbifera”. The reference lists of articles were also reviewed for additional relevant studies. Extracts of DM have various efficacy such as antioxidant, anti-cancer, anti-inflammatory activity and anti-thrombotic effect.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Asan, Korea
| | - Yoo Jin Park
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Asan, Korea
| | - Hee-Sook Lim
- Department of Food and Nutrition, Yeonsung University, Anyang, Korea
| | - Hae-Hyeog Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Bora Lee
- Department of Biostatistics, Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
9
|
Kim G, Kim JE, Kang MJ, Jang AR, Kim YR, Kim S, Chang KT, Hong JJ, Park JH. Inhibitory effect of 1-tetradecanol on Helicobacter pylori-induced production of interleukin-8 and vascular endothelial growth factor in gastric epithelial cells. Mol Med Rep 2017; 16:9573-9578. [DOI: 10.3892/mmr.2017.7793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
|
10
|
Yang HH, Liu YJ, Wang XZ. Synthesis of novel dibenzoxanthene derivatives and observation of apoptosis in human hepatocellular cancer cells. Bioorg Chem 2017; 72:333-344. [PMID: 28521246 DOI: 10.1016/j.bioorg.2017.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/21/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022]
Abstract
We have synthesized dibenzoxanthene derivatives 2a-2i via nucleophilic substitution of methoxyl group and evaluated underlying antitumor molecular mechanism of target compounds. Compounds showed high cytotoxic activities against BEL-7402, A549, HeLa and MG-63 cancer cells in the µM range. These compounds inhibited the cell growth of BEL-7402 cells at S or G2/M phase. The compounds 2a-2i also induced the apoptosis of BEL-7402 cells. In addition, compounds enhanced the level of intramolecular ROS and decreased the mitochondrial membrane potential. Western blot analysis showed caspase-3 were activated and the expression of Bcl-2 and Bcl-xl was down-regulated. According to given results, these dibenzoxanthenes exhibited a broad spectrum of antiproliferative effects on various tumors and therapeutic efficacy. Molecular mechanism indicated that induction of apoptosis was associated with DNA fragmentation, ROS generation, mitochondria dysfunction. Compounds induced apoptosis in BEL-7402 cells through the intrinsic ROS-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Hui-Hui Yang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yun-Jun Liu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Cosmetics Engineering & Technology Research Center, Guangzhou 510006, PR China.
| | - Xiu-Zhen Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Tetradecanol reduces EL-4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion. Eur J Pharmacol 2017; 799:135-142. [PMID: 28167257 DOI: 10.1016/j.ejphar.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Tetradecanol is a straight-chain saturated fatty alcohol purified from Dendropanax morbifera leaves. We found that tetradecanol (30μM) reduced specifically the growth of T cells such as EL-4 T cell and isolated murine CD4+ T cells. In this study, we investigated the effects of tetradecanol on the regulation of interlukin-2 (IL-2), a potent T cell growth factor. Tetradecanol significantly inhibited IL-2 secretion in EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) and also in isolated murine CD4+ T cells activated with anti-CD3 and anti-CD28 antibodies. Next, we examined the effect of tetradecanol on the transcriptional activity related to IL-2 production in T cells. Tetradecanol decreased PMA/Io-induced promoter activity of NF-κB in EL-4 T cells, but did not show any significant effects on the promoters of activator protein 1 (AP-1) and nuclear factor of activated T cells (NF-AT). Tetradecanol inhibited IκBα degradation and nuclear translocation of NF-κB subunit, p65 in PMA/Io-activated EL-4 T cells. These results suggest that tetradecanol might have immunosuppressive effects on T cell mediated disorders. Using a chronic allergic contact dermatitis model induced by repeated application of oxazolone, we showed that tetradecanol reduced ear thickness induced by oxazolone.
