1
|
Lima NM, Santos GF, de Jesus A S Andrade T, Dias LS, Silva PA, Castro SBR, Carli AP, Alves CCS, Lima GS, Vaz BG. Metabolic signatures by LC-HRMS/MS of jabuticaba (Plinia cauliflora) juice, liqueur, and wines reveal the wealthiest sources of bioactive metabolites. Talanta 2025; 287:127602. [PMID: 39854983 DOI: 10.1016/j.talanta.2025.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to determine the total phenolic content, antioxidant and anti-inflammatory activities, and metabolomic profiling of Jabuticaba beverages. The metabolomic profiling showed a greater abundance of flavonoids in liqueur samples, while sweet wine predominantly contained phenolic acids. On the other hand, dry wine was characterized by a higher abundance of terpenes. The total phenolic content (TPC) was determined by the Folin-Ciocalteu method, while antioxidant activity was evaluated using the DPPH radical-scavenging assay. Notably, dry wine was rich in anthocyanins and tannins and demonstrated the highest TPC (2985.08 ± 0.23 mg GAE/L). Furthermore, this sample exhibited superior antioxidant activity (IC50 0.83 ± 0.005 μg/mL). All beverages' samples displayed excellent antioxidant potential and TPC ranking as: dry wine > liqueur > sweet wine > juice. In terms of anti-inflammatory activity, treatments with 5 % dry wine led to reduce NO production. Molecular networking and chemometric tools, including HCA and PLS-DA, were employed to differentiate the samples and identify key metabolites. Chemometric analysis showed similar molecular composition between liqueur and dry wine samples, with the primary differences observed in their content of phenolic acids and simple phenols.
Collapse
Affiliation(s)
- Nerilson M Lima
- Institute of Chemistry, Federal University of Goiás, 74690-900, Goiania, (GO), Brazil; Institute of Chemistry, Federal University of Alfenas, Alfenas, (MG), 37130-001, Brazil.
| | - Gabriel F Santos
- Institute of Chemistry, Federal University of Goiás, 74690-900, Goiania, (GO), Brazil
| | | | - Leandro S Dias
- Department of Chemistry, Federal Institute of Piaui, 64000-040, Teresina, (PI), Brazil
| | - Patricia A Silva
- Department of Chemistry, Federal Institute of Piaui, 64000-040, Teresina, (PI), Brazil
| | - Sandra B R Castro
- Institute of Life Sciences, Federal University of Juiz de Fora, 35010-177 Governador Valadares - MG, Brazil
| | - Alessandra P Carli
- Federal University of Jequitinhonha and Mucuri Valleys, 39803-371 Teófilo Otoni - MG, Brazil
| | - Caio Cesar S Alves
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, 39803-371 Teófilo Otoni - MG, Brazil
| | - Gesiane S Lima
- Institute of Chemistry, Federal University of Goiás, 74690-900, Goiania, (GO), Brazil
| | - Boniek G Vaz
- Institute of Chemistry, Federal University of Goiás, 74690-900, Goiania, (GO), Brazil
| |
Collapse
|
2
|
Farias TRB, Sanches NB, Petrus RR. The amazing native Brazilian fruits. Crit Rev Food Sci Nutr 2024; 64:9382-9399. [PMID: 37195442 DOI: 10.1080/10408398.2023.2212388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A number of native Brazilian plant species are under exploited by the scientific community, despite the country's precious biodiversity. The vast majority of native Brazilian fruits (NBF) is source of compounds that provide many health benefits and can potentially be used to prevent diseases and formulate high-added value products. This review covers the scientific research over the last decade (2012-2022) on eight NBF, and focuses on information about the production and market panorama, physical description, physicochemical characterization, nutritional composition, their functional value of bioactive compounds and health benefits, as well as the potential for utilizations for each. The studies herein compiled reveal the outstanding nutritional value of these NBF. They are sources of vitamins, fibers, minerals and bioactive compounds that exhibit antioxidant activity, and they contain phytochemicals with anti-inflammatory action, anti-obesity and other functions that bring many health benefits to consumers. NBF can be also used as raw material for multiple products such as nectars, juices, jams, frozen pulps, liquor, among others. The dissemination of knowledge about NBF has fundamental implications worldwide.
Collapse
Affiliation(s)
| | | | - Rodrigo Rodrigues Petrus
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| |
Collapse
|
3
|
Marmitt DJ, Vettorazzi G, Bortoluzzi L, Alves C, Silva J, Pinteus S, Martins A, Gaspar H, Pedrosa R, da Silva J, Henriques JAP, Laufer S, Goettert MI. Wound healing potential and anti-inflammatory action of extracts and compounds of Myrciaria plinioides D. Legrand leaves. Inflammopharmacology 2024:10.1007/s10787-024-01547-3. [PMID: 39133352 DOI: 10.1007/s10787-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Wounds or chronic injuries are associated with high medical costs so, develop healing-oriented drugs is a challenge for modern medicine. The identification of new therapeutic alternatives focuses on the use of natural products. Therefore, the main goal of this study was to evaluate the healing potential and anti-inflammatory mechanism of action of extracts and the main compounds derived from Myrciaria plinioides D. Legrand leaves. The antimicrobial activity of leaf extracts was analyzed. Cell viability, cytotoxicity and genotoxicity of plant extracts and compounds were also assessed. Release of pro- and anti-inflammatory cytokines and TGF-β by ELISA, and protein expression was determined by Western Blot. The cell migration and cell proliferation of ethanol and aqueous leaf extracts and p-coumaric acid, quercetin and caffeic acid compounds were also evaluated. The aqueous extract exhibited antibacterial activity and, after determining the safety concentrations in three assays, we showed that this extract induced p38-α MAPK phosphorylation and the same extract and the p-coumaric acid decreased COX-2 and caspase-3, -8 expression, as well as reduced the TNF-α release and stimulated the IL-10 in RAW 264.7 cells. In L929 cells, the extract and p-coumaric acid induced TGF-β release, besides increasing the process of cell migration and proliferation. These results suggested that the healing properties of Myrciaria plinioides aqueous extract can be associated to the presence of phenolic compounds, especially p-coumaric acid, and/or glycosylated metabolites.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil.
| | - Gabriela Vettorazzi
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil
| | - Luísa Bortoluzzi
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, C8, 1749-016, Lisbon, Portugal
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) and LaSalle University (UniLaSalle), Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Center for Exact Sciences and Technology, Institute of Biotechnology, University of Caxias do Sul-UCS, Caxias Do Sul, RS, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil
| |
Collapse
|
4
|
Long X, Li R, Gu J, Zhang L, Guo S, Fan Y, Fan Y, Zhu P. Changes in phenolic compounds of Phyllanthus emblica juice during different storage temperature and pH conditions. J Food Sci 2024; 89:4312-4330. [PMID: 38865254 DOI: 10.1111/1750-3841.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
The aim of this experiment was to investigate the effect of storage temperature and pH on phenolic compounds of Phyllanthus emblica juice. Juice was stored at different temperatures and pH for 15 days and sampled on 2-day intervals. The browning index (BI, ABS420 nm), pH, centrifugal precipitation rate (CPR), and phenolic compounds were evaluated. The results showed 4°C and pH 2.5 could effectively inhibit browning and slow down pH drop of P. emblica juice. The result of orthogonal partial least square-discriminant analysis showed P. emblica juice stored at 4°C and pH 2.5 still had a similar phenolic composition, but at 20°C, 37°C, and pH 3.5, the score plots were concentrated only in the first 3 days. Additionally, gallic acid (GA) and ellagic acid (EA) were screened out to be the differential compounds for browning of P. emblica juice. The contents of GA, epigallocatechin (EGC), corilagin (CL), gallocatechin gallate (GCG), chebulagic acid (CA), 1,2,3,4,6-O-galloyl-d-glucose (PGG), and EA were more stable at 4°C and pH 2.5. Overall, during storage at 4°C and pH 2.5, it could inhibit the increase of GA and EA and decrease of CL, GCG, CA, and PGG, whereas EGC did not show significant difference between storage conditions. The CPR was higher at 4°C, while pH 2.5 could reduce the CPR. In conclusion, in order to maintain stability of phenolic compounds and extended storage period, the P. emblica juice could be stored at low temperature and adjust the pH to increase the stability of juice system.
Collapse
Affiliation(s)
- Xiaomei Long
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Li
- Department of Pharmacy, Baoshan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Jianxing Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lijun Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shuang Guo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yidan Fan
- Department of Endocrinology, The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yuan Fan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Endocrinology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peifang Zhu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
5
|
Sun Y, Chen L, Zhou Y, Han F, Rong Y, Ding L, Qiu F. Guided isolation of enantiomeric lignans from Cimicifuga heracleifolia Kom. by antioxidant activity and molecular networking. PHYTOCHEMISTRY 2024; 221:114050. [PMID: 38479586 DOI: 10.1016/j.phytochem.2024.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/21/2024]
Abstract
Under the guidance of antioxidant evaluation combined with molecular networking, six pairs of enantiomeric lignans including seven undescribed ones (1a, 2a/2b-4a/4b), along with five known analogs (1b, 5a/5b-6a/6b) were isolated from Cimicifuga heracleifolia Kom. Their structures were determined by extensive spectroscopic data analysis, including HRESIMS, 1D and 2D NMR, experimental and calculated ECD. All the enantiomeric isolates were evaluated for antioxidation by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging tests. Compounds 1a and 3a/3b exhibited great DPPH and ABTS scavenging activities. The results are of great value for understanding structurally interesting enantiomeric lignans with antioxidant activity from C. heracleifolia in depth and providing its further development in functional evaluation and drug development.
Collapse
Affiliation(s)
- Yanwen Sun
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liyi Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fei Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifang Rong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liqin Ding
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
6
|
Chua LS, Abd Wahab NS, Soo J. Water soluble phenolics, flavonoids and anthocyanins extracted from jaboticaba berries using maceration with ultrasonic pretreatment. FOOD CHEMISTRY ADVANCES 2023; 3:100387. [DOI: 10.1016/j.focha.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Silva IDM, Silva MR, Augusti R, Melo JOF, Schmiele M, Neves NDA. Obtaining and characterizing polyphenol extracts based on anthocyanins from Melinis minutiflora inflorescences and Plinia cauliflora fruits and application in gelatins. Food Res Int 2023; 173:113426. [PMID: 37803763 DOI: 10.1016/j.foodres.2023.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Anthocyanins are a class of compounds potentially used as food dyes. Thus, this study aimed to obtain and characterize natural extracts from Melinis minutiflora inflorescence (M), Plinia. cauliflora peel (JP) and P. cauliflora peel and seeds (JPS) and apply them as natural food dyes in gelatins. The extracts did not show statistically significant differences in pH values and water activity. The M and JPS extracts showed similar values of anthocyanins and total phenolic compounds and were higher than those from the JP extract. The M and JPS extracts showed a bathochromic effect, which was not observed for the JP extract. The bathochromic effect may indicate a possible complexation of anthocyanins. The color composition analysis revealed that the JP extract has a higher absorbance at a wavelength of 520 nm, indirectly suggesting the presence of more monomeric anthocyanins in its composition. The extract application test in gelatin did not change the texture properties of the gelatins. In addition, our findings revealed that the JPS extract had the best color stability after ten days of analysis, indicating that anthocyanin complexation with the phenolic compounds of P. cauliflora seeds contributed more effectively to anthocyanin stability in the model used.
Collapse
Affiliation(s)
- Isabela de Morais Silva
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Mauro Ramalho Silva
- Departament of Nutrition, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodinei Augusti
- Institute of Exact Science, University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlio Onésio Ferreira Melo
- Department of Exact and Biological Sciences, Federal University of São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Nathalia de Andrade Neves
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Xu S, Pang Y, Cai X, Chen Q, Jin G, Zhang M, Huang L. Comparative study of three cultivars of jaboticaba berry: nutrient, antioxidant and volatile compounds. FRONTIERS IN PLANT SCIENCE 2023; 14:1105373. [PMID: 37492773 PMCID: PMC10363728 DOI: 10.3389/fpls.2023.1105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/12/2023] [Indexed: 07/27/2023]
Abstract
Jaboticaba is a tropical plant and its fruit rich in nutrients, volatile compounds, and biological activities, which considered to be an edible health benefits plant. Despite its popularity for fresh consumption, jaboticaba is rarely used in intensive processing in China. The content of nutrients and antioxidant in jaboticaba greatly impacts how it is processed healthy food. In this study, we evaluated the nutrients, antioxidant capacity, and volatile compounds of three jaboticaba cultivars including Sabara, Argentina, and Fukuoka, respectively. Our results revealed each variety has its merits. Sabara had an abundance of volatile compounds, a suitable acid-sugar ratio, and a slightly lower antioxidant capacity, making it suitable for fresh consumption. Argentina is the richest in volatile compounds in ripe fruit, but slightly lighter in taste and acid-sugar ratio, making it suitable for dry products. The large size, juicy flesh, low acid-sugar ratio, and less volatile compounds content of Fukuoka also make it suitable for juice processing. Three cultivars of jaboticaba berry exhibited different characteristics, providing reference evidence for the manufacturing and processing of jaboticaba health food.
Collapse
Affiliation(s)
- Shaosi Xu
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yingying Pang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoming Cai
- Institute of Food Inspection, Fujian Institute of Product Quality Supervision and Inspection, National Center for Quality Supervision and Inspection of Processed Foods, Fuzhou, China
| | - Qinchang Chen
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan, China
| | - Miao Zhang
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Luqiang Huang
- College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
9
|
Cunha de Souza Pereira D, dos Santos Gomes F, Valeriano Tonon R, Beres C, Maria Corrêa Cabral L. Towards chemical characterization and possible applications of juçara fruit: an approach to remove Euterpe edulis Martius from the extinction list. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:429-440. [PMID: 36712206 PMCID: PMC9873873 DOI: 10.1007/s13197-021-05342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/01/2020] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
Juçara (Euterpe edulis Martius) is a palm widely distributed in the Atlantic Forest. It produces a non-climacteric, black-violet small fruit similar to the Amazonian açaí (Euterpe precatoria). The fruit is known as superfruit because it presents chemical characteristics of great importance, such as anthocyanins content. Regarding bioactive compounds and antioxidant scavenging capacity, it presents high anthocyanin (634.26 to 2,929 mg of cyanidin-3-glucoside 100 g-1) and total phenolic compounds (415.1 to 9,778.20 mg equivalents of gallic acid 100 g-1) contents. The soluble solid content ranges from 3.0 to 4.9% and its pH is higher than other tropical fruits (4.8 to 5.6). Despite the rich bioactive compound content of juçara fruits, this plant has been traditionally used for palm heart production. The accelerated and illegal palm heart exploitation, without the use of an adequate management has led to the risk of extinction of this species. In order to prevent this species from vanishing, several studies have valued the health characteristics of juçara fruit chemical composition. An economical approach has been the production of juçara pulp described as a source of bioactive compounds, which has attracted the attention of industrial field aiming the production of functional foods, foodstuff, cosmetics and pharmaceutical products. A full botanical and chemical characterization of juçara tree and fruit is presented in this paper, as well as suggestions to increase the use of this tropical fruit and derivatives. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05342-8.
Collapse
Affiliation(s)
| | | | | | - Carolina Beres
- Embrapa Food Technology, Av. das Américas, 29501, Rio de Janeiro, RJ 23020‐470 Brazil
| | | |
Collapse
|
10
|
Fleck N, Oliveira WCD, Padilha RL, Brandelli A, Sant’Anna V. Antimicrobial effect of phenolic-rich jaboticaba peel aqueous extract on Staphylococcus aureus and Escherichia coli. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2023. [DOI: 10.1590/1981-6723.08722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Abstract Jaboticaba peels are an important source of health-benefit and antimicrobial compounds. The present work aims to evaluate concentration of polyphenolics and the mode of action of aqueous extract from jaboticaba peels against Staphylococcus aureus and Escherichia coli. Jaboticaba peel extract showed minimum inhibitory concentration and minimum bactericidal concentration against S. aureus of 5.1 g L-1 and 10.1 g L-1, respectively; meanwhile, against E. coli the parameters were 2.0 g L-1 and 3.4 g L-1. Kinetics of viable cell counts indicated a bacteriolytic action against both bacteria and Scanning Electron Microscopy (SEM) showed that jaboticaba peel extract causes subtle morphological changes in bacterial cells. Concentration of total polyphenols in the extract was 1535.04±36.05 mg of gallic acid equivalent (GAE) mL-1, monomeric anthocyanins was 14.52 ± 0.98 mg of cyanidin 3-glucoside mL-1, condensed tannins was 0.49 ± 0.05 mg of epicatechin equivalent mL-1 and phenolic acids was 80.04 ± 4.11 mg of caffeic acid equivalent (CAE) mL-1, which have demonstrated well-documented antibacterial activity. In conclusion, jaboticaba peel aqueous extract may be an interesting natural preservative to control Gram-positive and Gram-negative bacteria growth when interacting with the bacteria cell wall.