Collapse
|
12
|
Zhang S, Li T, Zhang Y, Xu H, Li Y, Zi X, Yu H, Li J, Jin CY, Liu HM. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis. Toxicol Appl Pharmacol 2016; 309:77-86. [PMID: 27594528 DOI: 10.1016/j.taap.2016.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
A new series of 20 brominated chalcone derivatives were designed, synthesized, and investigated for their effects against the growth of four cancer cell lines (EC109, SKNSH, HepG2, MGC803). Among them, compound 19 which given chemical name of H72, was the most potent one on gastric cancer cell lines (i.e. MGC803, HGC27, SGC7901) with IC50s ranged from 3.57 to 5.61μM. H72 exhibited less cytotoxicity to non-malignant gastric epithelial cells GES-1. H72 treatment of MGC803 and HGC27 induced generation of reactive oxygen species (ROS) leading to activation of caspase 9/3 cascade and mitochondria mediated apoptosis. H72 also up-regulated the expression of DR5, DR4 and BimEL, and down-regulated the expression of Bid, Bcl-xL, and XIAP. N-acetyl cysteine (NAC), a ROS scavenger completely blocked these effects of H72 in MGC803 cells. Intraperitoneal administration of H72 significantly inhibited the growth of MGC803 cells in vivo in a xenograft mouse model without observed toxicity. These results indicated that H72 is a lead brominated chalcone derivate and deserves further investigation for prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Saiyang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Tingyu Li
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yanbing Zhang
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hongde Xu
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yongchun Li
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, USA; Department of Pharmacology, University of California, Irvine, Orange, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Orange, USA
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jinfeng Li
- Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, Henan 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
13
|
Zhang Y, Yu HY, Chao LP, Qu L, Ruan JY, Liu YX, Dong YZ, Han LF, Wang T. Anti-inflammatory steroids from the rhizomes of Dioscorea septemloba Thunb. Steroids 2016; 112:95-102. [PMID: 27234504 DOI: 10.1016/j.steroids.2016.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022]
Abstract
Seven new steroid glycosides, dioscorosides A1 (1), A2 (2), B1 (3), B2 (4), C1 (5), C2 (6), and D (7), together with 22 known ones (8-29) were isolated from the rhizomes of Dioscorea septemloba, their structures were elucidated by chemical and spectroscopic methods. All isolates were evaluated for in vitro anti-inflammatory potential using LPS-stimulated RAW 264.7 murine macrophages. Among them, spirostane glycosides 18 and 21-24 exhibited significant inhibition of nitrite production. Moreover, the structure-activity relationship was summarized.
Collapse
Affiliation(s)
- Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Hai-Yang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Li-Ping Chao
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China
| | - Lu Qu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jing-Ya Ruan
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China
| | - Yan-Xia Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Yong-Zhe Dong
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China
| | - Li-Feng Han
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|
14
|
Shiue YW, Lu CC, Hsiao YP, Liao CL, Lin JP, Lai KC, Yu CC, Huang YP, Ho HC, Chung JG. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:637-61. [PMID: 27109154 DOI: 10.1142/s0192415x1650035x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a xenotransplantation model. Therefore, casticin might be a potential therapeutic agent for the treatment of skin cancer in the future.
Collapse
Affiliation(s)
- Yin-Wen Shiue
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan
| | - Chi-Cheng Lu
- † School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ping Hsiao
- ‡ Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,§ Department of Dermatology, Chung Shan Medical University Hospital Taichung 402, Taiwan
| | - Ching-Lung Liao
- ¶ Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Pin Lin
- ∥ School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Kuang-Chi Lai
- ** School of Medicine, China Medical University, Taichung 404, Taiwan.,†† Department of Surgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan
| | - Chien-Chih Yu
- ‡‡ School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yi-Ping Huang
- §§ Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Heng-Chien Ho
- ** School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan.,¶¶ Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
15
|
Wang XZ, Yang HH, Li W, Han BJ, Liu YJ. Studies on apoptosis in HeLa cells via the ROS-mediated mitochondrial pathway induced by new dibenzoxanthenes. NEW J CHEM 2016. [DOI: 10.1039/c6nj00250a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The apoptotic mechanism of dibenzoxanthenes C1 and C2 was found to be the ROS-mediated activation of intrinsic mitochondria-caspase protease.