Collapse
Affiliation(s)
- Nataís Fleck
- Universidade Estadual do Rio Grande do Sul, Brasil
| | | | | | | | | |
Collapse
|
11
|
Palencia-Argel M, Rodríguez-Villamil H, Bernal-Castro C, Díaz-Moreno C, Fuenmayor CA. Probiotics in anthocyanin-rich fruit beverages: research and development for novel synbiotic products. Crit Rev Food Sci Nutr 2022; 64:110-126. [PMID: 35880471 DOI: 10.1080/10408398.2022.2104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanin-rich fruit beverages are of special interest as functional products due to their antioxidant activity, antimicrobial properties against pathogens, and, more recently, evidence of prebiotic potential. The stability and bioactivity of anthocyanins, probiotics, prebiotics, and synbiotics have been extensively documented in beverage models and reviewed separately. This review summarizes the most recent works and methodologies used for the development of probiotic and synbiotic beverages based on anthocyanin-rich fruits with a synergistic perspective. Emphasis is made on key optimization factors and strategies that have allowed probiotic cultures to reach the minimum recommended doses to obtain health benefits at the end of the shelf life. The development of these beverages is limited by the high acidity and high content of phenolic compounds in anthocyanin-rich fruits. However, a proper selection of probiotic strains and strategies for their media adaptation may improve their viability in the beverages. Fermentation increases the viability of the probiotic cultures, improves the safety and stability of the product, and may increase its antioxidant capacity. Moreover, fermentation metabolites may synergistically enhance probiotic health benefits. On the other hand, the inoculation of probiotics without fermentation allows for synbiotic beverages with milder changes in terms of physicochemical and sensory attributes.
Collapse
Affiliation(s)
- Marcela Palencia-Argel
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hawer Rodríguez-Villamil
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Bernal-Castro
- Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Avila LB, Barreto ERC, Moraes CC, Morais MM, da Rosa GS. Promising New Material for Food Packaging: An Active and Intelligent Carrageenan Film with Natural Jaboticaba Additive. Foods 2022; 11:foods11060792. [PMID: 35327215 PMCID: PMC8947434 DOI: 10.3390/foods11060792] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
This research focused on the development of active and intelligent films based on a carrageenan biopolymer incorporated with jaboticaba peels extract (JPE). The bioactive extract was obtained by maceration extraction and showed high concentrations of total phenolic content (TP), total anthocyanin (TA), cyanidin-3-glucoside (Cn-3-Glu), antioxidant activity (AA), and microbial inhibition (MI) against E. coli, being promising for use as a natural additive in food packaging. The carrageenan films were produced using the casting technique, incorporating different concentrations of JPE, and characterized. The results of the thickness and Young’s modulus of the film increased in the films supplemented with JPE and the addition of the extract showed a decrease in elongation capacity and tensile strength, in water vapor permeability, and a lower rate of swelling in the water. In addition, the incorporation of JPE into the polymeric matrix promotes a change in the color of the films when compared to the control film and improves the opacity property. This is a positive effect as the material has a UV-vis light barrier which is interesting for food packaging. The increase in the active potential of the films was directly proportional to the concentration of JPE. The films results showed visible changes from purple to brown when in contact with different pH, which means that films have an intelligent potential. Accordingly, this novel carrageenan based-film incorporated with JPE could be a great strategy to add natural additives into packaging material to obtain an active potential and also an indicator for monitoring food in intelligent packaging.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
| | - Elis Regina Correa Barreto
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
| | - Marcilio Machado Morais
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
| | - Gabriela Silveira da Rosa
- Engineering Graduate Program, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes Godoy Avenue, Bagé 96413-172, Brazil; (E.R.C.B.); (M.M.M.)
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil;
- Correspondence: ; Tel.: +55-53-9996-722-26
| |
Collapse
|
13
|
In vitro and in vivo anti-inflammatory and anticoagulant activities of Myrciaria plinioides D. Legrand ethanol leaf extract. Inflammopharmacology 2022; 30:565-577. [PMID: 35165808 PMCID: PMC8948148 DOI: 10.1007/s10787-022-00924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/15/2022] [Indexed: 11/12/2022]
Abstract
Myrciaria plinioides D. Legrand (Myrtaceae) is a native plant of Southern Brazil, which have potential in the food industry due to its edible fruits. Many plants belonging to this genus have been used for a variety of illnesses, including inflammatory disorders due to antioxidant properties. However, therapeutic uses of M. plinioides have been poorly studied. The aim of study was to assess the anti-inflammatory and anticoagulant activities of the ethanol leaf extract of M. plinioides. In M. plinioides extract-treated RAW 264.7 cells, assessments of cell viability, TNF-α release and p38 MAPK pathway-dependent protein expression were detected. In addition, rat paw edema models were used to analyze the anti-inflammatory effect of the extract. Macrophages cell line treated with M. plinioides extract showed a slight decrease in cell viability. In LPS-stimulated macrophages treated with different concentrations of the extract for 24 h, TNF-α release was inhibited, while modulation of p38 signaling pathway and inhibition of NF-κB p65 protein expression were dose-dependent. In rats, the extract inhibited the formation of paw edema, while an inhibitory effect on trypsin-like enzymes derived from mast cells was seen. Furthermore, the extract presented anticoagulant activity via extrinsic pathway, being able to block specifically factor Xa and thrombin. The study suggests that extract possess potent anti-inflammatory and anticoagulant effects. M. plinioides present great biological potential as a source for the development of anti-inflammatory and anticoagulant drugs. Additional studies can be proposed to better elucidate the mechanism by which M. plinioides exerts its effects.
Collapse
|
14
|
Jaboticaba (Myrciaria jaboticaba) Attenuates Ventricular Remodeling after Myocardial Infarction in Rats. Antioxidants (Basel) 2022; 11:antiox11020249. [PMID: 35204132 PMCID: PMC8868135 DOI: 10.3390/antiox11020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiac remodeling after myocardial infarction is characterized by inflammation and oxidative stress. Thus, this study aimed to test the hypothesis that jaboticaba, due to its anti-inflammatory and antioxidants properties, attenuates cardiac remodeling after myocardial infarction. Wistar rats were submitted to myocardial infarction due to coronary artery occlusion, and divided into four experimental groups: C, sham control animals; I, animals submitted to myocardial infarction, received a standard diet; IJ2, animals submitted to myocardial infarction, received a standard diet plus 2% jaboticaba; and IJ4, animals submitted to myocardial infarction, received a standard diet plus 4% jaboticaba. After a three-month follow-up, echocardiography, histology, oxidative stress, and cardiac energy metabolism were analyzed. There was no difference in infarct size or mortality among the infarcted groups. The IJ4 group displayed improved diastolic function, as assessed by isovolumetric relaxation time normalized to the heart rate. As expected, the percentage of collagen was higher in all infarcted groups than in the C group. However, the IJ2 group had less collagen than groups I and IJ4. The IJ4 group presented lower PFK activity than I and IJ2, and lower pyruvate dehydrogenase activity than controls, whereas the IJ2 group showed no differences compared to the control group in both LDH and ATP synthase activity. The 2% and 4% doses attenuated lipid peroxidation and increased the activity of glutathione peroxidase compared with the I group. In conclusion, jaboticaba attenuated the remodeling process after myocardial infarction, which was associated with decreased oxidative stress and improved energy metabolism.
Collapse
|
15
|
Plinia trunciflora Extract Administration Prevents HI-Induced Oxidative Stress, Inflammatory Response, Behavioral Impairments, and Tissue Damage in Rats. Nutrients 2022; 14:nu14020395. [PMID: 35057576 PMCID: PMC8779767 DOI: 10.3390/nu14020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The disruption of redox homeostasis and neuroinflammation are key mechanisms in the pathogenesis of brain hypoxia–ischemia (HI); medicinal plants have been studied as a therapeutic strategy, generally associated with the prevention of oxidative stress and inflammatory response. This study evaluates the neuroprotective role of the Plinia trunciflora fruit extract (PTE) in neonatal rats submitted to experimental HI. The HI insult provoked a marked increase in the lipoperoxidation levels and glutathione peroxidase (GPx) activity, accompanied by a decrease in the brain concentration of glutathione (GSH). Interestingly, PTE was able to prevent most of the HI-induced pro-oxidant effects. It was also observed that HI increased the levels of interleukin-1β in the hippocampus, and that PTE-treatment prevented this effect. Furthermore, PTE was able to prevent neuronal loss and astrocyte reactivity induced by HI, as demonstrated by NeuN and GFAP staining, respectively. PTE also attenuated the anxiety-like behavior and prevented the spatial memory impairment caused by HI. Finally, PTE prevented neural tissue loss in the brain hemisphere, the hippocampus, cerebral cortex, and the striatum ipsilateral to the HI. Taken together our results provide good evidence that the PTE extract has the potential to be investigated as an adjunctive therapy in the treatment of brain insult caused by neonatal hypoxia–ischemia.
Collapse
|
16
|
HARDINASINTA G, MURSALIM M, MUHIDONG J, SALENGKE S. Determination of some chemical compounds of bignay (Antidesma bunius) fruit juice. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.27720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
de Lima Paula P, de Oliveira Lemos AS, Campos LM, Ferreira TG, Freitas de Souza T, Queiroz LS, Machado Resende Guedes MC, Martins MM, Goulart Filho LR, Macedo GC, Tavares GD, Rocha VN, Leite Denadai ÂM, Fabri RL. Pharmacological investigation of antioxidant and anti-inflammatory activities of leaves and branches extracts from Plinia cauliflora (Jaboticaba). JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114463. [PMID: 34352328 DOI: 10.1016/j.jep.2021.114463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Among all native Brazilian plant species, Plinia cauliflora (DC.) Kausel (Jaboticaba), is well known for producing "superfruits", due to their high phenolic content and antioxidant property. The fruit has astringent characteristics, and it is popularly known for the treatment of diarrhea, rash, and intestinal inflammation. However, there are only a few studies on the use of leaves and branches of this species in the literature, mainly to treat oxidative stress and inflammation. AIM OF THE STUDY The present study aimed to investigate the antioxidant and anti-inflammatory potential of leaves and branches extracts from P. cauliflora. MATERIAL AND METHODS The phytochemical analysis of P. cauliflora extracts was performed by the total phenolic, flavonoid, and tannin dosage method. Moreover, the compounds were identified by HPLC-MS-Q-TOF. Antioxidant capacity was determined by DPPH, β-carotene/linoleic acid system, MDA formation, and phosphomolybdenum assays. In vitro and in vivo anti-inflammatory activities of P. cauliflora were evaluated by the reduction of nitric oxide in the J774A.1 cell line and inhibition of ear edema in mice, respectively. RESULTS The ethanolic extract of the leaves exhibited greater flavonoid content whereas the ethanolic extract of the branches showed higher tannins content. Twenty-two and seventeen compounds were identified by HPLC-MS-Q-TOF in the leaves and branches, respectively, being tellimagrandin I, castalagin, and valoneic acid dilactone reported for the first time in P. cauliflora. The antioxidant potential of extracts was confirmed through different oxidation pathways from oxidizing radicals, which might be related to the presence of phenolic compounds. For the anti-inflammatory assay, the leaves and branches extracts showed promising results, with a reduction of nitric oxide ear edema inhibition around 95% and 80%, respectively. CONCLUSIONS Herein, the great biological potential of leaves and branches extracts from P. cauliflora was highlighted. These parts of the plant are underused and poorly reported in the literature, especially for the antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Priscila de Lima Paula
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Lara Melo Campos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Thayná Gomes Ferreira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Thalita Freitas de Souza
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Lucas Sales Queiroz
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Maria Clara Machado Resende Guedes
- Center for Cellular Technology and Applied Immunology, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mário Machado Martins
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart Filho
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Gilson Costa Macedo
- Center for Cellular Technology and Applied Immunology, Department of Parasitology, Microbiology, and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Guilherme Diniz Tavares
- Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ângelo Márcio Leite Denadai
- Department of Pharmacy, Institute of Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, Governor Valadares, MG, Brazil
| | - Rodrigo Luiz Fabri
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| |
Collapse
|
18
|
Qin Y, Chen JP, Li CY, Zhu LJ, Zhang X, Wang JH, Yao XS. Flavonoid glycosides from the fruits of Embelia ribes and their anti-oxidant and α-glucosidase inhibitory activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:724-730. [PMID: 34253100 DOI: 10.1080/10286020.2020.1776266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/13/2023]
Abstract
Three new flavonoid glycosides, embeliaflavosides A-C (1-3), together with eight known flavonoid glycosides (4-11), were isolated from the fruits of Embelia ribes. Their structures were established based on the analyses of spectroscopic data. Compounds 1-11 were evaluated for antioxidant and α-glucosidase inhibitory activities. The results revealed that compounds 1-11 owned significant ABTS radical scavenging activity with IC50 values of 2.52-9.78 µM, and DPPH scavenging activity with IC50 values of 7.56-26.47 µM, respectively. However, α-glucosidase inhibition assay indicated that all the isolates were inactive.[Formula: see text].
Collapse
Affiliation(s)
- Yu Qin
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin-Peng Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Tianjin Key Laboratory of TCM Quality Markers, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Chun-Yu Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ling-Juan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin-Hui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin 150081, China
| | - Xin-Sheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Calloni C, Martínez LS, Gil DF, da Silva DM, Jahn MP, Salvador M. Jabuticaba [ Plinia trunciflora (O. Berg) Kausel] Protects Liver of Diabetic Rats Against Mitochondrial Dysfunction and Oxidative Stress Through the Modulation of SIRT3 Expression. Front Physiol 2021; 12:665747. [PMID: 34295258 PMCID: PMC8290295 DOI: 10.3389/fphys.2021.665747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Complications generated by hyperglycemia present in diabetes mellitus (DM) have been constantly related to oxidative stress and dysfunction in the mitochondrial electron transport chain (ETC). Sirtuin 3 (SIRT3), which is present in mitochondria, is responsible for regulating several proteins involved in metabolic homeostasis and oxidative stress. Studies have suggested alterations in the expression of SIRT3 in DM. The objective of this study was to evaluate the effects of phenolic compounds in jabuticaba (Plinia trunciflora), a berry native to Brazil, on the activity of mitochondrial ETC complexes, SIRT3 protein expression, and oxidative stress parameters in liver of diabetic rats induced by streptozotocin. After type 1 DM induction (streptozotocin 65 mg/kg), diabetic and healthy rats were treated with jabuticaba peel extract (JPE) by gavage (0.5 g/kg of weight) for 30 days. After treatments, those diabetic rats presented impaired activities of complexes I, II, and III of ETC along with an overexpression of SIRT3. In addition, an increase in lipid peroxidation and superoxide dismutase and catalase activities was observed in the diabetic group. The treatment with JPE was able to recover the activity of the mitochondrial complexes and reduce the expression of SIRT3. Furthermore, JPE treatment reduced oxidative damage to lipids and brought the antioxidants enzyme activities to basal levels in diabetic rats. Together, these results demonstrate that JPE can reduce oxidative stress related to DM by restoring mitochondrial complexes activity and regulating SIRT3 expression. Thus, JPE could become an alternative to reduce the development of complications related to DM.
Collapse
Affiliation(s)
- Caroline Calloni
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Luana Soares Martínez
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Daniela Franciele Gil
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Douglas Machado da Silva
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Matheus Parmegiani Jahn
- Laboratório de Fisiologia e Farmacologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Mirian Salvador
- Laboratório de Estresse Oxidativo e Antioxidantes, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| |
Collapse
|
20
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Advanced characterization of polyphenols from Myrciaria jaboticaba peel and lipid protection in in vitro gastrointestinal digestion. Food Chem 2021; 359:129959. [PMID: 33965762 DOI: 10.1016/j.foodchem.2021.129959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022]
Abstract
Ultrasound-assisted and solvent extractions resulted in similar levels of hydrolyzable tannins (10.3-6.0 mg/g), anthocyanins (7.8-10.2 mg/g) and flavonols (0.24-0.32 mg/g) for dried Myrciaria jaboticaba peel (DJP). Ultrasound was efficient for the extraction of poorly soluble hydrolyzable tannins but affected the stability of anthocyanins and flavonols. UPLC-DAD-MSn allowed the identification of 44 hydrolyzable tannins as single and mixed hexosides bearing galloyl, HHDP and tergalloyl units. Twelve mixed HHDP-galloylgluconic acids and tergalloylated hexosides were newly discovered in this work. Acid hydrolysis of both ultrasonic extract and DJP yielded five major compounds, i.e. gallic acid, ellagic acid, gallic acid-C-hexoside, valoneic acid dilactone and sanguisorbic acid dilactone and pointed to higher contents in hydrolyzable tannins than by summing individual polyphenols after UPLC. Last, cyanidin-3-O-glucoside and hydrolyzable tannins from the ultrasonic extract inhibited lipid peroxidation of a Western type meal in in vitro digestion, suggesting a health benefit for these jabuticaba polyphenols.