Collapse
Affiliation(s)
- Xiu-Zhen Wang
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Hui-Hui Yang
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Wei Li
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Bing-Jie Han
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Yun-Jun Liu
- College of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| |
Collapse
|
16
|
JANG JIHOON, KIM JOOYOUNG, SUNG EONGI, KIM EUNAE, LEE TAEJIN. Gambogic acid induces apoptosis and sensitizes TRAIL-mediated apoptosis through downregulation of cFLIPL in renal carcinoma Caki cells. Int J Oncol 2015; 48:376-84. [DOI: 10.3892/ijo.2015.3249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
|
17
|
A chemically sulfated polysaccharide derived from Ganoderma lucidum induces mitochondrial-mediated apoptosis in human osteosarcoma MG63 cells. Tumour Biol 2014; 35:9919-26. [PMID: 24997619 DOI: 10.1007/s13277-014-2217-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022] Open
Abstract
To develop new anticancer agents, we prepared a sulfated polysaccharide (SCGLP1) from the fruiting bodies of Ganoderma lucidum, and the effect of SCGLP1 on human osteosarcoma MG63 cell line was investigated. Our result showed that treatment with SCGLP1 resulted in a significant inhibitory effect on cell proliferation and cell viability of MG63 cells in a dose- and time-dependent manner and caused apoptotic death in MG63 cells through an increase in G0/G1 phase arrest, but had minor cytotoxic effect on human normal osteoblast (NHOst) cells. Western blot analysis identified that SCGLP1-induced apoptosis was associated with an increased protein expression of proapoptotic Bax and Bad, decreased expression of antiapoptotic Bcl-2 and Bcl-XL, loss of mitochondrial membrane potential (Δψm), the release of mitochondrial cytochrome c to cytosol, and cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP). In addition, pretreatment with the pan-caspase inhibitor (z-VAD-fmk) blocked the SCGLP1-induced apoptosis in MG63 cells. The data indicate that SCGLP1-induced apoptosis is primarily associated with caspase-3- and caspase-9-dependent apoptotic pathway.
Collapse
|
18
|
Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells. Apoptosis 2014; 19:1165-75. [DOI: 10.1007/s10495-014-0994-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Cratoxylum formosum (Jack) Dyer ssp. pruniflorum (Kurz) Gogel. (Hóng yá mù) extract induces apoptosis in human hepatocellular carcinoma HepG2 cells through caspase-dependent pathways. Chin Med 2014; 9:12. [PMID: 24708784 PMCID: PMC3985586 DOI: 10.1186/1749-8546-9-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/04/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cratoxylum formosum (Jack) Dyer ssp. pruniflorum (Kurz) Gogel. (Hóng yá mù) (CF) has been used for treatment of fever, cough, and peptic ulcer. Previously, a 50% ethanol-water extract from twigs of CF was shown highly selective in cytotoxicity against cancer cells. This study aims to investigate the molecular mechanisms underlying the apoptosis-inducing effect of CF. METHODS The cytotoxicity of CF was evaluated in the human hepatocellular carcinoma (HCC) HepG2 cell line in comparison with a non-cancerous African green monkey kidney epithelial cell line (Vero) by a neutral red assay. The apoptosis induction mechanisms were investigated through nuclear morphological changes, DNA fragmentation, mitochondrial membrane potential alterations, and caspase enzyme activities. RESULTS CF selectively induced HepG2 cell death compared with non-cancerous Vero cells. A 1.5-fold higher apoptotic effect compared with melphalan was induced by 120 μg/mL of the 50% ethanol-water extract of CF. The apoptotic cell death in HepG2 cells occurred via extrinsic and intrinsic caspase-dependent pathways in dose- and time-dependent manners by significantly increasing the activities of caspase 3/7, 8, and 9, decreasing the mitochondrial membrane potential, and causing apoptotic body formation and DNA fragmentation. CONCLUSIONS CF extract induced a caspase-dependent apoptosis in HepG2 cells.