Collapse
|
23
|
Brito TGDS, Silva APSD, Cunha RXD, Fonseca CSMD, Araújo TFDS, Campos JKDL, Nascimento WM, Araújo HDAD, Silva JPRE, Tavares JF, Santos BSD, Lima VLDM. Anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic activities of Plinia cauliflora (Mart.) Kausel (Brazilian grape) epicarp. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113611. [PMID: 33242623 DOI: 10.1016/j.jep.2020.113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plinia cauliflora (Mart.) Kausel, known in Brazil as jabuticaba or jaboticaba has been used by Brazilian native populations for medicinal purposes, including those related to inflammatory conditions, such as asthma, diarrhea, disorders in female genitourinary tract, and tonsillitis. Inflammation has emerged as a main factor for the oxidative stress, hyperglycemia, and dyslipidemia present in chronic noncommunicable diseases (NCDs). Such disturbances have been a leading cause of death worldwide for decades, despite significant efforts in developing new therapies. Therefore, strengthening the relevance of ethnobotanic approaches, as P. cauliflora has the potential to become a natural, native, and traditional product to prevent and treat inflammation-associated diseases more effectively for more people. AIM OF THE STUDY Evaluate anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic properties of hydroethanolic extract of P. cauliflora epicarps (PcE). MATERIALS AND METHODS Phytochemical compound from the PcE were identified through HPLC-DAD-ESI-MSn analysis. Antioxidant activity was determined by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The anti-inflammatory potential was investigated by carrageenan-induced paw edema and peritonitis in mice. Analgesic effect was assessed, in mice, though hot plate test and acetic acid-induced abdominal writhing. Antidiabetic and hypolipidemic potential were evaluated using alloxan-induced diabetic mice. RESULTS Tannins, phenolic acids, and their derivatives were the predominant phytochemicals found. Overall, PcE showed different properties related to the treatment of clinical conditions associated with chronic diseases as a potent antioxidant activity, demonstrating a radical scavenging action similar to gallic acid. PcE oral administration also significantly reduced inflammation induced by paw edema and partially blocked leukocyte migration. Moreover, PcE produced peripheral and central analgesic effects, as evaluated in the writhing model and hot plate tests. Treatment with PcE significantly improved glucose levels and lipid markers in diabetic mice. CONCLUSIONS P. cauliflora fruits are rich sources of secondary metabolites, mainly tannins and phenolic acids with high biological potential, which can effectively contribute to the approach of preventing and controlling chronic NCDs.
Collapse
Affiliation(s)
- Thaíse Gabriele da Silva Brito
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Ana Paula Sant'Anna da Silva
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Rebeca Xavier da Cunha
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Caíque Silveira Martins da Fonseca
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil.
| | - Tiago Ferreira da Silva Araújo
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale Eo São Francisco, Avenida José de Sá Maniçoba, S/N, CEP 56304917, Petrolina, PE, Brazil
| | - Janaína Karin de Lima Campos
- Laboratório Morfofuncional, Curso de Medicina, Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, Km 62, S/N, CEP, 55014-908, Caruaru, PE, Brazil
| | - Weber Melo Nascimento
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil
| | - Joanda Paolla Raimundo E Silva
- Laboratório Multiusuário de Caracterização e Análise - LMCA, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, 58033-455, João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Laboratório Multiusuário de Caracterização e Análise - LMCA, Universidade Federal da Paraíba, Cidade Universitária, Campus I, Castelo Branco III, S/N, 58033-455, João Pessoa, PB, Brazil
| | - Bianka Santana Dos Santos
- Laboratório Morfofuncional, Curso de Medicina, Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, Km 62, S/N, CEP, 55014-908, Caruaru, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas. Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, CEP 50670-901, Recife, PE, Brazil.
| |
Collapse
|
24
|
Geraldi MV, Betim Cazarin CB, Dias-Audibert FL, Pereira GA, Carvalho GG, Kabuki DY, Catharino RR, Pastore GM, Behrens JH, Cristianini M, Maróstica Júnior MR. Influence of high isostatic pressure and thermal pasteurization on chemical composition, color, antioxidant properties and sensory evaluation of jabuticaba juice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Dos Santos MCP, Cavalcanti EDC, Santos MCB, Seljan MP, Cameron LC, Ferreira MSL, Gonçalves ÉCBDA. Profile of phenolic compounds in jabuticaba ( Myrciaria sp.) a potential functional ingredient. Nat Prod Res 2021; 36:3717-3720. [PMID: 33397138 DOI: 10.1080/14786419.2020.1868459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phenolic compounds have attracted a lot of attention due to their benefits to human health. Jabuticaba (Myrciaria sp.) fruit has been described as an excellent source of these compounds, while Jabuticaba leaf, considered as plant residue, has shown functional effects. The present study aimed to characterize the phenolic profile in two different leaves extracts (hydroalcoholic ethanol and butanol) of Myrciaria sp. by UPLC-ESI-QTOF-MSE. A total of 40 phenolic compounds were tentatively identified. Jabuticaba leaf extracts presented a rich and diversified composition of phenolic compounds, especially flavonoids, being ellagic acid, quercetin 3-O-glucoside, gallocatechin, and epigallocatechin the most abundant in butanol extracts. Very distinct phenolic profiles were obtained depending on the the solvent indicating that specific preparations can be obtained from the jabuticaba leaf depending on the desired application. This work emphasized the potential of this residue vegetable to be used as a functional ingredient.
Collapse
Affiliation(s)
- Mônica Cristine Pereira Dos Santos
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Elisa d'Avila Costa Cavalcanti
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Millena C Barros Santos
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Mariana Pulmar Seljan
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry (LBP-IMasS), UNIRIO, Rio de Janeiro, Brazil.,Food Science Department, Nutrition School, UNIRIO, Rio de Janeiro, Brazil
| | - Édira Castello Branco de Andrade Gonçalves
- Laboratory of Bioactives, Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.,Food Science Department, Nutrition School, UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Senes CER, Rodrigues CA, Nicácio AE, Boeing JS, Maldaner L, Visentainer JV. Determination of phenolic acids and flavonoids from Myrciaria cauliflora edible part employing vortex-assisted matrix solid-phase dispersion (VA-MSPD) and UHPLC-MS/MS. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Li Z, Wang J. Identification and similarity analysis of aroma substances in main types of Fenghuang Dancong tea. PLoS One 2020; 15:e0244224. [PMID: 33347483 PMCID: PMC7751878 DOI: 10.1371/journal.pone.0244224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/06/2020] [Indexed: 11/19/2022] Open
Abstract
Fenghuang Dancong tea covers the oolong tea category and is widely acknowledged for its unique floral and honey flavor. In order to characterize the volatile components in nine different aroma types of Fenghuang Dancong tea, the Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC- MS) were employed. In addition, the similarity analysis and cluster analysis (CA) were performed to compare the aroma characteristics and establish the correlation between the nine types of teas. The principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) method were employed to determine the volatile components with a high contribution to the overall aroma of each type of tea. The results presented a total of 122 volatile aroma components including 24 kinds of alcohol, 23 kinds of esters, 15 kinds of olefins, 12 kinds of aldehydes, 12 kinds of ketones, 13 kinds of alkanes and 23 kinds of other components from the nine types of Fenghuang Dancong tea. Of these volatile aroma components, 22 types were common with linalool, dehydrolinalool, linalool oxide I, linalool oxide II, etc. The similarity of the nine types of Fenghuang Dancong tea was found between 46.79% and 95.94%. The CA indicated that the nine types of Fenghuang Dancong tea could be clustered into four categories when the ordinate distance reached to 10. The PCA demonstrated that decane, octadecane, 2,2,4,6,6-pentamethylheptane, dehydrolinalool, geraniol and nerol were the important aroma components to Fenghuang Dancong Tea. OPLS-DA proved that 2,2,4,6,6-pentamethylheptane, dehydrolinalool, phenylacetaldehyde, nerolidol, linalool oxide I and hexanal were the key differential compounds between the various types of tea samples. This study provides a theoretical basis for characterizing the volatile aroma components in the main types of Fenghuang Dancong tea as well as the similarity and correlation between various types of Fenghuang Dancong tea.
Collapse
Affiliation(s)
- Zhangwei Li
- Institute of Chemistry and Environment Engineering, Hanshan Normal University, Chaozhou, P. R. China
- * E-mail:
| | - Juhong Wang
- Institute of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, P. R. China
| |
Collapse
|
28
|
Avila LB, Fontes MRV, Zavareze EDR, Moraes CC, Morais MM, da Rosa GS. Recovery of Bioactive Compounds from Jaboticaba Peels and Application into Zein Ultrafine Fibers Produced by Electrospinning. Polymers (Basel) 2020; 12:polym12122916. [PMID: 33291430 PMCID: PMC7762189 DOI: 10.3390/polym12122916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
This work focused on the recovery bioactive compounds from jaboticaba peels and to develop ultrafine fibers from zein incorporated with the jaboticaba extract by electrospinning technique. Jaboticaba peel extracts (JPE) were obtained by maceration according a central composite rotational design (CCDR) and characterized with respect to total phenolic content (TP), antioxidant activity (AA) and total anthocyanin (TA). The optimal condition for the extraction was obtained using a desirability function in order to maximize the presence of bioactive compounds. Under these conditions the amount of cyanidin-3-glucoside (Cn-3-Glu) and the antimicrobial inhibition (AI) of E. coli were evaluated. Ultrafine fibers were obtained by electrospinning technique using zein in an aqueous ethanol as solvent and freeze-dried JPE at different concentrations (1.7% and 3.3%) to produce a composite membrane. The apparent viscosity and electrical conductivity of the polymer solutions, as well as the morphology, thermal stability and functional groups of the ultrafine fibers, were evaluated. The optimal conditions for extraction were 88 °C and pH 1. Under these conditions, a high amount of Cn-3-Glu was obtained (718.12 mg 100 g−1), along with 22.2% antimicrobial inhibition against E. coli. The addition of JPE into composite membranes did not affect the morphology of fibers, which presented a homogeneous and continuous format. Therefore, fibers containing JPE showed interesting characteristics for the food packaging industry.
Collapse
Affiliation(s)
- Luisa Bataglin Avila
- Engineering Graduate Program, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, 96413-172 Bagé, Brazil;
| | - Milena Ramos Vaz Fontes
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil; (M.R.V.F.); (E.d.R.Z.)
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil; (M.R.V.F.); (E.d.R.Z.)
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, 96413-172 Bagé, Brazil;
| | - Marcilio Machado Morais
- Chemical Engineering, Federal University of Pampa, 1650 Maria Anunciação Gomes Godoy Avenue, 96413-172 Bagé, Brazil;
| | - Gabriela Silveira da Rosa
- Engineering Graduate Program, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, 96413-172 Bagé, Brazil;
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, 96413-172 Bagé, Brazil;
- Correspondence: ; Tel.: +55-53-9996-722-26
| |
Collapse
|
29
|
Chen M, Wang WJ, Li NP, Zeng HH, Guo H, Jiang RW, Wang L, Ye WC. Myrcaulones A-C, Unusual Rearranged Triketone-Terpene Adducts from Myrciaria cauliflora. JOURNAL OF NATURAL PRODUCTS 2020; 83:2410-2415. [PMID: 32706260 DOI: 10.1021/acs.jnatprod.0c00283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three rearranged triketone-terpene adducts, myrcaulones A-C (1-3), were isolated from the leaves of Myrciaria cauliflora. Myrcaulones A (1) and B (2) feature a new carbon skeleton with an unprecedented spiro[bicyclo[3.1.1]heptane-2,2'-cyclopenta[b]pyran] core. Myrcaulone C (3) possesses an unusual cyclobuta[6,7]cyclonona[1,2-b]cyclopenta[e]pyran backbone. Their structures with absolute configurations were elucidated by NMR spectroscopy, X-ray diffraction, and electronic circular dichroism calculations. A plausible biogenetic pathway for myrcaulones A-C involving the rearrangement of a triketone unit is also proposed. In addition, myrcaulones A (1) and B (2) exhibited inhibitory effects against tumor necrosis factor-α and nitric oxide generation induced by lipopolysaccharide in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ming Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Jing Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ni-Ping Li
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hu-Hu Zeng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hong Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ren-Wang Jiang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lei Wang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
30
|
Wang M, Chen L, Liang Z, He X, Liu W, Jiang B, Yan J, Sun P, Cao Z, Peng Q, Lin Y. Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC PLANT BIOLOGY 2020; 20:386. [PMID: 32831013 PMCID: PMC7444041 DOI: 10.1186/s12870-020-02597-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fruit skin color play important role in commercial value of cucumber, which is mainly determined by the content and composition of chlorophyll and anthocyanins. Therefore, understanding the related genes and metabolomics involved in composition of fruit skin color is essential for cucumber quality and commodity value. RESULTS The results showed that chlorophyll a, chlorophyll b and carotenoid content in fruit skin were higher in Lv (dark green skin) than Bai (light green skin) on fruit skin. Cytological observation showed more chloroplast existed in fruit skin cells of Lv. A total of 162 significantly different metabolites were found between the fruit skin of the two genotypes by metabolome analysis, including 40 flavones, 9 flavanones, 8 flavonols, 6 anthocyanins, and other compounds. Crucial anthocyanins and flavonols for fruit skin color, were detected significantly decreased in fruit skin of Bai compared with Lv. By RNA-seq assay, 4516 differentially expressed genes (DEGs) were identified between two cultivars. Further analyses suggested that low expression level of chlorophyll biosynthetic genes, such as chlM, por and NOL caused less chlorophylls or chloroplast in fruit skin of Bai. Meanwhile, a predicted regulatory network of anthocyanin biosynthesis was established to illustrate involving many DEGs, especially 4CL, CHS and UFGT. CONCLUSIONS This study uncovered significant differences between two cucumber genotypes with different fruit color using metabolome and RNA-seq analysis. We lay a foundation to understand molecular regulation mechanism on formation of cucumber skin color, by exploring valuable genes, which is helpful for cucumber breeding and improvement on fruit skin color.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Piaoyun Sun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|
31
|
Profiling of Widely Targeted Metabolomics for the Identification of Secondary Metabolites in Heartwood and Sapwood of the Red-Heart Chinese Fir (Cunninghamia Lanceolata). FORESTS 2020. [DOI: 10.3390/f11080897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The chemical composition of secondary metabolites is important for the quality control of wood products. In this study, the widely targeted metabolomics approach was used to analyze the metabolic profiles of heartwood and sapwood in the red-heart Chinese fir (Cunninghamia lanceolata), with an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry system. A total of 224 secondary metabolites were detected in the heartwood and sapwood, and of these, flavonoids and phenolic acids accounted for 36% and 26% of the components, respectively. The main pathways appeared to be differentially activated, including those for the biosynthesis of phenylpropanoids and flavonoids. Moreover, we observed highly significant accumulation of naringenin chalcone, dihydrokaempferol, pinocembrin, hesperetin, and other important secondary metabolites in the flavonoid biosynthesis pathway. Our results provide insight into the flavonoid pathway associated with wood color formation in Chinese fir that will be useful for further breeding programs.
Collapse
|
32
|
Yusuf AA, Lawal B, Sani S, Garba R, Mohammed BA, Oshevire DB, Adesina DA. Pharmacological activities of Azanza garckeana (Goron Tula) grown in Nigeria. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00173-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
33
|
Inada KOP, Silva TBR, Lobo LA, Domingues RMCP, Perrone D, Monteiro M. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103851] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Hu YH, Wang CY, Chen BY. Effects of high-pressure processing and thermal pasteurization on quality and microbiological safety of jabuticaba ( Myrciaria cauliflora) juice during cold storage. Journal of Food Science and Technology 2020; 57:3334-3344. [PMID: 32728281 DOI: 10.1007/s13197-020-04366-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
Abstract
The aims of this study were to investigate the effects of high-pressure processing (HPP) on jabuticaba juice characteristics including microbial levels, phenolic compounds, antioxidant activity, and physicochemical properties during 28 days of storage at 4 °C and to perform a sensory evaluation. Juice samples were pressurized at 200, 400, or 600 MPa for 5 min. During thermal processing, juice was treated in a water bath at 90 °C for 60 s. Elevated aerobic plate counts, coliforms, psychrotrophs and yeasts/molds, were not detected in the HPP-400, HPP-600, or thermal-processed (TP) juices and further cold storage showed at least a shelf life of 28 days at 7 °C. All HPP-treated juice had significantly higher antioxidant capacities, higher total phenolic, flavonoid, and monomeric anthocyanin content, and lower browning degrees, compared with the TP. The soluble solid content, titratable acidity and pH were not significantly different in the HPP-400, HPP-600, and TP after 28 days. The ΔE values were significantly increased in all juice samples. Sensory analysis indicated that the HPP-treated juices had higher acceptance and lower bitter perception. In conclusion, HPP treatments above 400 MPa were effective in ensuring microbiological safety, maintaining the overall quality parameters, extending the shelf life, and achieving consumer acceptance.