Collapse
|
20
|
Park SE, Sapkota K, Choi JH, Kim MK, Kim YH, Kim KM, Kim KJ, Oh HN, Kim SJ, Kim S. Rutin from Dendropanax morbifera Leveille Protects Human Dopaminergic Cells Against Rotenone Induced Cell Injury Through Inhibiting JNK and p38 MAPK Signaling. Neurochem Res 2014; 39:707-18. [DOI: 10.1007/s11064-014-1259-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/02/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022]
|
21
|
Cho BO, So Y, Jin CH, Byun MW, Seo KI, Ko K, Chun MS, Jeong IY. Induction of apoptosis by 2,3-dehydrosilybin via a caspase-dependent pathway in human HeLa cells. Biosci Biotechnol Biochem 2014; 78:255-62. [DOI: 10.1080/09168451.2014.885828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
The aim of this study was to investigate the mechanisms involved in the apoptosis of HeLa cells due to 2,3-dehydrosilybin (DHS) treatment. DHS treatment over 24 h significantly inhibited cell viability and induced apoptosis in a dose-dependent manner. It also triggered the cleavage of caspase-8, caspase-9, caspase-3, and PARP, and significantly increased caspase-3 activity in a dose-dependent manner. Moreover, it triggered the depolarization of the mitochondrial membrane potential (Δψm), the release of cytochrome c into the cytosol, the cleavage of Bid, and the downregulation of Bcl-2 in a dose-dependent manner. Furthermore, z-VAD-fmk (a pan-caspase inhibitor) and z-IETD-fmk (a specific caspase-8 inhibitor) abolished the DHS-induced activation of the caspase-8, -9, and -3, cleavage of PARP, the depolarization of Δψm, the release of cytochrome c, the cleavage of Bid, and the downregulation of Bcl-2. Taken together, these results suggest that DHS-induced apoptosis is mediated by a caspase-dependent pathway in human HeLa cells.
Collapse
Affiliation(s)
- Byoung Ok Cho
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yangkang So
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Myung Woo Byun
- Department of Culinary Nutrition, Woosong University, Daejeon, Republic of Korea
| | - Kwon Il Seo
- Department of Food and Nutrition, Sunchon National University, Sunchon, Republic of Korea
| | - Kisung Ko
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Myoung Sook Chun
- Department of Food and Nutritional Sciences, Hanbuk University, Dongducheon, Republic of Korea
| | - Il Yun Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
22
|
Lee JW, Kim KS, An HK, Kim CH, Moon HI, Lee YC. Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis. PLoS One 2013; 8:e83611. [PMID: 24358301 PMCID: PMC3866153 DOI: 10.1371/journal.pone.0083611] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/05/2013] [Indexed: 12/22/2022] Open
Abstract
Anticancer effects of dendropanoxide (DP) newly isolated from leaves and stem of Dendropanax morbifera Leveille were firstly investigated in this study. DP inhibited cell proliferation and induced apoptosis in dose- and time-dependent manner in MG-63 human osteosarcoma cells, which was dependent on the release of cytochrome c to the cytosol and the activation of caspases. Moreover, the DP-treated cells exhibited autophagy, as characterized by the punctuate patterns of microtubule-associated protein 1 light chain 3 (LC3) by confocal microscopy and the appearance of autophagic vacuoles by MDC staining. The expression levels of ATG7, Beclin-1 and LC3-II were also increased by DP treatment. Inhibition of autophagy by 3-methyladenine (3-MA) and wortmannin (Wort) significantly enhanced DP-induced apoptosis. DP treatment also caused a time-dependent increase in protein levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2), and inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased DP-induced autophagy that was accompanied by an increased apoptosis and a decreased cell viability. These results indicate a cytoprotective function of autophagy against DP-induced apoptosis and suggest that the combination of DP treatment with autophagy inhibition may be a promising strategy for human osteosarcoma control. Taken together, this study demonstrated for the first time that DP could induce autophagy through ERK1/2 activation in human osteosarcoma cells and autophagy inhibition enhanced DP-induced apoptosis.
Collapse
Affiliation(s)
- Ji-Won Lee
- College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Kyoung-Sook Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Hyun-Kyu An
- College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, South Korea
| | - Hyung-In Moon
- College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
- * E-mail: (YCL); (HIM)
| | - Young-Choon Lee
- College of Natural Resources and Life Science, Dong-A University, Busan, South Korea
- * E-mail: (YCL); (HIM)
| |
Collapse
|
23
|
LEE JOONWOO, PARK CHEOL, HAN MINHO, HONG SUHYUN, LEE TAEKYUNG, LEE SHINHWA, KIM GIYOUNG, CHOI YUNGHYUN. Induction of human leukemia U937 cell apoptosis by an ethanol extract of Dendropanax morbifera Lev. through the caspase-dependent pathway. Oncol Rep 2013; 30:1231-8. [DOI: 10.3892/or.2013.2542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/03/2013] [Indexed: 11/06/2022] Open
|
24
|
Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Léveille. Food Chem 2013; 141:1947-55. [PMID: 23870914 DOI: 10.1016/j.foodchem.2013.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/05/2013] [Accepted: 05/09/2013] [Indexed: 12/15/2022]
Abstract
Dendropanax morbifera Léveille, an endemic species in Korea, is best known as a tree that produces a resinous sap. Although D. morbifera is used in folk medicine, its biological activities are poorly understood. In this study, the methanolic extracts of D. morbifera branches, debarked stems, bark, and two different stages of leaves were evaluated for anti-oxidant activity and anti-cancer potential. The debarked stem extract exhibited strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and reducing power compared with other samples. In addition, the cytotoxic activities of these extracts were investigated in human tumour cell lines. The results suggested that the extracts of debarked stems, green leaves, and yellow leaves were the potent source of anti-cancer compounds, particularly in Huh-7 cells. Furthermore, treatment with the extracts of debarked stems, green leaves, and yellow leaves caused an increase of apoptotic or senescent cells in Huh-7 cells. Twenty-four hour treatment with debarked stems extract resulted in the strong induction of p53 and p16, whereas both leaf extracts inhibited the activation of ERK. The debarked stems and green leaf extracts reduced Akt levels in Huh-7 cells, indicating that D. morbifera extracts caused the activation of p16 and p53 pathways. This, together with the inhibition of Akt or ERK signalling, resulted in suppression of Huh-7 cell proliferation. These results suggest that methanolic leaf and debarked stems extracts are a source of anti-oxidant and anti-cancer compounds, and could be developed as a botanical drug.
Collapse
|
25
|
Yiang GT, Chen YH, Chou PL, Chang WJ, Wei CW, Yu YL. The NS3 protease and helicase domains of Japanese encephalitis virus trigger cell death via caspase‑dependent and ‑independent pathways. Mol Med Rep 2013; 7:826-30. [PMID: 23291778 DOI: 10.3892/mmr.2013.1261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/04/2012] [Indexed: 11/06/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito‑borne flavivirus, causes acute encephalitis and nervous damage. Previous studies have demonstrated that JEV induces apoptosis in infected cells. However, to date the mechanisms of JEV‑induced apoptosis are unclear. In order to identify the viral proteins associated with JEV‑induced apoptosis, pEGFP‑non‑structural protein 3 (NS3) 1‑619 (expressing the JEV NS3 intact protein, including the protease and helicase domains), pEGFP‑NS3 1‑180 (expressing the protease domain) and pEGFP‑NS3 163‑619 (expressing the helicase domain) were transfected into target cells to study cell death. Results demonstrate that the JEV NS3 intact protein and protease and helicase domains induce cell death. In addition, cell death was identified to be significantly higher in cells transfected with the NS3 protease domain compared with the intact protein and helicase domain. Caspase activation was also analyzed in the current study. NS3 intact protein and NS3 protease and helicase domains activated caspase‑9/‑3‑dependent and ‑independent pathways. However, caspase‑8 activity was not found to be significantly different in NS3‑transfected cells compared with control. In summary, the present study demonstrates that the NS3 helicase and protease domains of JEV activate caspase‑9/‑3‑dependent and ‑independent cascades and trigger cell death.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|