Collapse
Affiliation(s)
- Ya-Hsin Hu
- Department of Biotechnology, National Formosa University, No.64, Wunhua Rd., Huwei Township, Yunlin County, 632 Taiwan
| | - Chung-Yi Wang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., New Taipei City, 24205 Taiwan
| | - Bang-Yuan Chen
- Department of Biotechnology, National Formosa University, No.64, Wunhua Rd., Huwei Township, Yunlin County, 632 Taiwan
| |
Collapse
|
35
|
Metabolite Profiling of Sorghum Seeds of Different Colors from Different Sweet Sorghum Cultivars Using a Widely Targeted Metabolomics Approach. Int J Genomics 2020; 2020:6247429. [PMID: 32190640 PMCID: PMC7073482 DOI: 10.1155/2020/6247429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Sweet sorghum (Sorghum bicolor) is one of the most important cereal crops in the world with colorful seeds. To study the diversity and cultivar-specificity of phytochemicals in sweet sorghum seeds, widely targeted metabolomics was used to analyze the metabolic profiles of the white, red, and purple seeds from three sweet sorghum cultivars Z6, Z27, and HC4. We identified 651 metabolites that were divided into 24 categories, including fatty acids, glycerolipids, flavonoids, benzoic acid derivatives, anthocyanins, and nucleotides and its derivatives. Among them, 217 metabolites were selected as significantly differential metabolites which could be related to the seed color by clustering analysis, principal component analysis (PCA), and orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA). A significant difference was shown between the red seed and purple seed samples, Z27 and HC4, in which 106 were downregulated and 111 were upregulated. The result indicated that 240 metabolites were significantly different, which could be related to the purple color with 58 metabolites downregulated and 182 metabolites upregulated. And 199 metabolites might be involved in the red phenotype with 54 downregulated and 135 upregulated. There were 45 metabolites that were common to all three cultivars, while cyanidin O-malonyl-malonyl hexoside, cyanidin O-acetylhexoside, and cyanidin 3-O-glucosyl-malonylglucoside were significantly upregulated red seeds, which could be the basis for the variety of seed colors. Generally, our findings provide a comprehensive comparison of the metabolites between the three phenotypes of S. bicolor and an interpretation of phenotypic differences from the point of metabolomics.
Collapse
|
36
|
Mannino G, Perrone A, Campobenedetto C, Schittone A, Margherita Bertea C, Gentile C. Phytochemical profile and antioxidative properties of Plinia trunciflora fruits: A new source of nutraceuticals. Food Chem 2020; 307:125515. [DOI: 10.1016/j.foodchem.2019.125515] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
|
37
|
Pimenta Inada KO, Nunes S, Martínez-Blázquez JA, Tomás-Barberán FA, Perrone D, Monteiro M. Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jabuticaba (Myrciaria jaboticaba) peel and seed. Food Chem 2020; 309:125794. [DOI: 10.1016/j.foodchem.2019.125794] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023]
|
38
|
Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chem 2020; 309:125735. [DOI: 10.1016/j.foodchem.2019.125735] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
|
39
|
Lima LGB, Montenegro J, de Abreu JP, Santos MCB, do Nascimento TP, Santos MDS, Ferreira AG, Cameron LC, Ferreira MSL, Teodoro AJ. Metabolite Profiling by UPLC-MS E, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi). Molecules 2020; 25:molecules25020342. [PMID: 31952109 PMCID: PMC7024372 DOI: 10.3390/molecules25020342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The metabolite profiling associated with the antioxidant potential of Amazonian fruits represents an important step to the bioactive compound′s characterization due to the large biodiversity in this region. The comprehensive bioactive compounds profile and antioxidant capacities of mamey apple (Mammea americana), camapu (Physalis angulata), and uxi (Endopleura uchi) was determined for the first time. Bioactive compounds were characterized by ultra-performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-MSE) in aqueous and ethanolic extracts. Globally, a total of 293 metabolites were tentatively identified in mamey apple, campau, and uxi extracts. The main classes of compounds in the three species were terpenoids (61), phenolic acids (58), and flavonoids (53). Ethanolic extracts of fruits showed higher antioxidant activity and total ion abundance of bioactive compounds than aqueous. Uxi had the highest values of phenolic content (701.84 mg GAE/100 g), ABTS (1602.7 μmol Trolox g−1), and ORAC (15.04 μmol Trolox g−1). Mamey apple had the highest results for DPPH (1168.42 μmol TE g−1) and FRAP (1381.13 μmol FSE g−1). Nuclear magnetic resonance (NMR) spectroscopy results showed that sugars and lipids were the substances with the highest amounts in mamey apple and camapu. Data referring to chemical characteristics and antioxidant capacity of these fruits can contribute to their economic exploitation.
Collapse
Affiliation(s)
- Larissa Gabrielly Barbosa Lima
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
| | - Julia Montenegro
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
| | - Joel Pimentel de Abreu
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
| | - Millena Cristina Barros Santos
- Laboratory of Bioactives, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (M.C.B.S.); (T.P.d.N.); (M.S.L.F.)
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Talita Pimenta do Nascimento
- Laboratory of Bioactives, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (M.C.B.S.); (T.P.d.N.); (M.S.L.F.)
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Maiara da Silva Santos
- Fluminense Federal Institute of Education, Science and Technology, IFF, Av. Dário Viêira Borges, 235-Lia Márcia, Bom Jesus do Itabapoana, Rio de Janeiro 28360-000, Brazil;
| | - Antônio Gilberto Ferreira
- Laboratory of NMR, Department of Chemistry, Federal University of São Carlos, UFSCar. Washington Luiz, s/n, São Carlos 13565-905, SP, Brazil;
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (M.C.B.S.); (T.P.d.N.); (M.S.L.F.)
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil;
| | - Anderson Junger Teodoro
- Laboratory of Functional Foods, Nutrition Biochemistry Core, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO. Av. Pasteur, 296, Rio de Janeiro 22290-240, Brazil; (L.G.B.L.); (J.M.); (J.P.d.A.)
- Correspondence: ; Tel.: +55-21-25427236; Fax: +55-21-25427752
| |
Collapse
|
40
|
Gasparotto Junior A, de Souza P, Lívero FADR. Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely Brazilian species. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112169. [PMID: 31425732 DOI: 10.1016/j.jep.2019.112169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plinia cauliflora (Mart.) Kausel is widespread in alluvial plains and open forests in Brazil, Argentina, and Paraguay. The fruits of P. cauliflora are used as food, and almost all parts of this species have long been used as a traditional Brazilian medicine for the treatment of skin irritations, flu, diarrhea, labyrinthitis, genito-urinary problems, and asthma. THE AIM OF THE REVIEW This review provides comprehensive and up-to-date information on P. cauliflora with regard to its ethnopharmacological uses, constituents, biological activities, and toxicology, all of which are useful for future research and the development of new drugs. MATERIALS AND METHODS The information and data on P. cauliflora were collected from ethnobotanical textbooks and scientific databases, such as PubMed, Scopus, EBSCO, Science Direct, Google, and Google Scholar. RESULTS The main chemical constituents in P. cauliflora preparations were depsides, flavonoids, and hydrolysable tannins. The main medicinal use of the species in Brazil is for the treatment of diarrhea. Although antimicrobial potential of this species has been demonstrated, data on gastrointestinal motility are still incipient and need further investigation. Studies that indicate the efficacy of its traditional use for sore throat, pelvic hemorrhage, uterine wounds, vaginal discharge, and flu are nonexistent. The scientific literature does not describe any toxic effects of its popular use. However, the available data do not allow us to conclude that the ethnomedicinal use of this species is safe, with a lack of well-designed preclinical tests and randomized clinical trials. CONCLUSION This review summarizes research on the traditional use, phytochemistry, biological activities, and toxicology of P. cauliflora. Although P. cauliflora possesses significant biological activities, much of its ethnomedicinal use has not been scientifically evaluated. Well-designed pharmacological and toxicological assays and randomized clinical trials are still needed to validate its ethnopharmacological use as an herbal medicine.
Collapse
Affiliation(s)
- Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil.
| | - Priscila de Souza
- Graduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | | |
Collapse
|
41
|
Senes CER, Nicácio AE, Rodrigues CA, Manin LP, Maldaner L, Visentainer JV. Evaluation of Dispersive Solid-Phase Extraction (d-SPE) as a Clean-up Step for Phenolic Compound Determination of Myrciaria cauliflora Peel. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01566-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
GARCIA LGC, SILVA EPD, SILVA NETO CDME, VILAS BOAS EVDB, ASQUIERI ER, DAMIANI C, SILVA FAD. Effect of the addition of calcium chloride and different storage temperatures on the post-harvest of jabuticaba variety Pingo de Mel. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.02318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
ROCHA JDCG, VIANA KWC, MENDONÇA AC, NEVES NDA, CARVALHO AFD, MINIM VPR, BARROS FARD, STRINGHETA PC. Protein beverages containing anthocyanins of jabuticaba. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.27917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Zhao DK, Shi YN, Petrova V, Yue GGL, Negrin A, Wu SB, D'Armiento JM, Lau CBS, Kennelly EJ. Jaboticabin and Related Polyphenols from Jaboticaba ( Myrciaria cauliflora) with Anti-inflammatory Activity for Chronic Obstructive Pulmonary Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1513-1520. [PMID: 30675793 DOI: 10.1021/acs.jafc.8b05814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Myrciaria cauliflora (jaboticaba) is an edible fruit common in Brazil that has been used for treating respiratory diseases, including chronic tonsillitis and asthma. This study explores the distribution of an anti-inflammatory depside, jaboticabin, in different parts of the jaboticaba plant as well as major polyphenols from the wood of jaboticaba, some with biological activity similar to jaboticabin. The peel of the fruit was found to be the major source of jaboticabin. This is the first phytochemical study of the wood of M. cauliflora. The antioxidant-activity-guided fractionation strategy successfully identified 3,3'-dimethylellagic acid-4- O-sulfate from jaboticaba wood. This ellagic acid derivative, in a manner similar to jaboticabin, showed antiradical activity and inhibited the production of the chemokine interleukin-8 after treating the human small airway epithelial cells with cigarette smoke extract. The human intestinal Caco-2 cell studies demonstrated the jaboticabin transport in vitro. The polyphenols, jaboticabin and 3,3'-dimethyellagic acid-4- O-sulfate, from jaboticaba were both found to exhibit anti-inflammatory activities, thus suggesting the potential use of these compounds or even the fruits themselves for chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
| | - Ya-Na Shi
- Institute of Medicinal Plants , Yunnan Academy of Agricultural Sciences , Kunming , Yunnan 650200 , People's Republic of China
| | - Vanya Petrova
- Ph.D. Program in Biology, The Graduate Center , The City University of New York , 365 Fifth Avenue , New York City , New York 10016 , United States
- Department of Biological Sciences, Lehman College , The City University of New York , 250 Bedford Park Boulevard West , Bronx , New York 10468 , United States
| | - Grace G L Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Adam Negrin
- Ph.D. Program in Biology, The Graduate Center , The City University of New York , 365 Fifth Avenue , New York City , New York 10016 , United States
- Department of Biological Sciences, Lehman College , The City University of New York , 250 Bedford Park Boulevard West , Bronx , New York 10468 , United States
| | - Shi-Biao Wu
- Department of Biological Sciences, Lehman College , The City University of New York , 250 Bedford Park Boulevard West , Bronx , New York 10468 , United States
| | - Jeanine M D'Armiento
- Department of Medicine, College of Physicians and Surgeons , Columbia University , 630 West 168th Street , P&S 9-449, New York City , New York 10032 , United States
| | - Clara B S Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Edward J Kennelly
- Ph.D. Program in Biology, The Graduate Center , The City University of New York , 365 Fifth Avenue , New York City , New York 10016 , United States
- Department of Biological Sciences, Lehman College , The City University of New York , 250 Bedford Park Boulevard West , Bronx , New York 10468 , United States
| |
Collapse
|
46
|
Systematically Characterizing Chemical Profile and Potential Mechanisms of Qingre Lidan Decoction Acting on Cholelithiasis by Integrating UHPLC-QTOF-MS and Network Target Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2675287. [PMID: 30719056 PMCID: PMC6335670 DOI: 10.1155/2019/2675287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Qingre Lidan Decoction (QRLDD), a classic precompounded prescription, is widely used as an effective treatment for cholelithiasis clinically. However, its chemical profile and mechanism have not been characterized and elucidated. In the present study, a rapid, sensitive, and reliable ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established for comprehensively identifying the major constituents in QRLDD. Furthermore, a network pharmacology strategy based on the chemical profile was applied to clarify the synergetic mechanism. A total of 72 compounds containing flavonoids, terpenes, phenolic acid, anthraquinones, phenethylalchohol glycosides, and other miscellaneous compounds were identified, respectively. 410 disease genes, 432 compound targets, and 71 related pathways based on cholelithiasis-related and compound-related targets databases as well as related pathways predicted by the Kyoto Encyclopedia of Genes and Genomes database were achieved. Among these pathways and genes, pathway in cancer and MAPK signaling pathway may play an important role in the development of cholelithiasis. EGFR may be a crucial target in the conversion of gallstones to gallbladder carcinoma. Regulation of PRKCB/RAF1/MAP2K1/MAPK1 is associated with cell proliferation and differentiation. Thus, the fingerprint coupled with network pharmacology analysis could contribute to simplifying the complex system and providing directions for further research of QRLDD.
Collapse
|
47
|
Cabral BRP, de Oliveira PM, Gelfuso GM, Quintão TDSC, Chaker JA, Karnikowski MGDO, Gris EF. Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
The Hepatoprotective Effect of Jaboticaba Peel Powder in a Rat Model of Type 2 Diabetes Mellitus Involves the Modulation of Thiol/Disulfide Redox State through the Upregulation of Glutathione Synthesis. J Nutr Metab 2018; 2018:9794629. [PMID: 30186630 PMCID: PMC6093015 DOI: 10.1155/2018/9794629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023] Open
Abstract
Jaboticaba peel powder (JPP) is rich in bioactive compounds, mainly soluble and insoluble polyphenols with great antioxidant properties. The aim of this study is to evaluate the effects of JPP supplementation on the oxidative stress and hepatic damage in a rat model of type 2 diabetes mellitus (T2DM). Diabetic rats received vehicle or JPP at 2.7 (JPP-I), 5.4 (JPP-II), or 10.8 (JPP-III) g/L in drinking water during 8 weeks. JPP-III attenuated hyperglycaemia and dyslipidemia increased by 86% the liver content of nonprotein thiol groups and by 90% the GSH/GSSG ratio by activating glutathione synthesis. Accordingly, JPP supplementation prevented the loss of activity of the sulfhydryl-dependent enzyme δ-aminolaevulinic acid dehydratase and attenuated hepatic injury assessed by the reduction of serum aspartate aminotransferase activity and liver hypertrophy. Our results support that JPP supplementation to T2DM rats decreases hepatic damage most likely by increasing glutathione synthesis and modulating the thiol/disulfide redox balance.
Collapse
|
49
|
Lamas C, Lenquiste S, Baseggio A, Cuquetto-Leite L, Kido L, Aguiar A, Erbelin M, Collares-Buzato C, Maróstica M, Cagnon V. Jaboticaba extract prevents prediabetes and liver steatosis in high-fat-fed aging mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
50
|
Dos Santos C, Galaverna RS, Angolini CFF, Nunes VVA, de Almeida LFR, Ruiz ALTG, de Carvalho JE, Duarte RMT, Duarte MCT, Eberlin MN. Antioxidative, Antiproliferative and Antimicrobial Activities of Phenolic Compounds from Three Myrcia Species. Molecules 2018; 23:E986. [PMID: 29695037 PMCID: PMC6100318 DOI: 10.3390/molecules23050986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023] Open
Abstract
Myrcia bella Cambess., Myrcia fallax (Rich.) DC. and Myrcia guianensis (Aubl.) DC. (Myrtaceae) are trees found in Brazilian Cerrado. They have been widely used in folk medicine for the treatment of gastrointestinal disorders, hemorrhagic and infectious diseases. Few reports have been found in the literature connecting their phenolic composition and biological activities. In this regard, we have profiled the main phenolic constituents of Myrcia spp. leaves extracts by ESI(−)Q-TOF-MS. The main constituents found were ellagic acid (M. bella), galloyl glucose isomers (M. guianensis) and hexahydroxydiphenic (HHDP) acid derivatives (M. fallax). In addition, quercetin and myricetin derivatives were also found in all Myrcia spp. extracts. The most promising antioxidant activity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, was found for M. fallax extracts (EC50 8.61 ± 0.22 µg·mL−1), being slightly less active than quercetin and gallic acid (EC50 2.96 ± 0.17 and 2.03 ± 0.02 µg·mL−1, respectively). For in vitro antiproliferative activity, M. guianensis showed good activity against leukemia (K562 TGI = 7.45 µg·mL−1). The best antimicrobial activity was observed for M. bella and M. fallax to Escherichia coli (300 and 250 µg·mL−1, respectively). In conclusion, the activities found are closely related to the phenolic composition of these plants.
Collapse
Affiliation(s)
- Catarina Dos Santos
- Department of Biological Sciences, Faculty of Sciences and Letters, University of São Paulo State (UNESP), Assis 19806-900, Brazil.
| | - Renan S Galaverna
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| | - Celio F F Angolini
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| | - Vania V A Nunes
- Department of Biological Sciences, Faculty of Sciences and Letters, University of São Paulo State (UNESP), Assis 19806-900, Brazil.
| | - Luiz F R de Almeida
- Department of Botany, Institute of Biosciences of Botucatu, UNESP-Univ. Estadual Paulista, Botucatu 18618-970, Brazil.
| | - Ana L T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP) P.O. Box 859, Campinas 13083-859, Brazil.
| | - João E de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP) P.O. Box 859, Campinas 13083-859, Brazil.
| | - Regina M T Duarte
- CPQBA, Microbiology Division, P.O. Box 6171, University of Campinas, Campinas 13083-970, Brazil.
| | - Marta C T Duarte
- CPQBA, Microbiology Division, P.O. Box 6171, University of Campinas, Campinas 13083-970, Brazil.
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| |
Collapse
|